Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.
|
|
- Διόδοτος Κορωναίος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 2 Δεσμευμένη μέση τιμή 2.1 Ορισμός Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. Ορισμός 2.1. Για X : Ω R τυχαία μεταβλητή στον (Ω, F, P) με E X <, δεσμευμένη μέση τιμή της X ως προς τη σ-άλγεβρα G ονομάζουμε οποιανδήποτε τυχαία μεταβλητή Y : Ω R έχει τις εξής ιδιότητες: (i) Η Y είναι G-μετρήσιμη. (ii) Ισχύει για κάθε G. X d P = Y d P (2.1) Η απαίτηση (ii) εμπεριέχει και την απαίτηση η Y να είναι τέτοια ώστε το ολοκλήρωμα στο δεξί μέλος της (2.1) να ορίζεται. Γενικά, αν μια τυχαία μεταβλητή είναι μετρήσιμη ως προς μια μικρή σ-άλγεβρα, τότε συμπεραίνουμε ότι είναι απλό αντικείμενο. Για παράδειγμα, αν είναι μετρήσιμη ως προς μια σ-άλγεβρα που παράγεται από διαμέριση με n στοιχεία, τότε μπορεί να παίρνει το πολύ n διαφορετικές τιμές (Παράδειγμα 1.5). Ο ορισμός λοιπόν μας λέει ότι αν θέλουμε να υπολογίζουμε ολοκληρώματα της X σε σύνολα της υποάλγεβρας G, δεν είναι ανάγκη να χρησιμοποιούμε τη X, η οποία μπορεί να είναι αρκετά περίπλοκη συνάρτηση. Υπάρχει η Y που είναι απλούστερο αντικείμενο από τη X και μπορεί να κάνει την ίδια δουλειά. Για την πρακτική σημασία της δεσμευμένης μέσης τιμής θα αναφερθούμε στην επόμενη παράγραφο. Ξεκινάμε με το θεώρημα ύπαρξης και μοναδικότητας και κάποια παραδείγματα. Πρόταση 2.2. (Υπαρξη και μοναδικότητα) (i) Μία δεσμευμένη μέση τιμή Y της X ως προς την G υπάρχει. (ii) Για οποιαδήποτε δεσμευμένη τιμή Y της X ως προς την G ισχύει E Y E X <. (iii) Αν Y, Y είναι δύο δεσμευμένες μέσες τιμές της X ως προς την G, τότε P(Y = Y ) = 1. Απόδειξη. (i) Ας υποθέσουμε πρώτα ότι X 0. Η συνάρτηση ν : G R με ν() = X d P για κάθε G είναι ένα μέτρο και επιπλέον P() = 0 ν() = 0 (Ασκηση). Το Θεώρημα Radon- Nikodym [Κουμουλλής Γ. και Νεγρεπόντης Σ (1991), Θεώρημα 10.15] δίνει ότι υπάρχει Y 0, Y L 1 (Ω, G, P) ώστε ν() = Y d P. 8
2 2.1 Ορισμός 9 Τώρα για τη γενική περίπτωση, θέτουμε X 1 := X +, X 2 := X. Από την προηγούμενη παράγραφο έχουμε ότι υπάρχουν Y 1, Y 2 0 που να αντιστοιχούν στις X 1, X 2 και έχουν E Y 1, E Y 2 <. Εύκολα βλέπουμε ότι η Y := Y 1 Y 2 είναι μια δεσμευμένη τιμή για τη X. (ii) Εστω 1 := {Y > 0}, 2 := Ω\ 1 = {Y 0}, που είναι και τα δύο στοιχεία της G αφού η Y είναι G-μετρήσιμη. Τότε E Y = Y d P Y d P = X d P X d P X d P + X d P = E X Η δεύτερη ισότητα προκύπτει με εφαρμογή του (ii) του Ορισμού 