ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή
|
|
- Χρύσηίς Παπαφιλίππου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναωτή Έστω ότι ένας καταναωτής επιέγει να καταναώσει δύο προϊόντα, χυμούς () και τοστ (). Η τιμή των χυμών είναι 0.5 ευρώ ανά μονάδα προϊόντος (x = 0.5 ), η τιμή των τοστ είναι.00 ευρώ ανά μονάδα προϊόντος ( =.00 ) και το εισόδημα του καταναωτή είναι.00 ευρώ ( I =.00 ). Θεωρείστε ότι ο καταναωτής δαπανά όο του εισόδημα σε αυτά τα δύο αγαθά, δεν υπάρχει αποταμίευση ούτε δανεισμός. Η συνάρτηση χρησιμότητας του συγκεκριμένου καταναωτή δίνεται από τη σχέση U = U(, ) = = Ερώτημα : Πώς πρέπει να κατανείμει το εισόδημά του ο καταναωτής, ώστε να μεγιστοποιήσει τη χρησιμότητά του; Να άβετε υπόψη ότι οι συνθήκες πρώτης τάξης για την επίυση του προβήματος της μεγιστοποίησης της χρησιμότητας με τη μέθοδο του Lagrange δίνουν τις ακόουθες τρεις σχέσεις:
2 = () = () I = + (3) Να διατυπώσετε ποιά είναι η βασική υπόθεση που πρέπει να ικανοποιείται για τις συνθήκες δεύτερης τάξης του συγκεκριμένου προβήματος. Ερώτημα : Αν αυξηθεί η τιμή του χυμού από 0.5 σε 0.80 ευρώ, πώς ειτουργούν τα αποτεέσματα υποκατάστασης και εισοδήματος; Τι επίπτωση προκύπτει για το επίπεδο χρησιμότητας του καταναωτή; Τι θα πρέπει να συμβεί στο εισόδημά του για να παραμείνει ο καταναωτής στο ίδιο επίπεδο χρησιμότητας με εκείνο που είχε πριν την αύξηση της τιμής των χυμών; Για να δώσετε την απάντησή σας, υποθέστε ότι και τα δύο αγαθά είναι κανονικά. Δεν χρειάζεται να απαντήσετε μέσω γραφικής παράστασης. Λύση: Ερώτημα : Εφόσον ο καταναωτής δαπανά όο το εισόδημά του στα δύο αυτά αγαθά και δεν υφίστανται αποταμιεύσεις και δανεισμός, ο εισοδηματικός περιορισμός του θα είναι I = +. Η συνάρτηση χρησιμότητας του καταναωτή είναι U = U(, ) =. Επομένως, συνδυάζοντας τις δύο αυτές πηροφορίες, προκύπτει ότι το πρόβημα που θέουμε να επιύσουμε είναι το ακόουθο:
3 , max U = U(, ) = s.t. I = + Με άα όγια, θέουμε να μεγιστοποιήσουμε (maximize max) τη συνάρτηση χρησιμότητας ως προς τις ποσότητες των αγαθών και, υπό τον περιορισμό (subject to s.t.) του εισοδήματος. Για να εφαρμόσουμε τη μέθοδο του Lagrange για βετιστοποίηση (μεγιστοποίηση ή εαχιστοποίηση) με περιορισμό, σχηματίζουμε την αντίστοιχη συνάρτηση του Lagrange: L= ( ) + I όπου είναι ο ποαπασιαστής Lagrange. Ουσιαστικά, το πρώτο μέρος της συνάρτησης Lagrange αποτεείται από τη συνάρτηση που θέουμε να μεγιστοποιήσουμε και το δεύτερο μέρος από τον περιορισμό. Άρα το πρόβημα μεγιστοποίησης διατυπώνεται, πέον, ως εξής:,, ( ) max L= + I όπου τώρα πέον η μεγιστοποίηση γίνεται ως προς τις ποσότητες των αγαθών και καθώς και ως προς τον ποαπασιαστή Lagrange,. Από τα δεδομένα της άσκησης, δίνονται οι σχέσεις που προκύπτουν από τις συνθήκες πρώτης τάξης (First Order Conditions F.O.C.). Οι συνθήκες δεύτερης τάξης (Second Order Conditions S.O.C.) απαιτούν οι καμπύες αδιαφορίας του καταναωτή να είναι κυρτές προς την αρχή των αξόνων, τουάχιστον στο σημείο ισορροπίας του