Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

Σχετικά έγγραφα
3-dimensional motion simulation of a ship in waves using composite grid method

APPENDIX A. Summary of the English Engineering (EE) System of Units

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Design Method of Ball Mill by Discrete Element Method

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

Influence of Flow Rate on Nitrate Removal in Flow Process

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Η Ρευστομηχανική από τον Αρχιμήδη μέχρι σήμερα. μια σύντομη ιστορική αναδρομή

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Hydrologic Process in Wetland

High order interpolation function for surface contact problem

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

X g 1990 g PSRB

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΟΧΙΑΚΗΣ ΠΑΡΑΚΤΙΑΣ ΑΝΑΒΛΥΣΗΣ ΣΤΟ Β.Α. ΑΙΓΑΙΟ. Τμήμα Επιστημών της Θάλασσας, Πανεπιστήμιο Αιγαίου 2

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Journal of the Institute of Science and Engineering. Chuo University

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Buried Markov Model Pairwise

DATA SHEET Surface mount NTC thermistors. BCcomponents

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

Supporting Information

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Analysis o n Characteristic s of Fire Smoke in Highway Tunnel by CFD Simulatio n

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

DuPont Suva 95 Refrigerant

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System


Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

RECIPROCATING COMPRESSOR CALCULATION SHEET

ER-Tree (Extended R*-Tree)

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

2.1

Προσαρμογή περιοχικών υδρολογικών σχέσεων στις Ελληνικές λεκάνες

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

DuPont Suva 95 Refrigerant

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

CorV CVAC. CorV TU317. 1

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Error Evaluation and Monotonic Convergence in Numerical Simulation of Flow

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΡΟΗΣ ΜΗ-ΝΕΥΤΩΝΙΚΟΥ ΡΕΥΣΤΟΥ

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil


MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Τοίχοι Ωπλισμένης Γής: υναμική Ανάλυση Πειράματος Φυγοκεντριστή. Reinforced Soil Retaining Walls: Numerical Analysis of a Centrifuge Test

* *, ** Koji Masuda* and Takashi Arai*, **

Conductivity Logging for Thermal Spring Well

Singuläre Störungsrechnung und ihre Anwendung in der Aerodynamik. Stefan Braun

Trace gas emissions from soil ecosystems and their implications in the atmospheric environment

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Simplex Crossover for Real-coded Genetic Algolithms

Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land

Μετρήσεις ηλιοφάνειας στην Κύπρο

A summation formula ramified with hypergeometric function and involving recurrence relation

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Table of Contents 1 Supplementary Data MCD

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

clearing a space (focusing) clearing a space, CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc-

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

.. 2,.. 3,.. 4 , - [1].,, [2],. [2], 1. ,,. - ,..)., , ( - , - A n+1 A n A [5]. [6] : ; ; , - . «..»

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

PETROSKILLS COPYRIGHT

Current Sense Metal Strip Resistors (CSMS Series)

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

Lukasz STAWARZ. on Behalf of the Fermi LAT Collaboration.


Changes and Issues of Consolidation Techniques of Peaty Arable Land in Hokkaido

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Industrial Furnace , ; 2. :A : 蛳 0001 蛳 08. Simulations of Gas Flow and Heat Transfer in Blast Furnace


STUDY OF FINS SHAPES' EFFECT ON NATURAL THERMAL CONVECTION

Microwave Sintering of Electronic Ceramics

Curran et al.,**. Davies et al ,**, ,***,**/

Cutaneous Blood Flow Increased by CO, Water Foot Bathing Visualized with Laser Doppler Imaging

Metal thin film chip resistor networks

Transcript:

4 D-5 Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow,, 3--, E-mail tsuboi@ab.eng.isas.ac.jp, 7-3-, E-mail ymats@mech.t.u-tokyo.ac.jp Nobuyuki Tsuboi, Institute of Space and Astronautical Science, Yoshinodai 3--, Yoshinodai, Sagamihara, Kanagawa Yoichiro Matsumoto, Mechanical Engineering, The University of Tokyo, Hongo 7-3-, Bunkyo-ku, Tokyo 3-8656 A DSMC (direct simulation Monte Carlo) simulation using Dynamic Molecular Collision (DMC) model and Multi- Stage (MS) model based on Molecular Dynamics (MD) calculation is applied for solving the two-dimensional nonequilibrium hypersonic rareed ow over a at plate with angle of leading edge. Numerical results show that nonequilibrium between translational and rotational temperature are obtained behind the leading edge over the plate. Pressure, heat ux ratio on the plate and rotational temperature in the DSMC results agree well with those in the experimental results. The results also indicates that the eects of gas-surface interaction are revealed and correrated with a rarefaction parameter V.. strong interaction weak interaction rarefaction parameter V (= M p C=Re x ) > :5 DSMC(direct simulation Monte Carlo) 2 3 2 Hypersonic Stream Kinetic Flow Transition Continuum Flow Wall Slip Merged Layer Strong Interaction Shock Wave Boundary Layer No Wall Slip Hypersonic Interaction Inviscid Weak Interaction Fig. : Schematic of viscous interaction near a sharp leading edge. DMC(Dynamic Molecular Collision) 4 MS(Multi-Stage) 5 DSMC 2. 2 DSMC Null-Collision 6 DSMC 7 MPI 2 DSMC 8 2. 2 2 2 DMC 2 2 DSMC 4 2.2 Maxwell-Boltzmann (i) (ii)cercignani-lampis-lord(cll) 9 (iii)multi- Stage(MS) 5 3 Copyright c 2 by JSCFD

