Aspects of the BMS/CFT correspondence

Σχετικά έγγραφα
Aspects of the BMS/CFT correspondence

Higher spin gauge theories and their CFT duals

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Symmetric Stress-Energy Tensor

Space-Time Symmetries

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Relativistic particle dynamics and deformed symmetry

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Derivation of Optical-Bloch Equations

Cosmological Space-Times

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Tutorial problem set 6,

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Higher Derivative Gravity Theories

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Geodesic Equations for the Wormhole Metric

Constitutive Relations in Chiral Media

Geometry of the 2-sphere

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Graded Refractive-Index

A Short Introduction to Tensors

Inverse trigonometric functions & General Solution of Trigonometric Equations

SPECIAL FUNCTIONS and POLYNOMIALS

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

3.5 - Boundary Conditions for Potential Flow

Matrices and Determinants

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

The Feynman-Vernon Influence Functional Approach in QED

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

3+1 Splitting of the Generalized Harmonic Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture 26: Circular domains

Reminders: linear functions

Parametrized Surfaces

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Homework 8 Model Solution Section

Parallel transport and geodesics

Dark matter from Dark Energy-Baryonic Matter Couplings

Variational Wavefunction for the Helium Atom

Dual null formulation (and its Quasi-Spherical version)

Orbital angular momentum and the spherical harmonics

D Alembert s Solution to the Wave Equation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

1 Lorentz transformation of the Maxwell equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Physics 582, Problem Set 2 Solutions

Example 1: THE ELECTRIC DIPOLE

On the Einstein-Euler Equations

1 Conformal transformations in 2d

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Spherical Coordinates

Symmetry. March 31, 2013

( ) 2 and compare to M.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Hartree-Fock Theory. Solving electronic structure problem on computers

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

[Note] Geodesic equation for scalar, vector and tensor perturbations

A Short Introduction to Tensor Analysis

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

CURVILINEAR COORDINATES

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Answer sheet: Third Midterm for Math 2339

1 String with massive end-points

AdS black disk model for small-x DIS

A Short Introduction to Tensor Analysis 2

Cosmology with non-minimal derivative coupling

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Differential equations

Lifting Entry (continued)

Black holes: From GR to HS

Forced Pendulum Numerical approach

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Eulerian Simulation of Large Deformations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Areas and Lengths in Polar Coordinates

Non-Abelian Gauge Fields

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

NonEquilibrium Thermodynamics of Flowing Systems: 2

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Solutions to Exercise Sheet 5

Markov chains model reduction

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

( y) Partial Differential Equations

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Transcript:

International Conference on Strings, M-Theory and Quantum Gravity Centro Stefano Franscini, Monte Verita, Ascona, 27 July 2010 Aspects of the BMS/CFT correspondence Glenn Barnich Physique théorique et mathématique Université Libre de Bruxelles & International Solvay Institutes

Overview Classical gravitational aspects of AdS3/CFT2 correspondence 4d flat case, null infinity: asymptotic symmetries 3d flat case, null infinity: BMS3/CFT1 correspondence 4d flat case, null infinity: solution space work done in collaboration with C. Troessaert

AdS3/CFT2 Asymptotic symmetries Fefferman-Graham ansatz g µν = l 2 r 2 0 0 g AB Λ= 1 l 2 g AB = r 2 γ AB (x C )+O(1) r t, φ 2d metric γ AB conformal to flat metric on the cylinder γ AB = e 2ϕ η AB η AB dx A dx B = dτ 2 + dφ 2, τ = t l, ϕ = ϕ(xa ) asymptotic symmetries L ξ g rr =0=L ξ g ra, L ξ g AB = O(1), general solution determined by conformal Killing vector ξ r = 1 2 ψr, ξ A = Y A + I A, I A = l2 2 Bψ r dr r Y A of η AB g AB = l2 4r 2 γ AB B ψ + O(r 4 ). ψ = D A Y A

