HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος ΕΚΔ. 10/11/2015 ΣΕΛ. 1 / 5
ΘΕΩΡΙ ΣΥΝΟΛΩΝ ΣΚΗΣΕΙΣ Τα ερωτήματα δείχνουν πολλά, αλλά τα περισσότερα είναι απλά έως πολύ απλά, («2 3 γραμμές» ή/και 5 10 ), οπότε δώστε τα περισσότερα που μπορείτε. αθμολογικά θα μετρήσουν τα εξής: το πόση «ύλη» καλύψατε, (με στόχο πάνω από το 70%, και ένα τουλάχιστον υπο ερώτημα από κάθε ερώτημα), η ποιότητα των απαντήσεων (ζητείται σαφήνεια, ακρίβεια, εξηγήσεις, και «σωστή γλώσσα»/ορολογία). ( πό το 5 ο ερώτημα προσπαθείστε για 3 τουλάχιστον από τα 8 υπο ερωτήματα. πό το 8 ο ερώτημα προσπαθείστε για 2 τουλάχιστον από τα 3 υπο ερωτήματα. ) Η διορία παράδοσης είναι έως το μάθημα της 18 ης / 11 ου / 2015. ΣΥΝΟΛ: ΡΦΗ ΝΝΩΣΗ ΣΧΕΔΙΣΗ 1) Πόσα στοιχεία έχουν τα εξής σύνολα; 1. { { α, β, α } } 2. { { α, { α }, α, α }, α } 3. α, β, α, αν α β, και, αν α = β. 4. {,, } 5. { σ: σ είναι φυσικός αριθμός κ σ < λ } 6. { σ: σ είναι φυσικός αριθμός κ σ λ } 2) Σχεδιάστε τρία σύνολα,, και σκιαγραφείστε τις περιοχές που δηλώνονται από τις εξής εκφράσεις: 1. ( ), ( ) 2. ( ) ( ) 3. ( ) ( ) 4. ( ) ( ) 3) ράψτε στη «γλώσσα των συνόλων» τις εξής προτάσεις (αδιαφόρως του εάν αληθεύουν ή όχι): 1. Ένα στοιχείο δεν ανήκει την τομή των συνόλων και παρά μόνον εάν ανήκει στο σύνολο. 2. Το σύνολο έχει το πολύ δύο στοιχεία που δεν περιέχει το. 3. Τα σύνολα, έχουν το πολύ ένα κοινό στοιχείο, και, 4. Το S δεν μπορεί να είναι κενό παρά μόνον εάν τα και είναι ίσα. 5. Το S είναι υποσύνολο ενός εκ των,,. ΣΧΕΣΕΙΣ ΜΕΤΞΥ ΣΥΝΟΛΩΝ 4) Ισχύουν οι σχέσεις μεταξύ των παρακάτω συνόλων όπως έχουν γραφεί; 1. { {α}, {α, β} } = { {α, β}, {β} } 2. { α, α, β, γ, δ, β } = { α, γ, δ, β, } 3. { 2, 4, 8, 16 } = { ν: ν είναι δύναμη του 2 μικρότερη από 20 } 5) Ισχύουν οι εξής σχέσεις; Εάν ναι δώστε μια απόδειξη, εάν όχι δώστε ένα (μικρό) αντιπαράδειγμα. 1. [ ] = [] [] 2. ( ) = 3. ( {σ}) ( {σ}) = {σ} {σ}, όπου σ, σ 4. = 5. (( ) Δ) = ( ) (Δ ) 6. αν τότε [] [] 7. αν τότε S A S B 8. αν τότε S S ΙΔΙΟΤΗΤΕΣ ΠΡΞΕΩΝ ΣΥΝΟΛΩΝ 6) Ορίζουμε την «συμμετρική διαφορά» B (A B) (B A). Δείξτε ότι η πράξη αυτή είναι μεταθετική και προσεταιριστική: 1. B =. 