2.1 για τα σύνολα 1, 2. (iii) Εστω ότι P(Y Y > 0) > 0. Τότε το σύνολο := [Y Y > 0] είναι στοιχείο της G (αφού η Y Y είναι G-μετρήσιμη) και (Y Y ) d P = X d P X d P = 0. Δηλαδή η μη αρνητική συνάρτηση (Y Y )1 έχει μηδενικό ολοκλήρωμα. Πρέπει P((Y Y )1 > 0) = 0. Ομως P((Y Y )1 > 0) = P() > 0 από υπόθεση. Ατοπο. Αρα P(Y Y > 0) = 0. Λόγω συμμετρίας, P(Y Y > 0) = 0, και το συμπέρασμα έπεται. Συμβολίζουμε οποιαδήποτε δεσμευμένη μέση τιμή της X ως προς τη G με E(X G). Το (iii) της προηγούμενης πρότασης επιτρέπει να θεωρούμε ότι η E(X G) είναι ουσιαστικά μοναδική. Παράδειγμα 2.3. (1) Στην περίπτωση που G = {, Ω} ισχύει E(X G) = E X, δηλαδή είναι σταθερά. Αυτό γιατί οι μόνες G-μετρήσιμες συναρτήσεις είναι οι σταθερές και αν υποθέσουμε ότι E(X G) = c και εφαρμοσουμε την (2.1) για = Ω G, παίρνουμε E X = Ω c d P = c. Παράδειγμα 2.4. Στην περίπτωση που G = F ισχύει E(X G) = X. Αυτό γιατί η X είναι G μετρήσιμη και προφανώς ικανοποιεί το (ii) του Ορισμού 2.1. Παράδειγμα 2.5. Θα δούμε τώρα την περίπτωση που η G παράγεται από μια αριθμήσιμη διαμέριση, έστω C = { i : i I} F, του δειγματικού χώρου Ω (Παράδειγμα 1.3). Δηλαδή G = σ(c). Βέβαια, επειδή πρέπει G F, θα έχουμε ότι i F για κάθε i I. Σχήμα 2.1: Συνάρτηση (διακεκομμένες γραμμές) και η δεσμευμένη μέση τιμή της (ευθύγραμμα τμήματα) ως προς μία σ-άλγεβρα. Η σ-άλγεβρα παράγεται από τη διαμέριση {[4, 6.5), [6.5, 10), [10, 17), [17, 22]} του πεδίου ορισμού [4, 22]. Η δεσμευμένη μέση τιμή, έστω Y, είναι σ(c)-μετρήσιμη. Αρα με βάση το Παράδειγμα 1.5, είναι σταθερή σε κάθε σύνολο της διαμέρισης. Δηλαδή υπάρχουν σταθερές {c i : i I} ώστε Y(ω) = c i για
3 10 Δεσμευμένη μέση τιμή κάθε ω i και i I. Θα βρούμε αυτές τις σταθερές. Εφαρμόζουμε την (2.1) για = i σ(c) και παίρνουμε i X d P = c i P( i ). (2.2) Αν P( i ) 0, έχουμε αμέσως c i = E(X; i )/ P( i ), ενώ αν P( i ) = 0, οποιαδήποτε σταθερά ικανοποιεί την (2.2) αφού και το αριστερό μέλος ισούται με 0 (ολοκλήρωμα σε σύνολο μέτρου 0). Αρα E(X; i ) P( E(X G)(ω) = i ) αν ω i και P( i ) > 0, (2.3) 0 αν ω i και P( i ) = 0 και έτσι η E(X G) καθορίστηκε πλήρως σε όλο το Ω (το δεύτερο σκέλος του ορισμού είναι ασήμαντο αφού αφορά το σύνολο i:p(i )=0 i, το οποίο έχει μέτρο 0 ως αριθμήσιμη ένωση συνόλων με μέτρο μηδέν). Στις στοιχειώδεις πιθανότητες το πηλίκο στην (2.3) συμβολίζεται με E(X i ) και λέγεται δεσμευμένη μέση τιμή της X δεδομένου ότι συνέβη το i. Είναι επίσης η μέση τιμή της X