41 Vol.41, No. 01 RARE METAL MATERIALS AND ENGINEERING March 01 Pb O 4 PbO ( 710049) SnO -Sb Pb O 4 Pb O 4 100.5 h 970 h XRF XRD SEM Pb O 4 PbO PbO TG146.1 + A 100-185X(01)0-046-05 [1,] 1 PbO PbO Sn-Sb SnO [] TiO SnO [4] [5] Ti PbO MnO PbO PbO PbO PbO Song [6] PbO Ce(NO ) PbO - CeO PbO PbO [1] [7] PbO Sn-Sb PbO [8] SnO +Sb O 4 Ti/SnO -Sb O 4 -CF/PbO x Ti/SnO -Sb/PbO SnO -Sb PbO Pb O 4 Pb O 4 Pb Sn Pb Sn PbO Pb O 4 Sn PbO Pb O 4 Sn Sn PbO cm cm TA μm 1:1 10%NaOH 1 h 10% h Sn:Sb=10:1 ph=1 SnO -Sb 10 15 min 450 15 min 5 450 1 h _ 011-0-9 (0946001) (NCET-07-068) (08140016) 1984 710049 09-866471 E-mail: stormxuhao@stu.xjtu.edu.cn
Pb O 4 PbO 46 Pb(NO ) Pb O 4 Ti/SnO -Sb 10 15 min 470 15 min 5 470 1 h 0.5 mol L -1 Pb(NO ) + 0.1 mol L -1 Cu(NO ) + 0.01 mol L -1 NaF + 0.01 mol L -1 HNO (15 ma cm - ) (65 ) Ti/SnO -Sb Ti/SnO -Sb-Pb O 4 PbO Ti/SnO -Sb-PbO Ti/SnO -Sb-Pb O 4 / PbO (SEM JEOL JSM-690A) X (XRD Rigaku D/MAX-400X Cu-Kα ) X (XRF S4 PIONEER Bruker) LK00A Pt Ag/AgCl 45.0 mol L -1 H SO 4 1 A cm - 10.0 V XRD 1 Ti/SnO -Sb Ti/SnO -Sb-Pb O 4 Ti/SnO -Sb Sn Ti O Sb Sb XRF Ti/SnO -Sb-Pb O 4 Pb Sn Ti O Pb Ti/SnO -Sb Ti/SnO -Sb- Pb O 4 Ti Sn SnO -Sb XRF Table 1 XRF analysis result of the two electrodes (ω/%) Electrode Ti Sn O Pb Ti/SnO -Sb 7.7 7. 19. Ti/SnO -Sb-Pb O 4 19.7.74 4.1 8.6 1 Ti/SnO -Sb Ti/SnO -Sb-Pb O 4 XRD Ti/SnO -Sb 8 40 Ti 6.7 4.5 5.5 SnO SbO x SnO SnO 6.61 (110).89 (101) 51.78 (11) ICSD917 Sb SnO Sb 5+ Sn 4+ 0.060 nm 0.069 nm 1% Hume-Rothery 15% [9] 1 Ti/SnO -Sb-Pb O 4 8 40 Ti/SnO -Sb Ti 4.0 0.8. 4.7 46.4 5.8 54.5 Pb O 4 Pb O 4 4.9 01 0.75 11.07 10 4.51 0 46.00 40 5.78 41 54. 4 ICSD5 ICSD9094 ICSD65 Pb O 4 SnO Pb-Sn Pb O 4 SnO Ti/SnO -Sb Ti/SnO -Sb-Pb O 4 a SnO -Sb b Intensity/cps 1600 1 Ti 1400 100 1000 800 600 11 SnO PbO4 Ti/SnO-Sb-PbO4 400 00 Ti/SnO-Sb 0 0 0 40 50 60 70 80 1 XRD Fig.1 XRD patterns of the two electrodes θ/( )
464 41 a Voltage/V 10 9 8 7 6 5 4 Ti/SnO-Sb/PbO Ti/SnO-Sb-PbO4/PbO b 0 00 400 600 800 1000 Time/h Fig. Accelerated test life of the two electrodes Fig. SEM images of the two electrodes: (a) Ti/SnO -Sb and (b) Ti/SnO -Sb-Pb O 4 Pb O 4 Pb O 4 SnO -Sb SnO -Sb Pb O 4 SnO -Sb a PbO PbO PbO Pb O 4 Ti/SnO -Sb Ti/SnO -Sb-Pb O 4 PbO SEM XRD PbO PbO PbO - PbO - 10 V 10 V Ti/SnO -Sb/PbO (Accelerated life, AL) 100.5 h Ti/SnO -Sb-Pb O 4 /PbO 970.0 h 9.7 Ti/SnO - Sb-Pb O 4 /PbO 50 h Ti/SnO -Sb/PbO 50 h 0.0085 V/h Ti/SnO -Sb-/PbO 0.08 V/h Ti/SnO -Sb-Pb O 4 /PbO Ti/SnO -Sb/PbO Ti/SnO -Sb-Pb O 4 /PbO PbO PbO ( PbO )
Pb O 4 PbO 465 PbO Table Contrast of accelerated test life and calculated life for different PbO electrodes Electrode type AL/h Criterion Test conditions n CL/a Ref. Ti/PbO 6 U>10 V Ti/SnO -Sb/PbO 0 U>10 V Ti/α-PbO /β-pbo 10 Mass lose=6.7% Ti/SnO -Sb O 4-CF/PbO x 10 U>10 V Ti/SnO -Sb/PbO 100.5 U>10 V Ti/SnO -Sb-Pb O 4/PbO 970 U>10 V 60, 1.0 mol/l H SO 4, 4.0 A/cm 1.8.14 [] 60, 1.0 mol/l H SO 4, 4.0 A/cm 1.8.6 [] 90, 9.0 mol/l H SO 4, 100 ma/cm.0 1.97 [7] 60, 1. 