Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία
|
|
- Θυία Αγγελοπούλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν σε αυτήν. Ο ρόλος της είναι να αποτρέψει προβλήματα/παράδοξα. Αντίθετα, στις πιθανότητες η σ-άλγεβρα έχει διαισθητικό νόημα. Χρησιμοποιείται για να κωδικοποιήσει «πληροφορία» και συχνά, όταν δουλεύουμε σε έναν χώρο, θεωρούμε πολλές σ-άλγεβρες. Ενας χώρος πιθανότητας (Ω, F, P) μοντελοποιεί ένα πείραμα. Για κάθε πραγματοποίηση ω Ω του πειράματος, η πληροφορία που θεωρούμε ότι μας δίνει η σ-άλγεβρα F είναι σε ποια στοιχεία της ανήκει το ω και σε ποια όχι. Περισσότερα για αυτή την οπτική θα δούμε στο επόμενο κεφάλαιο. Παράδειγμα 1.1. Για τη ρίψη ενός ζαριού, ο φυσιολογικός δειγματικός χώρος είναι ο Ω := {1, 2, 3, 4, 5, 6} και συνήθως θεωρούμε ως σ-άλγεβρα για το πείραμα την F := P(Ω). Η F δίνει όλη την πληροφορία για το αποτέλεσμα μιας πραγματοποίησης αφού περιέχει τα μονοσύνολα {1},..., {6}. Η πληροφορία που παρέχει η σ-άλγεβρα F 1 := {, Ω, {1, 3, 5}, {2, 4, 6}} είναι μόνο αν η ένδειξη του ζαριού είναι άρτιος ή περιττός. Δεν μπορεί να διακρίνει τα αποτελέσματα 1 και 3. Ετσι περιέχει λιγότερη πληροφορία από την F. 1.2 Σ-άλγεβρα παραγόμενη από διαμέριση Οι σ-άλγεβρες που παράγονται από διαμέριση εμφανίζονται σε πολλά πιθανοτικά μοντέλα και βοηθούν στην κατανόηση εννοιών που ορίζονται γενικά για όλες τις σ-άλγεβρες (π.χ. μετρησιμότητα, δέσμευση κτλ). Υπενθυμίζουμε τον ορισμό της σ-άλγεβρας παραγόμενης από μια οικογένεια συνόλων. Ορισμός 1.2. Εστω X σύνολο και C P(X). Ορίζουμε J := {A P(X) : A C και η A είναι σ-άλγεβρα}, δηλαδή το σύνολο των σ-αλγεβρών στο X που καθεμία τους περιέχει την οικογένεια C. Η σ-άλγεβρα που παράγεται από την C ορίζεται ως η τομή όλων των σ-άλγεβρων που περιέχουν την C και συμβολίζεται με σ(c), δηλαδή σ(c) = A J A. Η σ(c) περιέχει ακριβώς όλα τα B X με την ιδιότητα B A για κάθε σ-άλγεβρα A στο X με A C. Αποδεικνύεται εύκολα ότι η σ(c) είναι πράγματι σ-άλγεβρα που περιέχει την οικογένεια C και από την κατασκευή της είναι η μικρότερη με την ιδιότητα αυτή. Δηλαδή περιέχεται σε οποιανδήποτε σ-άλγεβρα περιέχει την C. Προφανώς, αν η C είναι σ-άλγεβρα, τότε σ(c) = C. Μπορούμε να έχουμε στο μυαλό μας ότι η σ(c) προκύπτει με την εξής αναδρομική διαδικασία. Ξεκινάμε με την C και, αν αυτή δεν είναι σ-άλγεβρα, π.χ., γιατί το συμπλήρωμα ενός στοιχείου της ή κάποια αριθμήσιμη ένωση στοιχείων της δεν είναι στοιχείο της, προσθέτουμε σε αυτή το σύνολο 3