ως προς την κανονικοποίηση του περιορισμού της P στο i (Ασκηση 2.1). Είναι η «μέση τιμή της X στο σύνολο i» με την ίδια έννοια που η μέση τιμή μιας συνεχούς συνάρτησης f : R R σε ένα διάστημα [a, b] είναι ο αριθμός 1 b f (t) dt. b a a Στο Σχήμα 2.1 έχουμε (με διακεκομμένες γραμμές) το γράφημα μιας συνάρτησης X με πεδίο ορισμού το Ω := [4, 22]. Ο χώρος πιθανότητας είναι ο ([4, 22], B([4, 22]), λ/18), όπου λ είναι το μέτρο Lebesgue στο [4, 22]. Οι οριζόντιες γραμμές είναι το γράφημα της δεσμευμένης μέσης τιμής της X ως προς τη σ-άλγεβρα που παράγεται από τη διαμέριση {[4, 6.5), [6.5, 10), [10, 17), [17, 22]}. Ο προσδιορισμός της δεσμευμένης μέσης τιμής έγινε ως εξής. Εστω µ = λ/18. Η δεσμευμένη μέση τιμή στο πρώτο διάστημα [4, 6.5) = [a, b) ισούται με b X(t)dµ(t) b X(t) dt a a = µ([a, b)) b a. Αυτή είναι η «μέση τιμή της X στο [a, b)». υπόλοιπα διαστήματα. Ομοια υπολογίζεται η δεσμευμένη μέση τιμή και στα 2.2 Σημασία της δεσμευμένης μέσης τιμής Σε αυτή την παράγραφο θέλουμε να στηρίξουμε τη δήλωση ότι «Η δεσμευμένη μέση τιμή E(X G) δίνει την καλύτερη εκτίμηση για τη X δεδομένης της πληροφορίας που δίνει η σ-άλγεβρα G.» Οι έννοιες «εκτίμηση» και «πληροφορία» είναι ασαφείς και ελάχιστα θα τις διασαφηνίσουμε παρακάτω. Η πιο πάνω φράση απλώς προσφέρει έναν τρόπο να σκεφτόμαστε για τη δεσμευμένη μέση τιμή. Δεν πρόκειται να την χρησιμοποιήσουμε στην ανάπτυξη της θεωρίας. Υπενθυμίζουμε ότι, για μια σ-άλγεβρα G F, ως πληροφορία που κρατάει η G θεωρούμε την εξής γνώση. Οταν γίνεται το πείραμα το οποίο μοντελοποιεί ο χώρος πιθανότητας (Ω, F, P) και προκύψει ένα αποτέλεσμα ω Ω (το οποίο εμείς δεν ξέρουμε), η πληροφορία της G είναι το σε ποια στοιχεία της ανήκει και σε ποια δεν ανήκει το ω. Δηλαδή η πληροφορία ενδεχομένως να μην μας πει ποιο ακριβώς είναι το ω, αλλά θα το περιορίσει. Εμείς βεβαίως ξέρουμε τα πάντα για την τριάδα (Ω, F, P) και τη συνάρτηση X και μπορούμε να κάνουμε υπολογισμούς πιθανοτήτων και μέσων τιμών. Θα δούμε τώρα αυτό το σκεπτικό εφαρμοσμένο σε προηγούμενα παραδείγματα για τα οποία έχουμε υπολογίσει τη δεσμευμένη μέση τιμή.