AdS3/CFT2 Asymptotic symmetries metric dependence ξ µ = ξ µ (x, g) δ g ξ 1 g µν = L ξ1 g µν modified bracket [ξ 1, ξ 2 ] µ M =[ξ 1, ξ 2 ] µ δ g ξ 1 ξ µ 2 + δg ξ 2 ξ µ 1 linear representation of conformal algebra [ξ 1, ξ 2 ] r M = 1 2 ψr, [ξ 1, ξ 2 ] A M = Y A + I A, Y A =[Y 1,Y 2 ] A, ψ = DA Y A light-cone coordinates x ± = τ ± φ, 2 ± = τ ± φ, γ ABdx A dx B = e 2ϕ dx + dx Y ± (x ± ) ± = n Z c n ±l ± n, l ± n = ie inx± ± [l ± m,l ± n ]=(m n)l ± m, [l ± m,l n ]=0 include Weyl rescalings of boundary metric L ξ g rr =0=L ξ g ra, L ξ g AB =2ωg AB + O(1) direct sum with abelian algebra of Weyl rescalings ( Y,ω) = [(Y 1, ω 1 ), (Y 2, ω 2 )] Y A = Y B 1 B Y A 2 Y B 2 B Y A 1, ω =0

AdS3/CFT2 Solution space existence of general solution integration constants Ξ ++ = Ξ ++ (x + ), Ξ = Ξ (x ) when ϕ =0 g AB dx A dx B = (r 2 + l4 r 2 Ξ ++Ξ )dx + dx + l 2 Ξ ++ (dx + ) 2 + l 2 Ξ (dx ) 2, BTZ black hole Ξ ±± =2G(M ± J l ) AdS3 space M = 1,J =0 8G general solution ϕ = 0 g AB dx A dx B = e 2ϕ r 2 +2γ + r 2 e 2ϕ (γ + 2 + γ ++ γ ) dx + dx + +γ ++ (1 r 2 e 2ϕ γ + )(dx + ) 2 + γ (1 r 2 e 2ϕ γ + )(dx ) 2, γ ±± = l 2 Ξ ±± (x ± )+ 2 ±ϕ ( ± ϕ) 2 γ + = l 2 + ϕ

AdS3/CFT2 Conformal properties asymptotic symmetries transform solutions into solutions g AB = g AB (x, Ξ,ϕ) g AB (x, δξ, δϕ) =L ξ g AB conformal transformation properties δ Y +,Y,ωΞ ±± = Y ± ± Ξ ±± +2 ± Y ± Ξ ±± 1 2 3 ±Y ± δ Y +,Y,ωϕ = ω asymptotically AdS3 gravity: dual to conformal boundary theory

AdS3/CFT2 Charge algebra Hamiltonian approach Q ξ surface charge generators, Dirac algebra centrally extended charge representation of conformal algebra Brown & Henneaux 1986 Q ξ [g ḡ, ḡ] = 1 8πG 2π 0 dφ (Y + Ξ ++ + Y Ξ ) Q ξ1 [L ξ2 g, ḡ] Q [ξ1,ξ 2 ] M [g ḡ, ḡ]+k ξ1,ξ 2, K ξ1,ξ 2 = Q ξ1 [L ξ2 ḡ, ḡ] = 1 8πG 2π 0 dφ ( φ Y τ 1 2 φy φ 2 φy τ 2 2 φy φ 1 ) modes Strominger 1998: combine with Cardy formula to provide a microscopic derivation of the Bekenstein-Hawking entropy of BTZ black hole

BMS4/CFT2 Asymptotically flat spacetimes BMS ansatz g µν = Minkowski u = t r η µν = e2β V r + g CDU C U D e 2β g BC U C e 2β 0 0 g AC U C 0 g AB u 1 1 0 0 1 0 0 0 0 0 r 2 0 0 0 0 r 2 sin 2 θ g AB dx A dx B = r 2 γ AB dx A dx B + O(r) r x A = θ, φ ζ, ζ Sachs: unit sphere γ AB = e 2ϕ 0γ AB 0 γ AB dx A dx B = dθ 2 + sin 2 θdφ 2 Riemann sphere ζ = e iφ cot θ 2, γ ABdx A dx B = e 2 eϕ dζd ζ dθ 2 +sin 2 θdφ 2 = P 2 dζd ζ, P(ζ, ζ) = 1 2 (1 + ζ ζ), ϕ = ϕ ln P determinant condition fall-off conditions det g AB = r4 4 e4 eϕ β = O(r 2 ), U A = O(r 2 ), V/r = 1 2 R + O(r 1 )