2 4 Εισαγωγικά που ανακαλύψαμε ότι της λείπει. Αυτό πρέπει να το κάνουμε πολλές φορές με τη νέα οικογένεια που προκύπτει μετά την προσθήκη κάθε συνόλου. Κάποια στιγμή φτάνουμε σε μια οικογένεια που είναι σ-άλγεβρα και τότε σταματάμε, βρήκαμε τη σ(c). Παράδειγμα 1.3 (Σ-άλγεβρα παραγόμενη από αριθμήσιμη διαμέριση). Εστω X σύνολο και C := {A i : i I} αριθμήσιμη διαμέριση του X (δηλαδή τα A i είναι μη κενά σύνολα, ξένα ανά δύο, με ένωση το X), με I = {1, 2,..., k} για κάποιο k N\{0} ή I = N. Για τη σ-άλγεβρα που παράγει η C, έχουμε την εξής απλή περιγραφή, σ(c) = { i J A i : J I }. (1.1) Δηλαδή ένα σύνολο της σ(c) είναι ένωση κάποιων στοιχείων της διαμέρισης C. Ας ονομάσουμε A το σύνολο στο δεξί μέλος της παραπάνω σχέσης. Τότε έχουμε τα εξής: Η οικογένεια A περιέχει τη C. Πράγματι, οποιοδήποτε σύνολο της C είναι της μορφής A i0 για κάποιο i 0 I. Η επιλογή J = {i 0 } I στην περιγραφή στοιχείων της A δίνει i J A i = A i0 A. Οποιαδήποτε σ-άλγεβρα A 1 περιέχει τη C πρέπει να περιέχει την A. Γιατί οποιαδήποτε ένωση i J A i είναι αριθμήσιμη αφού το I είναι αριθμήσιμο. Και εφόσον η A 1 είναι σ-άλγεβρα και περιέχει τα A i με i J, θα περιέχει και την ένωσή τους. Η A είναι σ-άλγεβρα. Πράγματι, η επιλογή J = δίνει i J A i =. Επίσης, αν πάρουμε A της μορφής A = i J A i για κάποιο J I, τότε X\A = i I \J A i που είναι στοιχείο της A. Τέλος, αν έχουμε ακολουθία (B n ) n 1 στοιχείων της A με B n = i Jn A i, όπου J n I για κάθε n 1, τότε για J := n=1 J n έχουμε n=1 B n = i J A i που πάλι είναι στοιχείο της A. Συνδυάζοντας αυτές τις τρεις παρατηρήσεις παίρνουμε την (1.1). Παράδειγμα 1.4 (Μετρήσιμες συναρτήσεις στην {, X}). Εστω A = {, X} η τετριμμένη σ-άλγεβρα στο X. Ισχυρισμος: Μια συνάρτηση f : X R είναι A-μετρήσιμη αν και μόνο αν είναι σταθερή. Πράγματι, αν η f (x) = c για κάθε x X όπου c R σταθερά, τότε για κάθε A R σύνολο Borel έχουμε f 1 X αν c A, (A) = αν c R\A. Επειδή λοιπόν f 1 (A) A για κάθε A B(R), έχουμε ότι η f είναι A-μετρήσιμη. Εστω τώρα f : X R που είναι A-μετρήσιμη. Αν δεν είναι σταθερή, τότε παίρνει δύο διαφορετικές τιμές, έστω a, b με a < b. Υπάρχουν x 1, x 2 X με f (x 1 ) = a, f (x 2 ) = b. Λόγω μετρησιμότητας πρέπει το σύνολο := f 1 ((, a]) να ανήκει στην A. Ομως αφού περιέχει το x 1, και X αφού δεν περιέχει το x 2, επομένως A, άτοπο. Αρα η f πρέπει να είναι σταθερή. Γενίκευση του προηγούμενου παραδείγματος είναι το εξής. Παράδειγμα 1.5 (Μετρήσιμες συναρτήσεις σε σ-άλγεβρα παραγόμενη απο αριθμήσιμη διαμέριση). Τι μορφή έχουν οι πραγματικές συναρτήσεις που είναι μετρήσιμες ως προς τη σ-άλγεβρα σ(c) πιο πάνω; Ισχυρισμος: Μια σ(c)-μετρήσιμη συνάρτηση f : X R πρέπει να είναι σταθερή σε κάθε σύνολο της διαμέρισης. Πράγματι, έστω f μετρήσιμη και i 0 I. Ας υποθέσουμε ότι η f παίρνει δύο διαφορετικές τιμές a < b στο A i0. Θα έπρεπε λοιπόν το σύνολο A i0 { f < b} να ανήκει στη σ(c). Ομως αυτό το σύνολο είναι μη κενό και γνήσιο υποσύνολο του A i0. Τέτοιο σύνολο δεν υπάρχει στη σ(c) (δες την περιγραφή της σ(c) στην (1.1)). Επίσης, είναι εύκολο να δείξει κανείς ότι μια συνάρτηση που είναι σταθερή σε κάθε σύνολο της διαμέρισης είναι μετρήσιμη. Αρα, αυτές είναι ακριβώς όλες οι μετρήσιμες συναρτήσεις στον (X, σ(c))