καταναωτή. Εναακτικά, η συνάρτηση Lagrange γράφεται ως L= ( I ) συνάρτηση προς μεγιστοποίηση είναι ( I ),, + και η αντίστοιχη max L= +. Όπως μπορείτε να διαπιστώσετε, εάν κάνετε τις πράξεις, το τεικό αποτέεσμα δεν αάζει, όγω της σωστής ααγής των προσήμων. Επομένως, οι συνθήκες πρώτης τάξης, που μάς ενδιαφέρουν για την επίυση του προβήματος της μεγιστοποίησης της χρησιμότητας του καταναωτή, παραμένουν αμετάβητες. Στο παράρτημα της άσκησης δίνεται αναυτικά ο τρόπος εξαγωγής των συνθηκών πρώτης τάξης. 3
4 Για να βρούμε ποιές ποσότητες των αγαθών και μεγιστοποιούν τη χρησιμότητα του καταναωτή, θα αξιοποιήσουμε τις σχέσεις που δίνουν οι συνθήκες πρώτης τάξης. Ειδικότερα, διαιρώντας κατά μέη τις σχέσεις () και () και κάνοντας τις κατάηες αποποιήσεις, προκύπτει η σχέση (4): = = = = (4) Αν ύσουμε τη σχέση (4) ως προς και ως προς, παίρνουμε δύο νέες σχέσεις για τις ποσότητες των αγαθών που πρέπει να καταναώσει ο καταναωτής για να μεγιστοποιήσει τη χρησιμότητά του. Πιο συγκεκριμένα, = = (5) = = (6) Στη συνέχεια, μπορούμε να αντικαταστήσουμε κάθε φορά τις σχέσεις (5) και (6) στη σχέση (3). Αντικαθιστώντας τη σχέση (5) στη σχέση (3) προκύπτει η σχέση (7): I = + I= + I= + I= (7) και αντικαθιστώντας τη σχέση (6) στη σχέση (3) προκύπτει η σχέση (8): I = + I = + I = + I = (8) Οι σχέσεις (7) και (8) περιέχουν εισόδημα, τιμή και ποσότητα ενός αγαθού. Αυτά θυμίζουν την έννοια της συνάρτησης ζήτησης κατά Marshall. 4
5 Υπενθυμίζουμε ότι η συνάρτηση ζήτησης κατά Marshall είναι η απή συνάρτηση ζήτησης, όπου η ζητούμενη ποσότητα προσδιορίζεται ως συνάρτηση των τιμών των αγαθών και του εισοδήματος: *=dx(,, I) όπου Χ είναι η ζητούμενη ποσότητα του αγαθού Χ, είναι η τιμή του, είναι η τιμή όων των άων αγαθών και I είναι το εισόδημα του καταναωτή. Επομένως, εάν ύσουμε τις σχέσεις (7) και (8) ως προς και, αντίστοιχα, θα πάρουμε τις συναρτήσεις ζήτησης κατά Marshall: I I = = (9) I I = = (0) Μπορούμε, πέον, να αντικαταστήσουμε τα δεδομένα της άσκησης στις σχέσεις (9) και (0) και να βρούμε τις ζητούμενες ποσότητες: I = = = = I = = = = μονάδες προϊόντος και μονάδα προϊόντος. Επομένως, η χρησιμότητα του καταναωτή μεγιστοποιείται όταν καταναώνει 4 μονάδες του προϊόντος και μονάδα του προϊόντος. Το επίπεδο της χρησιμότητάς του είναι μονάδες χρησιμότητας. U = U(, ) = = 4 = 4 = 4 = 5
6 Ερώτημα : 3 Εφόσον αυξάνεται η τιμή ενός προϊόντος, θα συμβούν διαδοχικά τα αποτεέσματα υποκατάστασης και εισοδήματος. 4 Όταν η τιμή του αγαθού αυξάνεται, το αγαθό αυτό γίνεται σχετικά πιο ακριβό. Για το όγο αυτό, ο ορθοογικά σκεπτόμενος καταναωτής θα επιθυμεί να υποκαταστήσει μονάδες του αγαθού με μονάδες του αγαθού, το οποίο είναι σχετικά φθηνότερο. Ειδικότερα, το αποτέεσμα υποκατάστασης υποδεικνύει ότι ο καταναωτής θα κινηθεί κατά μήκος της καμπύης αδιαφορίας που δίνει μονάδες χρησιμότητας, όπως είδαμε στο πρώτο ερώτημα της άσκησης. Με αυτόν τον τρόπο, καταναώνει έναν άο συνδυασμό προϊόντων, όπου καταναώνει περισσότερες μονάδες του σχετικά