4 2.3 Βασικές ιδιότητες 11 Στο Παράδειγμα 2.3 η σ-άλγεβρα {, Ω} δεν μας δίνει καμία πληροφορία. Το ότι ω Ω το ξέρουμε. Ετσι, αφού γίνει το πείραμα, η καλύτερη εκτίμηση που κάνουμε για την τιμή X(ω) που έχει πάρει η X είναι η E X. Στο Παράδειγμα 2.5. Οταν η G παράγεται από μια αριθμήσιμη διαμέριση { i : i I}, για ένα δεδομένο ω Ω, η πληροφορία της G μας λέει σε ποιο στοιχείο i της διαμέρισης ανήκει το ω και δεν μπορεί να πει κάτι πιο κατατοπιστικό γιατί το i δεν περιέχει γνησίως μικρότερο και μη κενό υποσύνολο που να είναι στοιχείο της διαμέρισης. Ξέροντας λοιπόν ότι ω i και συνδυάζοντάς το με το σκεπτικό του προηγουμένου παραδείγματος, είναι εντελώς φυσιολογικό να πάρουμε ως καλύτερη εκτίμησή μας για το X(ω) τη μέση τιμή της X ως προς την κανονικοποίηση του περιορισμού του P στο i (το μέτρο στον υπόλοιπο χώρο δεν μας ενδιαφέρει). Δηλαδή τον αριθμό στην (2.3). Στο Παράδειγμα 2.4. Αφού η X είναι G-μετρήσιμη, όλα τα σύνολα {X = r}, όπου r R, ανήκουν στην G, και για δεδομένο ω Ω, ξέρουμε σε ποια αυτό ανήκει και σε ποια όχι. Αρα ξέρουμε ποιο είναι το X(ω) ακριβώς. Γι αυτό και E(X G) = X. Αυτή η διαίσθηση όμως δεν λειτουργεί πάντα, όπως δείχνει το επόμενο παράδειγμα. Παράδειγμα 2.6. Στον χώρο πιθανότητας (Ω, F, P) με Ω := (0, 1), F := B((0, 1)), P := λ 1 το μέτρο Lebesgue στο (0, 1), θεωρούμε τη σ-άλγεβρα G := { (0, 1) : αριθμήσιμο ή (0, 1) \ αριθμήσιμο} που είναι υποσύνολο της F (γιατί;). Θεωρούμε και την τυχαία μεταβλητή X με X(ω) = ω για κάθε ω Ω [είναι αυτή που λέμε τυχαία μεταβλητή ομοιόμορφη στο (0, 1)]. Γίνεται λοιπόν το πείραμα και προκύπτει ένα ω. Η G περιέχει όλα τα μονοσύνολα του Ω και άρα η πληροφορία που κρατάει πρέπει να μας δώσει ποιο είναι το ω ακριβώς και άρα και την ακριβή τιμή του X(ω). Από την άλλη, επειδή κάθε σύνολο της G έχει P μέτρο 0 ή 1, έχουμε ότι η X είναι ανεξάρτητη από την G και επομένως, από την Πρόταση 2.7(iii) πιο κάτω, E(X G)(ω) = E X = 1 0 x dλ 1(x) = 1/2 για κάθε ω Ω. 2.3 Βασικές ιδιότητες Θα δούμε σε αυτή την παράγραφο κάποιες χρήσιμες ιδιότητες της δεσμευμένης μέσης τιμής. Οι ισχυρισμοί, ισότητες/ανισότητες, πιο κάτω ισχύουν με πιθανότητα 1. Παραλείπουμε αυτή τη διασαφήνιση για απλότητα στη διατύπωση. Πρόταση 2.7. Εστω X L 1 (Ω, F, P) και G F σ-άλγεβρα. Ισχύουν τα εξής. (i) E(E(X G)) = E X. (ii) Αν η X είναι G-μετρήσιμη, τότε E(X G) = X. (iii) Αν η X είναι ανεξάρτητη από την G, τότε E(X G) = E X. Απόδειξη. (i) Προκύπτει θέτοντας = Ω στην (2.1). (ii) Η X ικανοποιεί τις δύο απαιτήσεις του ορισμού της δεσμευμένης μέσης τιμής. (iii) Η σταθερή συνάρτηση E X είναι προφανώς G-μετρήσιμη και για G έχουμε X d P = E(1 X) = E(1 ) E X = P() E X = E X d P. Πρόταση 2.8. Εστω X, Y L 1 (Ω, F, P), a, b R. Ισχύουν τα εξής. (i) E(aX + by G) = a E(X G) + b E(Y G).