3 1.3 Σ-άλγεβρα παραγόμενη από συναρτήσεις Σ-άλγεβρα παραγόμενη από συναρτήσεις Ορισμός 1.6. Εστω Ω σύνολο. Για μια συνάρτηση f : Ω [, ], ονομάζουμε σ-άλγεβρα παραγόμενη από την f το σύνολο σ( f ) := { f 1 (A) : A B([, ])}. Αυτή είναι η ελάχιστη σ-άλγεβρα A στο Ω η οποία κάνει την f μετρήσιμη στον (Ω, A) [ Ασκηση]. Βέβαια αν στο Ω έχει ήδη οριστεί μία σ-άλγεβρα F ώστε η f να είναι μετρήσιμη στον (Ω, F ), τότε θα έχουμε σ( f ) F. Σε περίπτωση που έχουμε πολλές συναρτήσεις { f i : i I} ορισμένες στο σύνολο Ω και θέλουμε να βρούμε μία σ-άλγεβρα A ώστε να είναι όλες μετρήσιμες στον (Ω, A), τότε πρέπει και αρκεί σ( f i ) A για κάθε i I. Δηλαδή η A να περιέχει την ένωση i I σ( f i ). Από όλες τις A που ικανοποιούν αυτή την ιδιότητα διαλέγουμε τη μικρότερη. Ορισμός 1.7. Εστω Ω σύνολο. Αν { f i : i I} είναι οικογένεια συναρτήσεων στο Ω με τιμές στο [, ], ονομάζουμε σ-άλγεβρα παραγόμενη από τις συναρτήσεις { f i : i I} το σύνολο σ ( { f i : i I} ) := σ ( i I σ( f i ) ). (1.2) Αυτή είναι η ελάχιστη σ-άλγεβρα που κάνει όλες τις { f i : i I} μετρήσιμες. Παράδειγμα 1.8 (Ακολουθία ρίψεων νομίσματος). Παίρνουμε Ω = { 1, 1} N+. Μπορούμε να δούμε αυτό το σύνολο ως το δειγματικό χώρο για μια ακολουθία ρίψεων ενός νομίσματος. Το 1 παριστά το αποτέλεσμα «Κορώνα» και το 1 το αποτέλεσμα «Γράμματα». Για n N +, ορίζουμε τη συνάρτηση X n : Ω R με X n (ω) = ω n, όπου ω = (ω n ) n 1 Ω. Δηλαδή η X n είναι η προβολή στη n-οστή συντεταγμένη. Η X n παίρνει μόνο δύο τιμές. Οπότε η σ(x n ) είναι ακριβώς το σύνολο {, Ω, A n, 1, A n,1 }, με A n, 1 := Xn 1 ( ) { 1} = {ω Ω : ωn = 1} = { 1, 1} n 1 { 1} { 1, 1} N+ \[n], A n,1 := Xn 1 ( ) {1} = {ω Ω : ωn = 1} = { 1, 1} n 1 {1} { 1, 1} N+ \[n], όπου [n] := {1, 2,..., n}. Θα περιγράψουμε τώρα τη σ-άλγεβρα F n := σ ( {X 1, X 2,..., X n } ). Για δεδομένη ακολουθία s = (s 1, s 2,..., s n ) { 1, 1} n, θεωρούμε το σύνολο A s : = { (s 1, s 2,..., s n, x n+1, x n+2,...) : x i { 1, 1} για κάθε i n + 1 } = X1 1 ( {s1 } ) X2 1 ( {s2 } ) Xn 1 ( {sn } ). Δηλαδη το A s περιέχει όλες τις άπειρες ακολουθίες από 1 και 1 που το αρχικό τους τμήμα είναι το s και μετά είναι ελεύθερες να έχουν ό,τι θέλουν. Για μια ακολουθία που ανήκει στο A s, η συμπεριφορά της ως τον χρόνο n είναι γνωστή. Ισχυρισμος: Η F n είναι η σ-άλγεβρα που παράγεται από τη διαμέριση C := {A s : s { 1, 1} n } του Ω. Από τον ορισμό της η F n πρέπει να περιέχει τα Xi 1 ( {si } ) για i = 1, 2,..., n. Αρα, ως σ-άλγεβρα, περιέχει και το A s, που είναι πεπερασμένη τομή των Xi 1 ( {si } ). Επομένως σ(c) F n. Από την άλλη, κάθε X i με 1 i n είναι μετρήσιμη ως προς τη σ(c). Για παράδειγμα, Xi 1 ( ) {1} = s { 1,1} n :s i =1A s είναι πεπερασμένη ένωση στοιχείων της σ(c), άρα στοιχείο της. Από την ελαχιστότητα της F n έπεται ότι F n σ(c) και ο ισχυρισμός αποδείχθηκε.