φθηνότερου αγαθού και ιγότερες μονάδες του σχετικά ακριβότερου αγαθού, και ταυτόχρονα συνεχίζει να αποαμβάνει τις ίδιες μονάδες χρησιμότητας όπως και πριν την αύξηση της τιμής του αγαθού. Ωστόσο η αύξηση της τιμής του αγαθού περιορίζει τις καταναωτικές δυνατότητες του συγκεκριμένου καταναωτή, με αποτέεσμα τη μετατόπιση της γραμμής του εισοδηματικού περιορισμού σε μια νέα θέση. Επομένως, ο καταναωτής θα πρέπει να μετακινηθεί σε μια νέα και χαμηότερη καμπύη αδιαφορίας όπου η χρησιμότητα θα είναι πέον μικρότερη από μονάδες. Εφόσον τα αγαθά είναι κανονικά, η αύξηση της τιμής του αγαθού μειώνει τη ζητούμενη ποσότητα για το αγαθό αυτό, τόσο μέσω του αποτεέσματος υποκατάστασης όσο και μέσω του εισοδηματικού αποτεέσματος. Εάν ο καταναωτής επιθυμεί να παραμείνει στην ίδια καμπύη αδιαφορίας, θα πρέπει να έχει τη δυνατότητα να επιστρέψει στην αρχική καμπύη αδιαφορίας των μονάδων χρησιμότητας. Για να συμβεί αυτό πρέπει να αυξηθεί το εισόδημα του καταναωτή, ώστε να μετατοπιστεί εκ νέου ο εισοδηματικός περιορισμός και να φτάσει σε κάποιο σημείο όπου θα εφάπτεται της αρχικής καμπύης αδιαφορίας. Αυτό θα είναι το νέο σημείο ισορροπίας του καταναωτή, όπου θα αντισταθμίζει την επίπτωση της αύξησης της τιμής μέσω της αύξησης του εισοδήματος. 3 Αν και δεν απαιτείται γραφική αναπαράσταση της ύσης σε αυτό το ερώτημα, μπορείτε να συμβουευτείτε τις σημειώσεις των παραδόσεων και να αντιηφθείτε τις κινήσεις που κάνει ο καταναωτής αντιδρώντας σε κάθε αποτέεσμα και μεταβοή των δεδομένων. 4 Τονίζουμε ότι δεν πρέπει να γίνει αντικατάσταση των νέων αριθμητικών δεδομένων στις σχέσεις (7) και (8), επειδή αάζει εντεώς η συμπεριφορά του καταναωτή. Η ααγή της τιμής είναι ένας παράγοντας που μεταβάει τη συμπεριφορά, τις επιογές και την ισορροπία του καταναωτή μέσω των αποτεεσμάτων υποκατάστασης και εισοδήματος!!! 6
7 ΠΑΡΑΡΤΗΜΑ: Οι συνθήκες πρώτης τάξης απαιτούν τη γνώση των μερικών παραγώγων και για αυτό το όγο παρουσιάζονται στο παράρτημα, ενώ τα αποτεέσματά τους δίνονται μαζί με τα δεδομένα της άσκησης. Το πρόβημα μεγιστοποίησης με τη συνάρτηση του Lagrange διατυπώνεται ως εξής:,, ( ) max L= + I F.O.C. L = 0 = 0 = () L = 0 = 0 = () L = 0 ( + I) = 0 + I = 0 I = + (3) 7
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.
Διαβάστε περισσότεραΠροτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της
Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο
Διαβάστε περισσότεραΤο υπόδειγμα IS-LM: Εισαγωγικά
1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και
Διαβάστε περισσότεραΑς υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού
Διαβάστε περισσότεραΟι γέφυρες του ποταμού... Pregel (Konigsberg)
Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα
Διαβάστε περισσότεραΓενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016
Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις
Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να
Διαβάστε περισσότεραHY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.
HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων
Διαβάστε περισσότεραΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία
ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη
Διαβάστε περισσότεραα) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται
1. Ο πληθωρισμός ορίζεται ως εξής: (Δ= μεταβολή, Ρ= επίπεδο τιμών, Ρ e = προσδοκώμενο επίπεδο τιμών): α) Δ Ρ e /Ρ β) Ρ e / Ρ γ) Δ Ρ/Ρ δ) (Ρ Ρ e )/Ρ 2. Όταν οι εξαγωγές αυξάνονται: α) Το έλλειμμα ή το πλεόνασμα
Διαβάστε περισσότερα1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι:
1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: α) Ανεξάρτητα από το ύψος της τιμής των οσπρίων, ο καταναλωτής θα δαπανά πάντα ένα σταθερό
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ
HMEΡΟΜΗΝΙΑ ΔΗΜΟΣΙΕΥΣΗΣ: 4 ΑΠΡΙΛΙΟΥ: ΩΡΑ 10μ.μ Τα παρακάτω θέματα δημοσιεύονται αποκλειστικά και μόνο για όσους υποψήφιους του φροντιστηρίου μας δεν κατάφεραν να προσέλθουν στα επαναληπτικά μαθήματα που
Διαβάστε περισσότεραΤο κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:
Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ
Διαβάστε περισσότερα17 Μαρτίου 2013, Βόλος
Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης
Διαβάστε περισσότεραΣυντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ
Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη
Διαβάστε περισσότεραΗ ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.
A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με
Διαβάστε περισσότεραΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα
Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Διαβάστε περισσότερα1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη
Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-3, να γράψετε στο τετράδιό
Διαβάστε περισσότεραΕπίλυση ειδικών μορφών ΣΔΕ
15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα
Διαβάστε περισσότεραΣυντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ
Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη
Διαβάστε περισσότερα1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται
1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται από: α) Τη ροπή για αποταμίευση β) Το λόγο κεφαλαίου προϊόντος και τη ροπή για αποταμίευση γ) Το λόγο κεφαλαίου προϊόντος
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
Διαβάστε περισσότερα{ i f i == 0 and p > 0
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων
Διαβάστε περισσότεραΑποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα
Διαβάστε περισσότεραΠαραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.
Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης
Διαβάστε περισσότεραΕπιχειρησιακή Ερευνα Ι
Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.
Διαβάστε περισσότεραΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983
20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
Διαβάστε περισσότεραΣυντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ
Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη
Διαβάστε περισσότεραΕξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος
ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 1. Εστω η στοίβα S και ο παρακάτω αλγόριθμος επεξεργασίας της. Να καταγράψετε την κατάσταση
Διαβάστε περισσότεραΕισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία
1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν
Διαβάστε περισσότερα«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»
HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος
Διαβάστε περισσότεραΕφαρμογές στην κίνηση Brown
13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός
Διαβάστε περισσότεραΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.
ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται
Διαβάστε περισσότεραΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.
ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 017-018 Φροντιστήριο 5 1. Δικαιολογήστε όλες τις απαντήσεις σας. i. Δώστε τις 3 βασικές ιδιότητες ενός AVL δένδρου.
Διαβάστε περισσότεραΕυρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα
17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη
Διαβάστε περισσότεραΈννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν
1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
Διαβάστε περισσότεραΟ τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2
12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει
Διαβάστε περισσότερανοικίαση κασετών είναι 3. Συνεπώς γνωρίζει ότι αν αυξήσει την τιμή ενοικίασης από
1. Ο ιδιοκτήτης ενός video club ξέρει ότι η ελαστικότητα της ζήτησης για την ε νοικίαση κασετών είναι 3. Συνεπώς γνωρίζει ότι αν αυξήσει την τιμή ενοικίασης από 200 δρχ. σε 250 δρχ., η ζήτηση θα μειωθεί
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ
ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΣΤΗ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΠΕ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με
Διαβάστε περισσότεραΦυσική Θετικής & Τεχνολογικής Κατεύθυνσης Β Λυκείου 3 ο Κεφάλαιο Ηλεκτρικό Πεδίο. Ηλεκτρικό πεδίο. Παρασύρης Κώστας Φυσικός Ηράκλειο Κρήτης
Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο 3 Ηλεκτρικό πεδίο Πρσύρης Κώστς Φσικός Ηράκλειο Κρήτης Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο
Διαβάστε περισσότεραΗ εξίσωση Black-Scholes
8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το
Διαβάστε περισσότερα21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου
Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο
Διαβάστε περισσότεραΑρτιες και περιττές συναρτήσεις
Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό
Διαβάστε περισσότερα5.1 Μετρήσιμες συναρτήσεις
5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο
Διαβάστε περισσότερα1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και
ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Εαρινό Εξάμηνο 0 Ασκήσεις για προσωπική μελέτη Είναι απολύτως απαραίτητο να μπορείτε να τις λύνετε, τουλάχιστον τις υπολογιστικές! Εστω ότι A, B, C είναι γενικοί πίνακες,
Διαβάστε περισσότεραΗμέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης
Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης (β) Η απόλυτη υπεραξία Αγορά και πώληση της εργασιακής δύναμης Στο κεφάλαιο για την αγορά και την πώληση της εργατικής δύναμης (ελληνική έκδοση: τόμος
Διαβάστε περισσότερα3. Με βάση τη βραχυχρόνια καμπύλη Phillips η σχέση πληθωρισμού και ανεργίας είναι:
1. Σε περίπτωση που το κράτος φορολογεί τους πολίτες το διαθέσιμο εισόδημα του κάθε ατόμου είναι: α) το σύνολο του εισοδήματός του β) το σύνολο του εισοδήματός του, αφού προηγουμένως αφαιρέσουμε τους φόρους
Διαβάστε περισσότεραΑρτιες και περιττές συναρτήσεις
Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το
Διαβάστε περισσότερα"Η απεραντοσύνη του σύμπαντος εξάπτει τη φαντασία μου. Υπάρχει ένα τεράστιο σχέδιο, μέρος του οποίου ήμουν κι εγώ".