5 12 Δεσμευμένη μέση τιμή (ii) Αν X 0, τότε E(X G) 0. (iii) Αν X Y, τότε E(X G) E(Y G). Απόδειξη. (i) Η a E(X G) + b E(Y G) είναι G-μετρήσιμη, και για G έχουμε {a E(X G) + b E(Y G)} d P = a E(X G) d P +b E(Y G) d P = a X d P +b Y d P = (ax + by) d P. Στη δεύτερη ισότητα χρησιμοποιήσαμε την ιδιότητα ορισμού των E(X G), E(Y G) και το ότι G. Αρα η a E(X G) + b E(Y G) είναι μια δεσμευμένη μέση τιμή της ax + by ως προς την G. (ii) Επεται από την απόδειξη της Πρότασης 2.2(i) ότι υπάρχει μια δεσμευμένη μέση τιμή που είναι μη αρνητική. Ομως η δεσμευμένη μέση τιμή είναι μοναδική (Πρόταση 2.2(iii)) και το συμπέρασμα έπεται. (iii) Θέτουμε W := Y X, εφαρμόζουμε το προηγούμενο μέρος της πρότασης, και μετά χρησιμοποιούμε τη γραμμικότητα της δεσμευμένης μέσης τιμής (πρώτο μέρος της πρότασης). Πρόταση 2.9. Εστω X L 1 (Ω, F, P) και G 1 G 2 F σ-άλγεβρες. Τότε (i) E(E(X G 1 ) G 2 )) = E(X G 1 ). (ii) E(E(X G 2 ) G 1 )) = E(X G 1 ). Απόδειξη. (i) Η τυχαία μεταβλητή E(X G 1 ) είναι G 2 -μετρήσιμη αφού είναι G 1 -μετρήσιμη και G 1 G 2. Το συμπέρασμα έπεται από την Πρόταση 2.7(ii). (ii) Η E(X G 1 ) είναι G 1 -μετρήσιμη, και για G 1 έχουμε E(X G 1 ) d P = X d P = E(X G 2 ) d P. Στην τελευταία ισότητα χρησιμοποιούμε τον ορισμο της E(X G 2 ) και το ότι το είναι στοιχείο της G 2 επίσης. Το συμπέρασμα έπεται. Πρόταση 2.10 (Τα γνωστά βγαίνουν έξω). Εστω X L 1 (Ω, F, P) και Y : Ω R συνάρτηση G- μετρήσιμη ώστε E XY <. Τότε E(XY G) = Y E(X G). (2.4) Απόδειξη. Το δεξί μέλος της ισότητας είναι μια G-μετρήσιμη συνάρτηση, άρα μένει να δείξουμε ότι ικανοποιεί τη δεύτερη συνθήκη του Ορισμού 2.1. Θα πάμε με τη συνήθη τακτική. 1. Αν η Y = 1 B με B G, τότε για κάθε G έχουμε Y E(X G) d P = E(X G) d P = και το συμπέρασμα έπεται. B B X d P = 1 B X d P = XY d P, 2. Η προηγούμενη ειδική περίπτωση και η γραμμικότητα της δεσμευμένης μέσης τιμής δίνουν την (2.4) όταν η Y είναι απλή και G-μετρήσιμη. 3. Αν οι X, Y 0, τότε παίρνουμε αύξουσα ακολουθία (Y n ) n 1 μη αρνητικών απλών και G-μετρήσιμων συναρτήσεων που συγκλίνει σημειακά στην Y. Με βάση τα προηγούμενα, για G έχουμε Y n E(X G) d P = XY n d P.
6 2.3 Βασικές ιδιότητες 13 Εφαρμόζουμε το θεώρημα μονότονης σύγκλισης στην τελευταία, και παίρνουμε Y E(X G) d P = XY d P. Ετσι πάλι ισχύει η (2.4). 4. Για τη γενική περίπτωση. Εφαρμόζουμε την (2.4) για τα ζευγάρια {X, Y }, {X, Y + }, {X +, Y }, {X +, Y + } για τα οποία ξέρουμε ότι ισχύει, και κάνουμε τις απαραίτητες πράξεις με τις ισότητες που θα προκύψουν. Χρησιμοποιούμε βέβαια το γεγονός ότι E(X Y ) + E(X Y + ) + E(X + Y ) + E(X + Y + ) = E XY <. Συμβολισμός: Αν Z, W είναι τυχαίες μεταβλητές, τότε για τη δεσμευμένη μέση τιμή E(Z σ(w)) χρησιμοποιούμε τον συμβολισμό E(Z W). Η πιο κάτω πρόταση είναι χρήσιμη