4 6 Εισαγωγικά 1.4 Οι χώροι L p Για X τυχαία μεταβλητή στον χώρο πιθανότητας (Ω, F, P) και p [1, ), ορίζουμε X p = {E( X p )} 1/p και L p (Ω, F, P) := {X τυχαία μεταβλητή στο Ω : X p < }. Οταν είναι σαφές ποιος είναι ο χώρος Ω και ποια η σ-άλγεβρα F, γράφουμε L p (P) αντί L p (Ω, F, P). Αποδεικνύεται ότι η συνάρτηση X X p ικανοποιεί τις ιδιότητες λx p = λ X p, X + Y p X p + Y p, για X, Y L p (P) και λ R. Επεται ότι το σύνολο L p (P) είναι διανυσματικός χώρος. Η συνάρτηση p θα ήταν νόρμα αν επιπλέον ικανοποιούσε την X p = 0 X 0. Ομως δεν την ικανοποιεί γιατί ενδέχεται μια τυχαία μεταβλητή X να μην είναι η μηδενική, αλλά να ισούται με 0 με πιθανότητα 1, δηλαδή P(X = 0) = 1, και επομένως να έχει X p = 0. Η λύση σε αυτό το πρόβλημα είναι να ορίσουμε στον L p (P) μια σχέση ισοδυναμίας: X Y αν P(X = Y) = 1, δηλαδη δύο τυχαίες μεταβλητές τις ταυτίζουμε αν είναι ίσες με πιθανότητα 1. Συμβολίζουμε το σύνολο των κλάσεων ισοδυναμίας με L p (Ω, F, P) ή L p (P). Σχεδόν όποια συνάρτηση έχουμε ορίσει σε τυχαίες μεταβλητές μπορούμε να ορίσουμε και για τα στοιχεία της L p (P). Πώς; Μέσω ενός αντιπροσώπου. Ας το δούμε για τη συνάρτηση p. Εστω H L p (P) μία κλάση και X ένα στοιχείο της κλάσης (λέμε αυτό το στοιχείο εκδοχή της H). Ορίζουμε H p = X p. Ο ορισμός δεν εξαρτάται από την επιλογή του αντιπροσώπου X γιατί αν Y είναι άλλος αντιπρόσωπος, τότε E( X p ) = E( Y p ) (αφού οι X, Y είναι σχεδον παντού ίσες), οπότε X p = Y p. Από την άλλη, για μια H L p ([0, 1], B([0, 1]), λ) δεν έχει νόημα να μιλάμε για την τιμή H(1) γιατί αν πάρουμε δύο αντιπροσώπους f, g από την κλάση H, δεν ισχύει απαραίτητα f (1) = g(1). Για μετροθεωρητικά θέματα, θεωρούμε δύο τυχαίες μεταβλητές που είναι ίσες με πιθανότητα 1 ταυτόσημα αντικείμενα. Με τον ίδιο τρόπο, βλέπουμε τον χώρο L p (P) ως χώρο τυχαίων μεταβλητών και όχι ως χώρο κλάσεων ισοδυναμίας. Τώρα η συνάρτηση p ορισμένη στον L p (P) είναι νόρμα γιατί για μία X L p (P) η X p = 0 συνεπάγεται P(X = 0) = 1, άρα η κλάση της X είναι η κλάση της μηδενικής συνάρτησης. Αυτή η κλάση είναι το 0 του διανυσματικού χώρου L p (P). Πρόταση 1.9. (Ανισότητα Hölder) Εστω X, Y τυχαίες μεταβλητές, p (1, ), και q (1, ) τέτοιο ώστε p 1 + q 1 = 1. Τότε E XY X p Y q. Ειδική περίπτωση της ανισότητας Hölder (p = q = 2) είναι η ανισότητα Cauchy-Schwarz: E XY {E(X 2 )} 1/2 {E(Y 2 )} 1/2. Πρόταση Για κάθε τυχαία μεταβλητή X και 1 r < s, ισχύει X r X s. Απόδειξη. Είναι συνέπεια της ανισότητας Hölder, όπου τη θέση της X έχει η X r, την θέση της Y έχει η σταθερή συνάρτηση 1, p = s/r, και q = s/(s r). Δηλαδή, E X r = E( X r 1) E( X s ) r/s (E(1 q )) 1/q = E( X s ) r/s και το συμπέρασμα έπεται.