"Η απεραντοσύνη του σύμπαντος εξάπτει τη φαντασία μου. Υπάρχει ένα τεράστιο σχέδιο, μέρος του οποίου ήμουν κι εγώ". "Ότι ανόητο είπα μπορεί και να είναι ένα ρέψιμο κάποιου ξεχασμένου αστέρα..." "Δεν κάνει
Διαβάστε περισσότεραΑφιερώνεται στο Δάσκαλο μου Χρήστο Αλεξόπουλο, για την πολύτιμη βοήθεια που μου προσέφερε στα μαθητικά μου χρόνια Άγγελος Βουλδής
Αφιερώνεται στο Δάσκαλο μου Χρήστο Αλεξόπουλο, για την πολύτιμη βοήθεια που μου προσέφερε στα μαθητικά μου χρόνια Άγγελος Βουλδής Αφιερώνεται στους Δασκάλους μας, που μας βοήθησαν να φτάσουμε μέχρι εδώ
Διαβάστε περισσότεραΕκφωνήσεις και Λύσεις των Θεμάτων
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων
Διαβάστε περισσότεραΕξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018
ΕΚΠΑ, Τμήμα Φυσικής Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018 ΘΕΜΑ 1 Γραμμική κατανομή φορτίου εκτείνεται από h έως +h κατά μήκος του άξονα z με ετερογενή πυκνότητα λ 0 < 0 για h z < 0 και λ 0 >
Διαβάστε περισσότεραΕστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.
2 Μέτρα 2.1 Μέτρα σε μετρήσιμο χώρο Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. Ορισμός 2.1. Μέτρο στον (X, A) λέμε κάθε συνάρτηση µ : A [0, ] που ικανοποιεί τις
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ
ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση
Διαβάστε περισσότεραΠΑΡΑΓΩΓΙΚΕΣ ΔΥΝΑΤΟΤΗΤΕΣ ΤΗΣ ΟΙΚΟΝΟΜΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2017 2018 ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Εξάμηνο
Διαβάστε περισσότερα( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»
( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε
Διαβάστε περισσότεραΣχέσεις και ιδιότητές τους
Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση
Διαβάστε περισσότεραΣυναρτήσεις & Κλάσεις
Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT
Διαβάστε περισσότεραΗμέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης
Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών
Διαβάστε περισσότερα- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να
- 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή
Διαβάστε περισσότεραMartingales. 3.1 Ορισμός και παραδείγματα
3 Martingales 3.1 Ορισμός και παραδείγματα Εστω χώρος πιθανότητας (Ω, F, P). Διήθηση σε αυτό τον χώρο λέμε μια αύξουσα ακολουθία (F n ) n 0 σ-αλγεβρών, η καθεμία από τις οποίες είναι υποσύνολο της F. Δηλαδή,
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance
Διαβάστε περισσότεραΕπίλυση δικτύων διανομής
ΑστικάΥδραυλικάΈργα Υδρεύσεις Επίλυση δικτύων διανομής Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διατύπωση του προβλήματος Δεδομένου ενός δικτύου αγωγών
Διαβάστε περισσότεραΟ Ισχυρός Νόμος των Μεγάλων Αριθμών
1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε
Διαβάστε περισσότερα2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες
20 Φεβρουαρίου 2010 1. Ένας έμπορος αγόρασε 720 κιλά κρασί προς 2 το κιλό. Πρόσθεσε νερό, το πούλησε προς 2,5 το κιλό και κέρδισε 500. Το νερό που πρόσθεσε ήταν σε κιλά: α) 88 β) 56 γ) 60 δ) 65 2. Κατάθεσε
Διαβάστε περισσότεραPointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2
Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται
Διαβάστε περισσότεραΦυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός
Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός gior.panagopoulos@gmail.com Βουλδής Άγγελος Φυσικός angelos_vouldis@hotmail.com Μεντζελόπουλος Λευτέρης Φυσικός MSc Περιβαλλοντολογία
Διαβάστε περισσότεραΜονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραΑναλυτικές ιδιότητες