Tab. : Simulation conditions. No. 2 3 4 5 6 7 8 9 2 3 4 Leading Edge angle[deg.] Mach number M Working Gas Stagnation pressure p [Pa] Stagnation temperaturet [K] Freestream temperature T [K] Freestream pressure p [Pa] Freestream velocity V [m/s] Reynolds number Re (based on L=.5[m],2L=plate length) Wall temperature T w [K] Knudsen number Kn (based on L) 2 2.2 Nitrogen 3.5 5, 3.32.683,53 566 29.47 3 4.89 Nitrogen 983 669 5.8 2.2,72 77 29.24 Wall boundary condition Diffuse MS CLL Diffuse MS CLL Accomm. coeff. n/ t/ r /.986/.95.9.8.7 /.986/.95.9.8.7 (a)computational grid system for No.-7 (b)computational grid system for No.8-4 Fig. 2: Computational grid systems. Maxwell-Boltzmann ( engineering surface ) CLL c i c r P (c i! c r ) 2 c it = p c 2 it + c2 iz c in P (c it! c rt) = p exp t(2 ; ) P (c in! c rn) = 2crn n " exp ; c rt ; ( ; t)c it t(2 ; t) 2 p ; nc in c rn I n 2 ; c2 rn +(; n)c 2 in n I t n # () (2) 2 P (E i! E r ) = p 2 ; r E i E r I c in c rn r r exp ; E i +(; r )E r (3) r r E CLL 2 3 Arkilic Cook /.7.95 MS (i) (ii) (iii) 3 MS Lengrand 2 / MS 2 Copyright c 2 by JSCFD

(a)diffuse,no. (b) (c) (d) (e) (f) Fig. 3: Density contours over the plate for M = 2:2. MS 5 3. Lengrand 3 4 5 mm 2 No.7 58( )4( ), 48 no.84 584, 458 3. M=2.2 Lengrand M =2:2 2 MS p/p 2 5 5 Experiment[Lengrand et al.(992)] Y/L.8.6.4.2 Experiment [Lengrand et al.(992)].5.5 2 ρ/ρ Fig. 4: Density proles over the plate at X=L=.5 for M =2:2..5.5 2 Fig. 5: Pressure distributions on the plate for M =2:2. 3 MS CLL 4 X=L =:5 CLL MS 5 MS CLL 3 Copyright c 2 by JSCFD

CH.35.3.25.2.5..5 Experiment[Lengrand et al.(992)].5.5 2 Fig. 6: Heat transfer rate distributions on the plate for M =2:2. Cf.7.6.5.4.3.2..5.5 2 Fig. 7: Skin friction distributions on the plate for M =2:2. Ttr/T 6 5 4 3 2.5.5 2 Fig. 8: Translational temperature distributions on the plate for M = 2:2. Trot/T 3 25 2 5 5.5.5 2 Fig. 9: Rotational temperature distributions on the plate for M = 2:2. CLL (No.3) CLL.7 =3 DSMC 6 MS CLL (No.3) MS CLL (No.3) MS CLL.7 MS 7 CLL (No.7) MS CLL (No.3) 8 MS CLL (No.3) MS 2 9 MS CLL (No.3).9 DSMC DSMC X=L >.5 CLL (No.3) MS 4 Copyright c 2 by JSCFD

