40 5 40 5 2012 5 Li 2 FeSiO 4 /C JOURNAL OF THE CHINESE CERAMIC SOCIETY 739 Vol. 40 No. 5 May 2012 SiC TaC ( 410082) (TaCl 5 ) (TEOS) (C 6 H 12 O 6 H 2 O) 450 C SiO 2 Ta 2 O 5 1 200 1 500 SiC TaC X SiO 2 Ta 2 O 5 Si O Ta Si O Ta C TaC 1 200 SiC 1 400 1 500 SiC TaC 0.02 SiC TaC SiC TB332 A 0454 5648(2012)05 0739 06 2012 04 23 10:40:35 http://www.cnki.net/kcms/detail/11.2310.tq.20120423.1040.018.html Synthesis of SiC TaC Nanopowder with Hybrid Precursor via Carbonthermal Reduction LI Qing XIAO Hanning GAO Pengzhao GUO Wenming HU Jilin XIE Wen OUYANG Tangzhe (College of Materials Science and Engineering, Hunan University, Changsha 410082, China) Abstract: A compound gel was firstly prepared with tantalum pentachloride (TaCl 5 ), tetraethoxysilane (TEOS) and glucose (C 6 H 12 O 6 H 2 O) as starting materials, and the gel was then calcined at 450 to obtain a C SiO 2 Ta 2 O 5 hybrid precursor. A nanopowder of SiC TaC was synthesized with the precusor via the carbonthermal reduction at 1 200 1 500. The products were charaterized by using X-ray diffration, scanning electron microscope, energy dispersive. The results show that the amorphous SiO 2 and Ta 2 O 5 can be composed by Si O Ta bonding, and the evenly-distributed Si O Ta C long chain renders the solid structure of interpenetrating networks inside the hybrid precursor. TaC was obtained at <1 200, and SiC started to be synthesized at 1 400, and the whole reaction process could be fully completed at 1 500. The nanopowder of SiC TaC presented distinct features at different mole ratios of tantalum to silicon. The particle size distribution of the powder appeared narrower at a mole ratio of tantalum to silicon of 0.02. The morphology of SiC could vary from spherical nanoparticles into curve-shaped nanowires when the mole ratio increased. Key words: silicon carbide-tantalum carbide; nanopowder; sol gel; precursor; glucose; homogeneity (SiC) 1 600 [1 3] (TaC) (TMC) [4 6] SiC TaC SiC TaC [7 8] TaC SiC [9 10] SiC TaC SiC TaC TiC/SiC [11] ZrC SiC [12] C/TaC SiC [13] SiC WC [14 15] 2011 11 11 2012 02 20 (No.50972042) (1983 ) (1961 ) Received date: 2011 11 11. Revised date: 2012 02 20. First author: LI Qing (1983 ), male, doctorial candidate. E-mail: kevinlee2007@126.com Correspondent author: XIAO Hanning (1961 ), male, Ph.D., professor. E-mail: hnxiao@hnu.edu.cn