5 1.4 Οι χώροι L p 7 Κατά συνέπεια L s (P) L r (P). Ο τελευταίος εγκλεισμός όμως έπεται και πιο εύκολα από την παρατήρηση ότι X r X s + 1 (το 1 καλύπτει την περίπτωση που X(ω) < 1). Η νόρμα p ορίζει μία μετρική d p στον χώρο L p (P). Ισχύει το εξής σημαντικό αποτέλεσμα [Κουμουλλής Γ. και Νεγρεπόντης Σ (1991), Θεώρημα 11.17]. Θεώρημα Ο μετρικός χώρος (L p (P), d p ) είναι πλήρης. Οταν είναι σαφές ποιο είναι το μέτρο P, τότε γράφουμε L p αντί L p (P). 1.1 Εστω f όπως στον Ορισμό 1.6. Να δειχθεί ότι (α) Η f είναι σ( f )-μετρήσιμη. Ασκήσεις (β) Αν η f είναι F -μετρήσιμη, όπου F είναι σ-άλγεβρα στο Ω, τότε σ( f ) F. Αρα η σ( f ) είναι η ελάχιστη σ-άλγεβρα στο Ω που κάνει την f μετρήσιμη. 1.2 Εστω f, g : Ω R συναρτήσεις στο σύνολο Ω. Να δειχθεί ότι σ( f ) σ( f, g). 1.3 Εστω F το σύνολο των συναρτήσεων f : R R που είναι άρτιες. Να προσδιοριστεί η σ-άλγεβρα στο R που παράγει η οικογένεια F (Ορισμός 1.7).
5.1 Μετρήσιμες συναρτήσεις
5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο
Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.
2 Μέτρα 2.1 Μέτρα σε μετρήσιμο χώρο Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. Ορισμός 2.1. Μέτρο στον (X, A) λέμε κάθε συνάρτηση µ : A [0, ] που ικανοποιεί τις
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.
2 Δεσμευμένη μέση τιμή 2.1 Ορισμός Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. Ορισμός 2.1. Για X : Ω R τυχαία
Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ
Δημήτρης Χελιώτης ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ B τ u(x):=e x {f(b τ ) u(x) = } x ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Εισαγωγή στον
ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ
Δημήτρης Χελιώτης ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ B τ u(x):=e x {f(b τ ) u(x) = } x ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Εισαγωγή στον
Ανελίξεις σε συνεχή χρόνο
4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς
Αναλυτικές ιδιότητες
8 Αναλυτικές ιδιότητες 8. Βαθμός συνέχειας* Ξέρουμε ότι η κίνηση Brown είναι συνεχής και θα δείξουμε αργότερα ότι είναι πουθενά διαφορίσιμη. Πόσο ομαλή είναι λοιπόν; Μια ασθενέστερη μορφή ομαλότητας είναι
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα
Εφαρμογές στην κίνηση Brown
13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε
Ο Ισχυρός Νόμος των Μεγάλων Αριθμών
1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε
Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ
Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Ενα δεύτερο μάθημα στις πιθανότητες Ενα δεύτερο
Martingales. 3.1 Ορισμός και παραδείγματα
3 Martingales 3.1 Ορισμός και παραδείγματα Εστω χώρος πιθανότητας (Ω, F, P). Διήθηση σε αυτό τον χώρο λέμε μια αύξουσα ακολουθία (F n ) n 0 σ-αλγεβρών, η καθεμία από τις οποίες είναι υποσύνολο της F. Δηλαδή,
Επίλυση ειδικών μορφών ΣΔΕ
15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα
{ i f i == 0 and p > 0
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων
Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις
Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε
Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού
602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις
602. Συναρτησιακή Ανάλυση Υποδείξεις για τις Ασκήσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 2018 Περιεχόμενα 1 Χώροι με νόρμα 1 2 Χώροι πεπερασμένης διάστασης 23 3 Γραμμικοί τελεστές και γραμμικά
Η εξίσωση Black-Scholes
8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το
Κατασκευή της κίνησης Brown και απλές ιδιότητες