BMS4/CFT2 Asymptotic symmetries asymptotic symmetries general solution L ξ g rr =0, L ξ g ra =0, L ξ g AB g AB =0, L ξ g ur = O(r 2 ), L ξ g ua = O(1), L ξ g AB = O(r), L ξ g uu = O(r 1 ) ξ u = f, f = f ϕ + 1 ξ A = Y A + I A, I A = f,b dr (e 2β 2 ψ f = eϕ T + 1 g AB 2 ), r ξ r = 1 2 r( D A ξ A f,b U B +2f u ϕ), ψ = D A Y A u 0 du e ϕ ψ, Y A = Y A (x B ) T = T (x B ) conformal Killing vectors of the sphere generators for supertranslations spacetime vectors with modified bracket form linear representation of bms 4 algebra [(Y 1,T 1 ), (Y 2,T 2 )] = ( Y, T ) Y A = Y1 B B Y2 A Y1 B B Y2 A Sachs 1962, T = Y1 A A T 2 Y2 A A T 1 + 1 2 (T 1 A Y2 A T 2 A Y1 A ) standard GR choice: restrict to globally well-defined transformations SL(2, C)/Z 2 SO(3, 1) Y A generators of Lorentz algebra

BMS4/CFT2 New proposal CFT choice : allow for meromorphic functions on the Riemann sphere solution to conformal Killing equation Y ζ = Y ζ (ζ), Y ζ = Y ζ( ζ) generators l n = ζ n+1 ζ, ln = ζ n+1 ζ, n Z T m,n = ζ m ζn, m, n Z commutation relations [l m,l n ]=(m n)l m+n, [ l m, l n ]=(m n) l m+n, [l m, l n ]=0, [l l,t m,n ]=( l +1 2 m)t m+l,n, [ l l,t m,n ]=( l +1 2 n)t m,n+l. Poincaré subalgebra l 1,l 0,l 1, l 1, l 0, l 1, T 0,0,T 1,0,T 0,1,T 1,1,

BMS3/CFT1 ansatz for asymptotically flat metrics g µν = Asymptotic symmetries e 2β Vr 1 + r 2 e 2ϕ U 2 e 2β r 2 e 2ϕ U e 2β 0 0 r 2 e 2ϕ U 0 r 2 e 2ϕ Minkowski spacetime ds 2 = du 2 2dudr + r 2 dφ 2 u = t r fall-off conditions β = O(r 1 ), U = O(r 2 ) V = 2r 2 u ϕ + O(r) asymptotic symmetries L ξ g rr =0=L ξ g rφ, L ξ g φφ =0, L ξ g ur = O(r 1 ), L ξ g uφ = O(1), L ξ g uu = O(1) ξ u = f, ξ φ = Y + I, I = e 2ϕ φ f dr r 2 e 2β = 1 r r e 2ϕ φ f + O(r 2 ), ξ r = r φ ξ φ φ fu + ξ φ φ ϕ + f u ϕ, u f = f u ϕ + Y φ ϕ + φ Y f = e ϕ T + u 0 du e ϕ ( φ Y + Y φ ϕ) solution involves 2 arbitrary functions on the circle spacetime vector form faithful representation of Y = Y (φ), T = T (φ) bms 3 algebra [(Y 1,T 1 ), (Y 2,T 2 )] = ( Y, T ) Y = Y 1 φ Y 2 (1 2), T = Y1 φ T 2 + T 1 φ Y 2 (1 2)

BMS3/CFT1 Solution space and conformal properties general solution parametrized by Θ = Θ(φ), Ξ = Ξ(φ) s uφ = e ϕ Ξ + u 0 ds 2 = s uu du 2 2dudr +2s uφ dudφ + r 2 e 2ϕ dφ 2, s uu = e 2ϕ Θ ( φ ϕ) 2 +2 2 φϕ 2r u ϕ, du e ϕ 1 2 φθ φ ϕ[θ ( φ ϕ) 2 +3 2 φϕ]+ 3 φϕ. bms 3 transformation properties δ Y,T Θ = Y φ Θ +2 φ Y Θ 2 3 φy, δ Y,T Ξ = Y φ Ξ +2 φ Y Ξ + 1 2 T φθ + φ T Θ 3 φt, covariant charges Q ξ [g ḡ, ḡ] 1 16πG K ξ1,ξ 2 = 1 8πG 2π 0 dφ 2π 0 dφ (ΘT +2ΞY ) φ Y 1 (T 2 + φt 2 2 ) φ Y 2 (T 1 + φt 2 1 )

BMS3/CFT1 Charge algebra modes Y (θ) 1 copy of Wit algebra acting on i 1 iso(2, 1) charge algebra: relation to AdS 3 similar to contraction between so(2, 2) iso(2, 1) L ± m = 1 2 ( lp ±m ± J ±m ) l collaboration with G. Compère