2. ( ) = ( B). Υπόδειξη: Μπορείτε να δείξετε ότι το σ ανήκει στο 1 ο ή 2 ο μέλος αν και μόνον ανήκει ή και στα τρία ή σε ένα μόνον. 7) Εάν ορίσουμε ως α, β, γ το σύνολο α, β, γ, αποδείξτε ότι α, β, γ = α, β, γ εάν και μόνον εάν α = α, β = β και γ = γ. ΠΕΠΕΡΣΜΕΝ ΣΥΝΟΛ: Η ΡΧΗ ΤΟΥ ΠΕΡΙΣΤΕΡΩΝ 8) Τα εξής σχετίζονται με την αρχή του περιστερώνα: Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος ΕΚΔ. 10/11/2015 ΣΕΛ. 2 / 5
1. Προσπαθείστε να αποδείξετε την αρχή του Dirichlet επαγωγικά: «όπως και αν τοποθετήσουμε ν 2 αντικείμενα σε (ν 1) θέσεις, εμφανίζεται μία τουλάχιστον διπλοθεσία». Η βάση της επαγωγής, ν = 2, είναι αληθής, διότι τοποθετεί 2 αντικείμενα σε (2 1) = 1 θέση, και αυτό είναι προφανώς διπλοθεσία. Πώς θα κάνατε το βήμα της επαγωγής, ότι δηλαδή «αν η αρχή για ισχύει για k = ν, θα ισχύει και για k = (ν+1)»; 2. Έστω S ένα σύνολο 10 φυσικών αριθμών το συνολικό άθροισμα των οποίων είναι το πολύ ίσο με 1000. Δείξτε ότι μπορούμε πάντοτε να βρούμε δύο υποσύνολα, του S, ξένα μεταξύ τους, και τέτοια ώστε: άθροισμα στοιχείων του = άθροισμα στοιχείων του. 3. Δείξτε ότι δεν μπορούν να «χωρέσουν» πάνω από 6 σημεία σε ένα ορθογώνιο διαστάσεων 1 2, εάν τα σημεία αυτά πρέπει να απέχουν ανά δύο απόσταση τουλάχιστον 1. 1 ΠΕΙΡΟ & ΡΙΘΜΗΣΙΜ ΣΥΝΟΛ 9) Συμβολίζουμε με Ν το σύνολο των «φυσικών»: { 0, 1, 2, 3, 4,... }. Δείξτε τις εξής ισοπληθικές σχέσεις: 1. Ν Ν Ν, και γενικά Ν Ν Ν... Ν (k φορές) Ν. 2. { p: p πρώτος φυσικός αριθμός } Ν. 10) Δείξτε τις εξής πληθικές ανισότητες: 1. S < [S], ακόμα και για απειροπληθή σύνολα S. 2. Δείξτε ότι Ν <, όπου το σύνολο των πραγματικών αριθμών ( = οι πραγματικοί αριθμοί είναι πολύ περισσότεροι από τους ρητούς). Υπόδειξη: Περιοριστείτε στο διάστημα των πραγματικών [0.. 1) και αναπαραστήσατε αυτούς σαν μια ακολουθία δεκαδικών ψηφίων, π.χ. 0.3141592654.... Στη συνέχεια υποθέσατε ότι αυτές οι ακολουθίες δεκαδικών ψηφίων είναι αριθμήσιμες και εφαρμόστε το τέχνασμα της διαγωνιοποίησης.. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος ΕΚΔ. 10/11/2015 ΣΕΛ. 3 / 5