5 Κατασκευή της κίνησης Brown και απλές ιδιότητες 51 Ορισμός, ύπαρξη, και μοναδικότητα Ορισμός 51 Μια στοχαστική ανέλιξη { : t } ορισμένη σε έναν χώρο πιθανότητας (Ω, F, P) και με τιμές στο R λέγεται (μονοδιάστατη)
Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης
7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε (X = = (X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων αριθμών
«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»
HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος
ΠΙΘΑΝΟΤΗΤΕΣ 2. Σάμης Τρέβεζας
ΠΙΘΑΝΟΤΗΤΕΣ 2 Σάμης Τρέβεζας ii ΣΑΜΗΣ ΤΡΕΒΕΖΑΣ Λέκτορας Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Πιθανότητες ΙΙ Σημειώσεις σε εξέλιξη... (02/03) Περιεχόμενα 1 Δομές σε Οικογένειες
Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2
12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει
Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος
ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου
HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.
HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων
Οι γέφυρες του ποταμού... Pregel (Konigsberg)
Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα
Στοχαστικές διαφορικές εξισώσεις
14 Στοχαστικές διαφορικές εξισώσεις 14.1 Γενικά Στοχαστική διαφορική εξίσωση λέμε μια εξίσωση της μορφής dx = µ(, X ) d + σ(, X ) db, X = x, (14.1) με µ, σ : [, ) R R μετρήσιμες συναρτήσεις, x R, και B
Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης
7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = = P(X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων
Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης
7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ) ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = ) = P(X = ) = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων
21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου
Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο
Περίληψη. του Frostman 4.1. Τέλος, η ϑεωρία του μέτρου Hausdorff αναπτύσσεται περαιτέρω στην τελευταία παράγραφο. Εισαγωγή 2
Το Μέτρο και η Διάσταση Hausdorff Γεωργακόπουλος Νίκος Τερεζάκης Αλέξης Περίληψη Αναπτύσσουμε τη ϑεωρία του μέτρου και της διάστασης Hausdorff με εφαρμογές στον υπολογισμό διαστάσεων συνόλων fractal (Θεώρημα
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός
Σχέσεις και ιδιότητές τους
Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση
Χαρακτηριστικές συναρτήσεις
13 Χαρακτηριστικές συναρτήσεις 13.1 Μετασχηματισμός Fourier μέτρου πιθανότητας στο R Εστω (Ω, F, µ) χώρος μέτρου και f : Ω C Borel-μετρήσιμη συνάρτηση. Το πραγματικό και φανταστικό μέρος της f, που τα
ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα
ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα
Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss
Κεφάλαιο 1 Πίνακες και απαλοιφή Gauss Γύρω απ το γινομένου πινάκων Κάτι σαν τυπολόγιο Αν AB = C, τότε: 1 (C) i j = (i-γραμμή A) ( j-στήλη B) Το συμβολίζει εσωτερικό γινόμενο 2 (i-γραμμή C) = k(a) ik (k-γραμμή
Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.
Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x
ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27
ιάσταση του Krull Χ. Χαραλάμπους Α.Π.Θ. Θεσσαλονίκη Ιανουάριος, 2017 Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, 2017 1 / 27 Ορισμοί Εστω R (αντιμεταθετικός) δακτύλιος. Ορισμός Η διάσταση του Krull
τους στην Κρυπτογραφία και τα
Οι Ομάδες των Πλεξίδων και Εφαρμογές τους στην Κρυπτογραφία και τα Πολυμερή Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών ΕΜΠ Επιβλέπουσα Καθηγήτρια: Λαμπροπούλου Σοφία Ιούλιος, 2013 Περιεχόμενα
Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.