(a)diffuse,no.8 (b) (c)cll,no. (d)cll,no.2 (e) (f) Fig. : Density contours over the plate for M = 4:89. MS,CLL (No.3) 3.2 M=4.89 4 5 p/p 3 2.5 2.5.5 CLL,No. CLL,No. CLL,No.2.5.5 2 Fig. : Pressure distributions on the plate for M =4:89. MS CLL MS CLL CH.8.7.6.5.4.3.2. CLL,No. CLL,No. CLL,No.2.5.5 2 Fig. 2: Heat transfer rate distributions on the plate for M =4:89. M =2:2 Kn MS CLL (No.) 2 3 CLL.95 No.8 CLL (No.4) 4,5 mm 4 5 2mm(X=L =:4) 3 5 Copyright c 2 by JSCFD

Cf.6.4.2..8.6.4.2 CLL,No. CLL,No. CLL,No.2.5.5 2 Fig. 3: Skin friction distributions on the plate for M =4:89. Ttr/T 4 3.5 3 2.5 2.5.5 CLL,No. CLL,No. CLL,No.2.2.4.6.8 Fig. 4: Translational temperature distributions at Y=mm over the plate for M = 4:89. Trot/T 4 3.5 3 2.5 2.5.5 Experiment[Tsuboi et al.(2)] CLL,No. CLL,No. CLL,No.2.2.4.6.8 Fig. 5: Rotational temperature distributions at Y=mm over the plate for M = 4:89. X=L =: MS CLL (No.) No.8 CLL.8 CLL (No.4) CLL 5mm,2mm(X=L =: :4) 6,7 MS CLL (No.) CLL.95 Y/L.4.3.2. Experiment[Tsuboi et al.(2)] CLL,No. CLL,No. CLL,No.2.5 2 2.5 3 Trot/T Fig. 6: Rotaional temperature proles at X=L = : for M =4:89. Y/L.4.35.3.25.2.5..5.5 2 2.5 3 Trot/T Experiment[Tsuboi et al.(2)] CLL,No. CLL,No. CLL,No.2 Fig. 7: Rotaional temperature proles at X=L = :4 for M =4:89. 6 Copyright c 2 by JSCFD

3.3 Rarefaction parameter V 8,9 M =2:2 2 M =4:89 strong interaction theory weak interaction theory 6 7 merged layer. Experiment[Lengrand et al.(992)].5 M 3 CH/ χ... Experiment[Lengrand et al.(992)] Merged Layer Regime p/p χ.. Merged Layer Regime.. V.. V Fig. 8: Rarefaction eects for pressure distributions on the plate for M =2:2. DSMC strong interaction theory weak interaction theory merged layer CLL merged layer CLL 4. 2 DSMC () DSMC 2 DSMC (2) 2 DSMC CLL MS Fig. 9: Rarefaction eects for heat transfer rate distributions on the plate for M = 2:2. χ p/p. CLL,No. CLL,No. CLL,No.2 Merged Layer Regime. V Weak interaction theory Fig. 2: Rarefaction eects for pressure distributions on the plate for M =4:89. 7 Copyright c 2 by JSCFD

M =2:2 MS M =4:89 (3) merged layer A.E.Beylich. Stollery JL, Kumar D, Atclie PA, Theoretical and Experimental Methods in Hypersonic Flows, AGARD- CP-54 (993), 5- { 5-. 2. Bird, G.A., Molecular Gas Dynamics, Clarendon Press, Oxford (976). 3. Nanbu, K., J Phys. Soc. Jpn., Vol. 49(99), 242-249. 4. Tokumasu, T. and Matsumoto Y., Phys. Fluids, Vol., No.7(999), 97{92. 5. Yamanishi, N. and Matsumoto, Y., Phys. Fluids, Vol., No.(999), 354{355. 6. Koura, K., Phys. Fluids, 29 (986), 359{35. 7. 59-586,B(993), 7{22. 8. 66-646,B(2), 7{22. 9. Lord, R.G., Proceeding of the 6th International Symposium on Rareed Gas Dynamics(988), 427{ 433.. Arkilic, E.B., Schmidt, M.A. and Breuer, K.S., Proceeding of the 2th International Symposium on Rareed Gas Dynamics(996), 983{988.. Cook, S.R. and Hobauer, M.A., Proceeding of the 2th International Symposium on Rareed Gas Dynamics(996), 467{472. 2. Lengrand, J.C., private communication, 999. 3. Lengrand, J.C. et al., 8th Int. Symp. on Rareed Gas Dynamics (992), 276{284. 4. (2), 8-84. 5. (2). 6. Anderson, J.D., Jr., Hypersonic and High Temperature Gas Dynamics, McGraw-Hill Book Co., New York(989). 7. Vidal, R.J. and Wittli, C.E., Proceeding of the 3rd International Symposium on Rareed Gas Dynamics(963), 343-378. 8 Copyright c 2 by JSCFD