Radiation Protection Vol. 31 No.4 Jul. 2011 1 1 1 2 1. 1008712. 200032 0.55 h -1 1.0 10 4 cm -3 AMTD1.0 nm AMAD200 nm 28.4 nsv (Bq h m -3 ) -1 19.9~33.9 nsv (Bq h m -3 ) -1 A DCF 觟 2009-04-14 10775007 J0730316 1987 2009 E-mail:qjguo@pku.edu.cn
242 1.2 DCFΣA i D i EEC T i R ΣC i D i C Rn F i A i i Bq i D i i EEC T Ci i R 1 C Rn F 1.1 α DCF u R ΣC iu D iu EEC u i DCF a R ΣC ia D ia EEC a i DCFDCF u f p DCF a f p u a f p f iu λ u a if ipi f i λ i λ v λ du λ a f ia λ u a a f iλi 1-p i f i f a λ i λ v λ d R f iu f ia i i 1.3 p i λ i i λ a λ v λ d
f p C u Po 誜 C u Pb誜 C a Po 誜 C a Pb C a Bi 誜 誜 1 LUDEP Tab.1 Major input parameters used for dose calculation using LUDEP V2.01 誜誜 1.4 3 Tab.3 Comparison of different values of DCF in typical indoor conditions 1 2 Tab.2 Environment parameter values in typical indoor conditions AMTD/AMAD ~ ~ ~ ~ ~ ~ 243 2 2.1 f 觟 AMAD ~ 1AMTD AMAD 2 DCF DCF u DCF a DCF 2.2
244 ~ 2.2.1 2.2.3 AMAD AMAD ~ AMAD AMAD DCF DCF AMAD 2.2.2 DCF DCF 1 2 Fig.1 Relationship between DCF, Fig.2 Relationship between DCF, unattached fraction and ventilation rates unattached fraction and aerosol concentration
245 3 133 140. 4Zock C Porstend 觟 fer JReineking A. The influence Fig.3 Relationship between DCF, of biological and aerosol parameters of inhaled unattached fraction and aerosol size distribution short - lived radon decay products on human lung dosej. Radiation Protection Dosimetry1996 63 3 197 206. 5Wasiolek PTJames AC. Unattached fraction me - asuring technique and radon lung dose J. Journal 3 of Environmental Radioactivity 2000 511 137 151. 6Marsh JWBirchall A. Sensitivity analysis of the weighted equivalent lung dose per unit exposure from radon progenyj. Radiation Protection Dosimetry2000 873 167 178. 7Porstend 觟 fer J. Physical parameters and dose factors of the radon and thoron decay productsj. Radiation Protection Dosimetry 2001 944 365 373. DCF f p 8Jacobi W. Activity and potential α-energy of 222 Rn and 220 Rn -daughters in different air atmospheres 1UNSCEAR.Sources and effects of ionizing radiation M. UNSCEAR 2000 Report. UNSCEAR New York 2000. 2Porstend 觟 rfer J. Influence of physical parameters on dose from radon exposuresj. International Congress Series2002 1225 149 160. 3Birchall AJames AC. Uncertainty analysis of the effective dose per unit exposure from radon progeny and implications for ICRP risk - weighting factors J. Radiation Protection Dosimetry 1994 531 J. Health Physics1972 225 441 450. 9Porstend 觟 rfer J. Behavior of radon daughter prod - ucts indoor airj. Radiation Protection Dosimetry 1984 71 107 113. 10Nikezic DStevanovic N. Room model with three modal distributions of attached radon progenyj. Health Physics2004 874 405 409. 11Stevanovic NNikezic DDjordjevich A. The recoil factor of 214 PbJ. Journal of Aerosol Science 2004 358 1 041 1 050. 12Nikezic DStevanovic N. Influence of variability of 214 Pb recoil factor on lung dosej. Radiation Protection Dosimetry2004 1093 197 200. 13Jarvis NS et al. LUDEP 2.0 personal computer program for calculating internal doses using the ICRP 66 respiratory tract modelr. NRPB-SR287.1996.
246 14ICRP. Human respiratory tract model for radiological protectionm. ICRP Publication 66. Oxford Pergamon 1994 Ann. 241 3. 15Marsh JWBirchall A. Determination of lung- toblood absorption rates for lead and bismuth those are appropriate for radon progenyj. Radiation Protection Dosimetry1999 834 331 337. 16Reineking A Becker KHProstend 觟 rfer J. Measurements of the activity size distributions of the short- lived radon daughters in the indoor and outdoor environmentj. Radiation Protection Dosimetry 1988 241 245 250. 17El-Hussein AAhmed A. Unattached fraction and size distribution of aerosol- attached radon progeny in the open airj. Applied Radiation and Isotopes 1995 4612 1 393 1 399. 18Huet CTumen GBoulaud D. Size distribution equilibrium ratio and unattached fraction of radon decay products under typical indoor domestic conditionsj. The Science of the Total Environment2001 2721 3 97 103. 19NRC. Comparative dosimetry of radon in mines and homes S. Washington National Academy Press 1991. 20Ishikawa TTokonami Set al. Effects of activity size distribution on dose conversion factor for radon progenyj. Japan J Health Phys2001 364 329 338. Study on Influence Parameters of Effective Dose Conversion Factors in Indoor Environment Zhao Chao 1 Zhang Lei 1 Guo Qiuju 1 Zhuo Weihai 2 1. Department of Technical Physics, School of physics, Peking University, Beijing 100871 2. Institutes of Biomedical Sciences; Fudan UniversityShanghai 200032 AbstractThe effective dose conversion factorsdcfof indoor radon progeny exposure are affected by many parameters of indoor environments. To understand the sensitivity of the effective dose conversion factors to iventilation rate iiaerosol particle concentrationand iiirelative size distribution of the aerosol-attached decay products, the influence of these parameters to DCF were analyzed in this paper by using indoor radon progeny model. The DCF in typical indoor conditions were calculated. The results show that the DCF in typical indoor conditions is 28.4 nsv Bq h m -3-1, in the 19.9 33.9 nsvbq h m -3-1 in consideration of the variation of the parameters of indoor environments. Key wordsindoor EnvironmentDCFVentilation RateAerosolSize Distribution