A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση
Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος
Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης
Το Θεώρημα Μοναδικότητας των Stone και von Neumann
Κ Ε Το Θεώρημα Μοναδικότητας των Stone και von Neumann Διπλωματική Εργασία Ειδίκευσης στα Θεωρητικά Μαθηματικά Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών Αθήνα 2011 Αφιερώνεται στην οικογένεια μου ii Περίληψη
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1
Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα
17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη
Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή)
Εισαωή στη Μιαδική Ανάλυση Σημειώσεις (Πρώτη Ολοκληρωμένη Γραφή) Ε. Στεφανόπουλος Τμήμα Μαθηματικών Πανεπιστήμιο Αιαίου Καρλόβασι Καλοκαίρι 26 Πρόλοος Οι σημειώσεις αυτές είναι αποτέλεσμα επεξερασίας
Πιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών
Πιθανότητες ΙΙ o Μέρος Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 4 Απριλίου 7 Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής
1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και
ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Εαρινό Εξάμηνο 0 Ασκήσεις για προσωπική μελέτη Είναι απολύτως απαραίτητο να μπορείτε να τις λύνετε, τουλάχιστον τις υπολογιστικές! Εστω ότι A, B, C είναι γενικοί πίνακες,
ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει
ΕΙΣΑΓΩΓΗ ------------------------------------------------------------------------------------- H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει αντικείμενο
Εκφωνήσεις και Λύσεις των Θεμάτων
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων
( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»
( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε
Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS
Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS ΕΛΕΝΗ ΤΑΝΤΟΥΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΗΣ ΤΣΟΛΟΜΥΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΑΜΟΣ 2009 Στην μητέρα μου που μπορεί και με ανέχεται ακόμα,
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
Συναρτήσεις. Σημερινό μάθημα
Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές
ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.
ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 017-018 Φροντιστήριο 5 1. Δικαιολογήστε όλες τις απαντήσεις σας. i. Δώστε τις 3 βασικές ιδιότητες ενός AVL δένδρου.
Επιχειρησιακή Ερευνα Ι
Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.
Μαθηματικά Πληροφορικής
Πανεπιστήμιο Αθηνών Μαθηματικά Πληροφορικής Ηλίας Κουτσουπιάς Αθήνα, Οκτώβριος 2009 Περιεχόμενα Περιεχόμενα 1 Σύνολα... 5 ΆλλαΣύμβολα... 6 1 Υποθέσεις και Θεωρήματα 9 1.1 Παρατήρηση-Υπόθεση-Απόδειξη...
(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις
(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις Είναι πράγματι τα «προβλήματα» τόσο δύσκολα; Είδαμε (σύντομα) στα προηγούμενα
Η έκδοση αυτή είναι υπό προετοιμασία. Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης
Θεωρία Αριθμών και Εφαρμογές Η έκδοση αυτή είναι υπό προετοιμασία Γιάννης Α. Αντωνιάδης, Αριστείδης Κοντογεώργης 9 Φεβρουαρίου 2015 2 Περιεχόμενα I ΑΡΙΘΜΟΘΕΩΡΙΑ ΤΩΝ ΡΗΤΩΝ ΑΡΙΘΜΩΝ 7 1 ΔΙΑΙΡΕΤΟΤΗΤΑ ΚΑΙ ΠΡΩΤΟΙ
Εκφωνήσεις και Λύσεις των Θεμάτων
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις
17 Μαρτίου 2013, Βόλος
Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης
ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα
Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Ισοπεριμετρικές ανισότητες για το
Ισοπεριμετρικές ανισότητες για το μέτρο του Gauss Διπλωματική Εργασία Μαρία Μαστροθεοδώρου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 018 Περιεχόμενα 1 Εισαγωγή 1 1.1 Το ισοπεριμετρικό πρόβλημα................................
Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading
Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ
Συναρτήσεις & Κλάσεις
Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT
Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα
ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.
ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το
Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2
Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες
Διανυσματικές Συναρτήσεις
Κεφάλαιο 5 Διανυσματικές Συναρτήσεις 51 Διανυσματατικές συναρτήσεις Μια συνάρτηση με τιμές στοr n, n>1 λέγεται διανυσματική συνάρτηση Τις διανυσματικές συναρτήσεις ϑα τις συμβολίζουμε με παχειά γράμματα,
Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:
Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ
Αρτιες και περιττές συναρτήσεις
Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 1. Εστω η στοίβα S και ο παρακάτω αλγόριθμος επεξεργασίας της. Να καταγράψετε την κατάσταση
ΠΡΟΛΟΓΟΣ. Αθήνα, 12 Απριλίου 2016.
Αλγεβρική Γεωμετρία ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος Κεφάλαιο 1. Αλγεβρικές ποικιλότητες 1 1. Αλγεβρικά Σύνολα 1 2. Το Θεώρημα Ριζών του Hilbert 7 3. Συγγενείς Αλγεβρικές Ποικιλότητες 14 4. Πολλαπλότητα και Πολλαπλότητα
Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.
Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης
ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ
ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
Χαρτοφυλάκια και arbitrage
16 Χαρτοφυλάκια και arbitrage 16.1 Αγορές μετοχών Ποια είναι η χρήση και η σημασία των μετοχών μιας εταιρείας; Κατά τη σύστασή της ή σε άλλες στιγμές του χρόνου ύπαρξής της χρειάζεται να συγκεντρώσει κεφάλαιο
Αρτιες και περιττές συναρτήσεις
Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το
Αναγνώριση Προτύπων 1
Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο Αλυσίδες Markov
(20 ο ) ΣΤΑΔΙΑΚΕΣ ΚΑΤΑΣΚΕΥΕΣ Ι: ΑΠΛΗΣΤΟΙ ΑΛΓΟΡΙΘΜΟΙ
(20 ο ) ΣΤΑΔΙΑΚΕΣ ΚΑΤΑΣΚΕΥΕΣ Ι: ΑΠΛΗΣΤΟΙ ΑΛΓΟΡΙΘΜΟΙ Σταδιακές κατακευές: από μερικά αποτελέματα ε περιότερα. Το ημείο όπου έχουμε φθάει προφέρεται για μια μικρή ανακόπηη. Το κεπτικό μας ήταν εξ αρχής ότι
Αναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 07 08 ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.
Εισαγωγή στις Διακριτές Πιθανότηες. Οικονομικό Πανεπιστήμιο Αθηνών
Εισαγωγή στις Διακριτές Πιθανότηες Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 27 Δεκεμβρίου 2010 2 Κεφάλαιο 1 Συνδιαστική Ανάλυση και Μαθηματικές Τεχνικές Η απαρίθμηση των στοιχείων
Σημειώσεις Μαθηματικών Μεθόδων. Οικονομικό Πανεπιστήμιο Αθηνών
Σημειώσεις Μαθηματικών Μεθόδων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Φεβρουαρίου 08 Κεφάλαιο Το Μιγαδικό Εκθετικό Είναι γνωστό ότι η εκθετική συνάρτηση e x έχει το ανάπτυγμα
CSE.UOI : Μεταπτυχιακό Μάθημα
Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &
σε ευκλείδειους χώρους και σε πολλαπλότητες Riemann
Κ Ε Ο μετασχηματισμός Riesz σε ευκλείδειους χώρους και σε πολλαπλότητες Riemann Διπλωματική Εργασία στα Εφαρμοσμένα Μαθηματικά Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών Αθήνα 213 Αφιερώνεται
Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ
ΘΕΩΡΙΑ ΣΥΝΟΛΩΝ: μια σύνοψη των θεμελιακών χαρακτηριστικών.
ΘΕΩΡΙ ΣΥΝΟΛΩΝ: μια σύνοψη των θεμελιακών χαρακτηριστικών. 1. ΣΥΝΟΛ: το σκεπτικό. σύνολο = πολλά στοιχεία ως «ένα», ως «μία» ολότητα. τα στοιχεία ανήκουν στο σύνολο, ή είναι μέλη του συνόλου το σύνολο περιέχει
ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία
ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
14 Φεβρουαρίου 2014, Βόλος
ιαφορικές Εξισώσεις Εισαγωγή Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 14 Φεβρουαρίου 2014, Βόλος ιαδικαστικά Θέματα Ο τελικός βαθμός προτείνω να υπολογισθεί