8 Αναλυτικές ιδιότητες 8. Βαθμός συνέχειας* Ξέρουμε ότι η κίνηση Brown είναι συνεχής και θα δείξουμε αργότερα ότι είναι πουθενά διαφορίσιμη. Πόσο ομαλή είναι λοιπόν; Μια ασθενέστερη μορφή ομαλότητας είναι
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Σχεδίαση Λογικών Κυκλωμάτων
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Σχεδίαση Λογικών Κυκλωμάτων Γιάννης Λιαπέρδος [gliaperd@teikal.gr] Μάρτιος 2012 1 Ηλεκτρονικά Ελεγχόμενοι ιακόπτες Για την υλοποίηση των λογικών κυκλωμάτων χρησιμοποιούνται ηλεκτρονικά
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά
Διαβάστε περισσότεραΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1α ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ Οι επιστήμονες ταξινομούν τους οργανισμούς σε ομάδες ανάλογα με τα κοινά τους χαρακτηριστικά. Τα πρώτα συστήματα ταξινόμησης βασιζόταν αποκλειστικά στα μορφολογικά
Διαβάστε περισσότεραΔήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π.
Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Θεωρία Παιγνίων (;) αυτά είναι video παίγνια...... αυτά δεν είναι θεωρία παιγνίων
Διαβάστε περισσότεραΑνελίξεις σε συνεχή χρόνο
4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς
Διαβάστε περισσότεραΑνεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Διαβάστε περισσότεραΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
Διδαγμένο Κείμενο ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Α1. Επομένως οι αρετές δεν υπάρχουν μέσα μας εκ φύσεως ούτε αντίθετα προς τη φύση μας, αλλά έχουμε από τη φύση την ιδιότητα να τις δεχτούμε
Διαβάστε περισσότεραΑνεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Διαβάστε περισσότεραΔιανυσματικές Συναρτήσεις
Κεφάλαιο 5 Διανυσματικές Συναρτήσεις 51 Διανυσματατικές συναρτήσεις Μια συνάρτηση με τιμές στοr n, n>1 λέγεται διανυσματική συνάρτηση Τις διανυσματικές συναρτήσεις ϑα τις συμβολίζουμε με παχειά γράμματα,
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ
ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Κ. Πατρίκιος, Δικηγόρος, ΜΔΕ Δημοσίου Δικαίου, Υπ. Διδάκτωρ Νομικής Σχολής Πανεπιστημίου Αθηνών. ΘΕΜΑΤΙΚΗ : Η αρμοδιότητα των διοικητικών
Διαβάστε περισσότεραΣυναρτήσεις. Σημερινό μάθημα
Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές
Διαβάστε περισσότερα(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις
(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις Είναι πράγματι τα «προβλήματα» τόσο δύσκολα; Είδαμε (σύντομα) στα προηγούμενα
Διαβάστε περισσότεραΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό.
1 ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων
Διαβάστε περισσότεραΠαντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.
2 Δεσμευμένη μέση τιμή 2.1 Ορισμός Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. Ορισμός 2.1. Για X : Ω R τυχαία
Διαβάστε περισσότεραΔ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1
Διαβάστε περισσότεραΨηφιακή Εικόνα. Σημερινό μάθημα!
Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΘΕΜΑ 1ο
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε
Διαβάστε περισσότερα1. Για να υπολογιστεί το εγχώριο προϊόν σε αγοραίες τιμές με τη μέθοδο της προστιθέμενης
Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη
Διαβάστε περισσότεραCSE.UOI : Μεταπτυχιακό Μάθημα
Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &
Διαβάστε περισσότερα602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις
602. Συναρτησιακή Ανάλυση Υποδείξεις για τις Ασκήσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 2018 Περιεχόμενα 1 Χώροι με νόρμα 1 2 Χώροι πεπερασμένης διάστασης 23 3 Γραμμικοί τελεστές και γραμμικά
Διαβάστε περισσότερα