0 mol/ L H SO 4, 4 A/ cm 1.8 11.4 [8] 45,.0 mol/l H SO 4, 1.0 A/cm 1.5 0.6 This paper 45,.0 mol/l H SO 4, 1.0 A/cm 1.5.50 This paper [10] L~1/i n 1 L i n i n 1 CL=[AL/8640*(i AL /i CL )] n CL calculated life a AL accelerated life h i AL A/m i CL 1000 A/m n 1.4~.0 n n Ti/SnO -Sb-Pb O 4 /PbO SnO -Sb PbO Pb O 4 PbO 1 Pb O 4 SnO -Sb SnO Pb Sn Pb O 4 PbO PbO Pb O 4 Sn Ti/SnO -Sb- Pb O 4 /PbO Ti/SnO -Sb/PbO SnO -Sb PbO Pb O 4 4 Pb-Sn-Sb 4 Pb O 4 5 PbO 4 4 1 1 titanium; SnO -Sb layer; Pb-Sn-Sb solid solution layer; 4 Pb O 4 reticular layer; 5 electrodeposition PbO layer 4 Fig.4 Cross section structure scheme of the long-life PbO electrode 5 SnO -Sb PbO PbO PbO [11,1] Pb O 4 TiO Pb(NO ) Pb O 4 1) SnO -Sb Pb O 4 SnO -Sb PbO ) Pb O 4 PbO PbO PbO
466 41 ) Pb O 4 4) 9.7 970 h References [1] Tong Shaoping, Ma Chunan, Feng Hui. Electrochimica Acta[J], 008, 5: 00 [] Feng Yujie( ), Shen Hong( ), Cui Yuhong( ) et al. Journal of Molecular Catalysis( )[J], 00, 16(): 181 [] Wang Yaqiong( ), Tong Hongyang( ), Xu Wenlin( ). Chinese Journal of Applied Chemistry( )[J], 004, 1(5): 47 [4] Liang Zhenhai( ), Zhang Fuyuan( ), Sun Yanping( ). Rare Metal Materials and Engineering( )[J], 006, 5(10): 1605 [5] Xu Liang( ), Zhao Fang( ), Nong Jiaying( ) et al. Chinese Journal of Environmental Engineering( )[J], 008, (7): 959 [6] Song Yuehai, Wei Gang, Xiong Rongchun. Electrochimica Acta[J], 007, 5: 70 [7] Zhou Minghua, Dai Qizhou, Lei Lecheng et al. Environmental Science and Technology[J], 005, 9: 6 [8] Xue Caixia( ), Liang Zhenhai( ). Journal of Taiyuan University of Technology()[J], 007, 8(5): 41 [9] Chen Xueming, Chen Guohua. Electrochimica Acta[J], 005, 50: 4155 [10] Zhang Zhaoxian( ). Titanium Electrod Industry ( nd ) ()[M]. Beijing: Metallurgical Industry Press, 005: 01 [11] Li Peiqiang, Zhao Guohua, Cui Xiao et al. Journal of Physic and Chemistry C[J], 009, 11: 75 [1] Zhao Guohua, Cui Xiao, Liu Meichuan et al. Environmental Science and Technology[J], 009, 4: 1480 Effect of Pb O 4 Layer Introduction on the Accelerated Life of the Ti-PbO Electrodes Xu Hao, Yan Wei, Chang Le (Xi an Jiaotong University, Xi an 710049, China) Abstract: By means of thermal decomposition, Pb O 4 layer was introduced into the Ti/SnO -Sb electrode to increase the electrode service life through increasing the cohesive force between PbO and Ti. The results show that the introduction of the Pb O 4 layer greatly enhances the accelerated test life of the PbO electrode from 100.5 h to 970 h. The enhancement causes of the accelerated life for the PbO electrode due to the introduction of the Pb O 4 layer were analyzed based on the results of XRF, XRD and SEM. Key words: PbO electrode; thermal decomposition; inner layer; electrode life Corresponding author: Xu Hao, Candidate for Ph. D., Department of Environmental Science and Technology, Xi an Jiaotong University, Xi an 710049, P. R. China, Tel: 0086-9-866471, E-mail: stormxuhao@stu.xjtu.edu.cn