740 2012 SiC TaC TaC SiC SiC TaC SiC TaC 1 1.1 TEOS ( 1:2:2:0.01) A TaCl 5 B B A C [ 1% 1% ( ) 5] 3 h A B C 60 12h 3 d SiO 2 Ta 2 O 5 A B C 3:2:5 0.01 0.02 0.05 0.1 1.5 TaCl 5 99.9% 1.2 SiO 2 Ta 2 O 5 450 ST1 ST2 ST3 ST4 1.3 SiC TaC Ar 1 200 1 500 20 /min 1 h 1 1.4 D/max 2550PC X (Cu K α ) JSM-6700F Oxford Instmments 2 2.1 SiO 2 Ta 2 O 5 SiO 2 Ta 2 O 5 TaCl 5 [16] TaCl 5 + 5EtOH Ta(OEt) 5 + 5HCl (1) [17] 2Ta(OEt) 5 + 5H 2 O Ta 2 O 5 + 10EtOH (2) TEOS [18] Si(OEt) 4 + 2H 2 O SiO 2 + 4EtOH (3) SiO 2 Ta 2 O 5 TaCl 5 HCl TEOS TEOS EtOH TaCl 5 2.2 ( 1) ( 2) A EDS C O Si Ta 4 1 Fig. 1 Digital photo of compound gel Tanabe [19] SiO 2 Ta 2 O 5 SiO 2 Si O Ta 2 O 5 Ta O Tanabe SiO 2 Ta 2 O 5
40 5 SiC TaC 741 ( 3 ) B EDS Si O Ta C 4 Si O Ta C B C O A H 2 O CO x 2 SEM EDS Fig. 2 SEM photograph and EDS spectrum of compound gel [20] Ta O [5/6 2/2] = 0.166 1 Ta O 0.166 6 = 1.0 1 Ta O 1 Tanabe 1 1 Ta O Ta O SiO 2 Ta 2 O 5 5 [21] Ta O SiO 2 Ta 2 O 5 450 [22] 3 SEM EDS Fig. 3 SEM photograph and EDS spectrum of hybrid precursor 2.3 SiC TaC SiO 2 Ta 2 O 5 SiC TaC
742 2012 [23 24] SiO 2 + 3C SiC+2CO (4) Ta 2 O 5 + 7C 2TaC + 5CO (5) 4 XRD 60 SiO 2 1 200 1 300 SiO 2 TaC SiC ( 5) SiC TaC SiO 2 SiO 2 1 400 SiO 2 SiO 2 SiC 1 400 36 60 72 SiC SiC 1 200 TaC TaC 1 200 1 300 TaC 1 400 SiC TaC SiO 2 1 500 SiC TaC SiC TaC 2.4 SiC TaC SiC TaC 2θ SiC TaC 5 1 500 SiC TaC Fig. 5 Back scattering image and the corresponding EDS spectrum of SiC TaC nanopowders synthesized at 1 500 4 XRD Fig. 4 XRD patterns of compound gel and synthesized nanopowder SiC TaC SiC TaC [12] SiC TaC 1 500 SiC TaC 5 EDS SiC TaC SiC TaC SiC TaC ( 6)
40 5 SiC TaC 743 0.01 SiC ( 6a) Ta Si Ta Si [25] 0.02 SiC TaC ( 6b) 0.05 SiC TaC SiC 0.1 SiC 100 nm TaC SiC SiC [26] TaC 3 1) TaCl 5 TEOS C 6 H 12 O 6 H 2 O 450 C SiO 2 Ta 2 O 5 1 200 1 500 SiC TaC 2) Si O Ta C 3) SiC TaC 0.02 SiC TaC SiC SiC TaC TaC 6 1500 TaC SiC TaC Fig. 6 Morphology of SiC TaC nanopowders with different TaC contents synthesized at 1 500 Note: Mole ratio of Ta to Si in samples ST1 to ST4 were 0.01, 0.02, 0.05, 0.1, respectively. [1] CHOYKE W J, MATSUNAMI H. Silicon Carbide, Recent Major Advances [M]. Berlin: Kyoto and Newyork: Springer, 2003: 221 225. [2] POL V G, POL S V, GEDANKEN A. Thermal decomposition of commercial cilicone oil to produce high yield high surface area SiC nanorods [J]. J Phys Chem B, 2006, 110(23): 11237 11240. [3],,. SiC [J]., 2002, 17(2): 193 201. CHU Zengyong, FENG Chunxiang, SONG Yongcai, et al. J Inorg Mater (in Chinese), 2002, 17(2): 193 201.