ΠΡΔΕΙΜΤ ΕΝΔΕΙΚΤΙΚΩΝ ΠΝΤΗΣΕΩΝ ΣΥΝΟΛ: ΡΦΗ ΝΝΩΣΗ ΣΧΕΔΙΣΗ Πόσα στοιχεία έχουν τα εξής σύνολα; * { α, β, { α, σ }, γ, δ } ΠΝΤΗΣΗ: Πέντε. Το στοιχείο { α, σ } μετριέται φυσικά ως ένα στοιχείο του δεδομένου συνόλου. * { } ΠΝΤΗΣΗ: Ένα. Το κενό μπορεί να έχει μηδέν στοιχεία, αλλά το ίδιο είναι ένα σύνολο (και όχι μηδέν σύνολα). Σχεδιάστε τρία σύνολα,, και σκιαγραφείστε τις περιοχές που δηλώνονται από τις εξής εκφράσεις: * ( ) ΠΝΤΗΣΗ: Δείτε το παρακάτω σχήμα για την έκφραση ( ): ( ) ράψτε στη «γλώσσα των συνόλων» τις εξής προτάσεις (αδιαφόρως του εάν αληθεύουν ή όχι): * ράψτε πρόταση UNION(X, S) επί των μεταβλητών Χ και S που θα ισχύει εάν και μόνον εάν ( = η ένωση όλων των συνόλων/στοιχείων του S. ΠΝΤΗΣΗ: UNION(X, S) ( (x X) σ( (σ S) (x σ) ) ). X S * Τα και έχουν τουλάχιστον δύο κοινά στοιχεία. ΠΝΤΗΣΗ: x y (x ) (y ) (x y) ΣΧΕΣΕΙΣ ΜΕΤΞΥ ΣΥΝΟΛΩΝ Ισχύουν οι σχέσεις μεταξύ των παρακάτω συνόλων όπως έχουν γραφεί; * { α, β, { γ } } = { α, β, γ } ΠΝΤΗΣΗ: Η σχέση δεν ισχύει: { α, β, { γ } } { α, β, γ } διότι το γ ανήκει στο 2 ο μέλος, αλλά δεν ανήκει στο 1 ο. Στο 1 ο μέλος ανήκει το μονοσύνολο { γ } αλλά δεν ισχύει γ = { γ }. * { α, α, β, γ, δ, β } = { γ, α, δ, β } ΠΝΤΗΣΗ: Ισχύει: ένα σύνολο δεν εξαρτάται από επαναλήψεις ή εναλλαγές στοιχείων. Ισχύουν οι εξής σχέσεις; Εάν ναι δώστε μια απόδειξη, εάν όχι δώστε ένα (μικρό) αντιπαράδειγμα. * [ ] = [] [] ΠΝΤΗΣΗ: Δεν ισχύει: αν = { α} και = { β } τότε S = { α, β } [ ] αλλά { α, β } [] []. * ( ) ( ) = (( ) ( )) ΠΝΤΗΣΗ: Δεν ισχύει: Το σχήμα παρακάτω υποδεικνύει το αντιπαράδειγμα = = = { σ }. * * * Εάν τότε S S ΠΝΤΗΣΗ: Το σχήμα δείχνει τον συλλογισμό. ια τέτοιες περιπτώσεις απόδειξης δείτε και την ενότητα [#8]. ( A S) A S A B B ( B S) Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος ΕΚΔ. 10/11/2015 ΣΕΛ. 4 / 5
ΙΔΙΟΤΗΤΕΣ ΠΡΞΕΩΝ ΣΥΝΟΛΩΝ ΕΝΔΕΙΚΤΙΚΕΣ ΝΛΥΣΕΙΣ: θα βρείτε αρκετές σχετικές αναλύσεις στο φυλλάδιο των σημειώσεων (#1, 2). ΠΕΙΡΟ & ΡΙΘΜΗΣΙΜ ΣΥΝΟΛ * Έστω ότι δύο ξένα μεταξύ τους σύνολα Χ, Υ είναι ισοπληθή ( ) με το Ν. Τότε και Χ Υ Ν. ΠΝΤΗΣΗ: Χωρίζουμε τους φυσικούς στο σύνολο των αρτίων και στο σύνολο των περιττών Π. Το είναι ισοπληθές με το Ν υπό την αντιστοίχιση ν ν/2 και άρα με το Χ. Το Π είναι ισοπληθές με το Ν υπό την αντιστοίχιση ν (ν 1)/2, και άρα με το Υ. Επομένως: Χ Υ Π = Ν. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος ΕΚΔ. 10/11/2015 ΣΕΛ. 5 / 5