BMS4/CFT2 solution space ansatz g AB = r 2 γ AB + rc AB + D AB + 1 4 γ ABC C DC D C + o(r ) determinant condition C A A =0=D A A Sachs: power series and D AB =0 guarantees absence of log terms equations of motion imply β = β(g AB ) U A = 1 2 r 2 DB C BA 2 3 r 3 (ln r + 1 3 ) D B D BA 1 2 CA B D C C CB + N A + o(r 3 ε ), angular momentum aspect N A (u, x A ) u dependence fixed log terms also absent when D ζζ = d(ζ), D ζ ζ = d( ζ), D ζ ζ =0.

BMS4/CFT2 Solution space V r = 1 2 R + r 1 2M + o(r 1 ) mass aspect M(u, x A ) u dependence fixed news tensor u C AB (u, x A ) only arbitray function of u general solution: 4 arbitrary functions of 3 variables & 3 arbitrary functions of 2 variables g AB (u 0,r,x A ) u C AB (u, x A ) M(u 0,x A ) N A (u 0,x A ) for simplicity ϕ =0 γ AB dx A dx B = dζd ζ C ζζ = c, C ζ ζ = c, C ζ ζ =0 redefinitions M = M 2 c 2 c Ñ ζ = 1 12 [2N ζ +7 c c +3c c] evolution equations u M = ċ c 3 u Ñ ζ = M 2 3 c ( c +3 c )ċ

BMS4/CFT2 Conformal properties bms4 transformations δc = fċ + Y A A c +( 3 2 Y 1 2 Ȳ )c 2 2 f δd = Y A A d +2 Y d f = T + 1 2 uψ δċ = f c + Y A A ċ +2 Y ċ 3 Y δ M = fċ c + Y A A M + 3 2 ψ M + c 3 Y + c 3 Ȳ +4 2 2 T δñ ζ = Y A A Ñ ζ +( Y +2 Ȳ )Ñ ζ + 1 (ψ d) 3 f( M +2 2 c + cċ) f M 3 +2 3 c +( c +3 c )ċ Interpretation and consequences: work in progress

BMS4/CFT2 Conclusions and perspectives 4d gravity is dual to some conformal field theory classifiy (non)-central extensions; study representation theory of bms4 to be done: surface charge algebra non extremal Kerr/CFT correspondence? angular momentum problem in GR: Lorentz = bms4(old)/supertranslations versus bms4(new)/supertranslations = Virasoro

References Asymptotically flat spacetimes & symmetries

References Gravitational AdS3/CFT2 & Kerr/CFT

References

References Holography at null infinity in 3 & 4 dimensions

References This work based on

Quantum Coulomb solution Toy model to understand BH entropy quantum understanding of BH entropy: what microstates are responsible? physical toy model for BH: electromagnetic Coulomb solution quantize EM field in the presence of external source Q action S Q = d 4 x [ 1 4 F µνf µν j µ A µ ] j µ = δ µ 0 Qδ3 (x ) modification of constraint associated with Gauss law φ Q 2 πi, i +j 0 =0

Quantum Coulomb solution BFV-BRST quantization standard BFV-BRST operator quantization in Hilbert space with indefinite norm modified BRST charge Ω Q = d 3 kc ( k)[a( k) q( k)] + [a ( k) q( k)]c( k) q( k)= Q (2π) 3/2 2k 3/2 null oscillators a( k)=a 3 ( k)+a 0 ( k) b( k)= 1 2 (a 3( k) a 0 ( k)) [â( k), ˆb ( k )] = δ 3 ( k k ) standard vacuum no longer BRST invariant! shifted oscillators a Q ( k)=a( k) q( k), a Q = a ( k) q( k) new vacuum in the presence of source â Q ( k) 0 Q =0

Quantum Coulomb solution Coherent state of unphysical photons solution in terms of old vacuum 0 Q = k exp q( k)ˆb ( k) 0 =exp d 3 kq( k)ˆb ( k) 0 null oscillator Q 0 0 Q = 0 0 =1 expectation values of electric and magnetic fields Q 0 ˆπ i (x) 0 Q = Qxi 4πr 3 Q 0 ˆ A 0 Q =0 quantum mechanical understanding of Coulomb solution only possible in Gupta-Bleuler/ BRST quantization BH problem: one needs to count coherent states of unphysical degrees of freedom