744 2012 [4] OYAMA S T. The chemistry of transition metal carbides and nitride [M]. London: Blackie Academic & Professional, 1995: 1 5. [5] SAUTEREAU J, MOCELLIN A. Sintering behaviour of ultrafine NbC and TaC powders [J]. J Mater Sci, 1974(9): 761 771. [6],,,. TaC / [J]., 2005, 19(12): 80 83. YAN Zhiqiao, XIAO Peng, XIONG Xiang, et al. Mater Rev (in Chinese), 2005, 19(12): 80 83. [7],. [M]. :, 2006: 179. XIAO Hanning, GAO Pengzhao. High-performance Structural Ceramics and its Application [M]. Beijing: Chemical Industry Press, 2006: 179. [8]. C/C TaC TaC/SiC [D]. :, 2006. LI Guodong. Preparation and anti-ablation mechanisms of TaC coatings, TaC/SiC coatings on C/C composites [D]. Changsha: Central South University, 2006. [9]. [M]. :, 2011: 469. XIE Zhipeng. Structural Ceramics (in Chinese). Beijing: Tsinghua Unversity Press, 2011: 469. [10] ZHANG Xiaohong, HILMAS G E, FAHRENHOLTZ. W G. Densification and mechanical properties of TaC-based ceramics [J]. Mater Sci Eng A, 2009, 501(1/2): 37 43. [11] ZHONG Jie, LIANG Shuquan, WANG Kun, et al. Synthesis of mesoporous carbon-bonded TiC/SiC composites by direct carbothermal reduction of sol gel derived monolithic precursor [J]. J Am Ceram Soc, 2011, 94(11): 4025 4031. [12] PIZON D, LUCAS R, CHEHAIDI S. From trimethylvinylsilane to ZrC SiC hybrid materials [J]. J Eur Ceram Soc, 2011, 31(14): 2687 2690. [13],,. 3D C/SiC TaC [J]., 2009(3): 41 44. WANG Yi, XU Yongdong, ZHANG Litong. Aero Mater & Tech (in Chinese), 2009(3): 41 44. [14],,. SiC SiC WC [J]., 2004, 32(12): 1470 1475. ZHOU Songqing, XIAO Hanning, YANG Qiaoqin. J Chin Ceram Soc, 2004, 32(12): 1470 1475. [15],,,. RSiC WC [J]., 2011, 21(6): 1359 1366. LI Qing, XIAO Hanning, GAO Pengzhao, et al. J Chin Nonferr Metal (in Chinese), 2011, 21(6): 1359 1366. [16],,,. TaC [J]., 2010, 39(s1): 425 428. MA Mingliang, SHEN Weiping, WANG Qingyun, et al. Rare Met Eng (in Chinese), 2010, 39(s1): 425 428. [17],,. TaCl 5 Ta 2 O 5 [J]., 2008, 20(1): 87 90. REN Hongbo, WANG Xian, ZHANG Lin. High Power Laser Part Beams (in Chinese), 2008, 20(1): 87 90. [18]. [J]., 1997, 12(3): 363 369. LIN Jian. J Inorg Mater (in Chinese), 1997, 12(3): 363 369. [19] GUIU G, GRANGE P. Acidic and catalytic properties of SiO 2 Ta 2 O 5 mixed oxides prepared by the sol gel method [J]. J Catal, 1995, 156(1): 132 138. [20] BINKS J H, DUFFY J A. New acid sites in dilute oxide solid solutions: An optical basicity approach [J]. J Solid State Chem, 1985, 58(1): 133 135. [21],. TiSiW 12 O 40 /TiO 2 [J]., 2003, 11(1): 25 30. YANG Shuijin, LIANG Yongguang. Ind Catal (in Chinese), 2003, 11(1): 25 30. [22] WANG Hua, HUA Ping, PAN De an. Carbothermal reduction method for Fe 3 O 4 powder synthesis [J]. J Alloy Compd, 2010, 502(2): 338 340. [23] LI Xintong, CHEN Xiaohong, SONG Huaihe. Synthesis of β SiC nanostructures via the carbothermal reduction of resorcinol formaldehyde /SiO 2 hybrid aerogels [J]. J Mater Sci, 2009, 44(17): 4661 4667. [24] PREISS H, SCHULTZE D, KLOBES P. Formation of NbC and TaC from gel-derived precursors [J]. J Eur Ceram Soc, 1997, 17(12): 1423 1435. [25] SHON I J, KO I Y, CHAE S M. Rapid consolidation of nanostructured TaSi 2 from mechanochemically synthesized powder by high frequency induction heated sintering [J]. Ceram Int, 2011, 37(2): 679 682. [26] LI Qing, XIAO Hanning, HU Jilin, et al. Synthesis and growth mechanism of NbC SiC micro/nanowire by carbothermal reduction [J]. Mater Sci Techol, 2011, 27(10): 1534 1539.