σε υπολογισμούς. Για απλοποίηση στη διατύπωση, υποθέτουμε ότι οι τυχαίες μεταβλητές X, Y που εμφανίζονται παίρνουν τιμές στο R. Ανάλογο αποτέλεσμα ισχύει και αν παίρνουν τιμές σε αυθαίρετο μετρήσιμο χώρο η καθεμία. Πρόταση Εστω X, Y ανεξάρτητες τυχαίες μεταβλητές με τιμές στο R και h : R 2 R Borel μετρήσιμη ώστε E h(x, Y) <. Θέτουμε φ(x) := E(h(x, Y)) για κάθε x R. Τότε E(h(X, Y) X) = φ(x). Δηλαδή, για να υπολογίσουμε την τιμή της δεσμευμένης μέσης τιμής της h(x, Y) σε ένα ω Ω, παγώνουμε τη X στην τιμή x = X(ω) και υπολογίζουμε τη μέση τιμή της ποσότητας h(x, Y), στην οποία η τυχαιότητα οφείλεται μόνο στο Y. Απόδειξη. Η φ είναι Borel μετρήσιμη, οπότε η φ(x) είναι σ(x) μετρήσιμη. Επειτα θα ελέγξουμε την ισχύ της δεύτερης συνθήκης του Ορισμού 2.1. Εστω σ(x). Υπάρχει B B(R) έτσι ώστε = X 1 (B). Εστω µ, ν οι κατανομές των X, Y αντίστοιχα. Η τ.μ. (X, Y) έχει κατανομή ρ := µ ν (μέτρο γινόμενο) επειδή οι X, Y είναι ανεξάρτητες. Χρησιμοποιώντας τον τύπο αλλαγής μεταβλητής, υπολογίζουμε h(x, Y) d P = h(x, Y)1 B (X) d P = h(x, y)1 B (x) dρ(x, y) = h(x, y)1 B (x) dν(y)dµ(x) = h(x, y) dν(y)dµ(x) = B φ(x)dµ(x) = B φ(x)1 B (X) d P = φ(x) d P, και η απόδειξη ολοκληρώθηκε. Παράδειγμα Εστω X, Y ανεξάρτητες τυχαίες μεταβλητές, με καθεμία να έχει την ομοιόμορφη κατανομή στο (0, 1). Η μέση τιμή E(X Y ) υπολογίζεται ως εξής. E(X Y ) = E(E(X Y Y)) = E(φ(Y)) με φ(y) = E(X y ). Για y (0, 1) έχουμε E(X y ) = 1 0 xy dx = 1/(y + 1). Αρα η ζητούμενη μέση τιμή ισούται με E(1/(Y + 1)) = 1 0 (1 + y) 1 dy = log 2.
7 14 Δεσμευμένη μέση τιμή Πρόταση 2.13 (Ανισότητα Jensen). Εστω X L 1 (Ω, F, P) και f κυρτή συνάρτηση σε ένα διάστημα I R με P(X I) = 1 και E f (X) <. Τότε f (E(X G)) E( f (X) G). Η ανισότητα Jensen έχει την εξής χρήσιμη συνέπεια. Πόρισμα Για p 1 και X L p (Ω, F, P) ισχύει E(X G) p X p. Την περίπτωση p = 1 την έχουμε ήδη δει στην Πρόταση 2.2(ii). Απόδειξη. Το ότι η X είναι στοιχείο του L p δίνει ότι είναι στοιχείο και του L 1. Ετσι, εφαρμόζοντας την ανισότητα Jensen για την κυρτή συνάρτηση f (x) = x p, έχουμε ότι E(X G) p E( X p G) με πιθανότητα 1. Παίρνουμε μέση τιμή στα δύο μέλη, και με χρήση της Πρότασης 2.7(i) παίρνουμε E { E(X G) p} E( X p ), που είναι το ζητούμενο. Για τη δεσμευμένη μέση τιμή υπάρχουν οριακά θεωρήματα αντίστοιχα αυτών της μέσης τιμής. Τα καταγράφουμε χωρίς απόδειξη. Για όλες τις τυχαίες μεταβλητές που εμφανίζονται σε αυτά υποθέτουμε ότι είναι στοιχεία του L 1 (Ω, F, P). Θεώρημα 2.15 (Λήμμα Fatou). Αν οι X n είναι μη αρνητικές, τότε E( lim X n G) lim E(X n G). Θεώρημα 2.16 (Θεώρημα μονότονης σύγκλισης). Αν 0 X n X n+1 για κάθε n 1, τότε E( lim X n G) = lim E(X n G). Θεώρημα 2.17 (Θεώρημα κυριαρχημένης σύγκλισης). Αν οι {X n : n 1} συγκλίνουν με πιθανότητα 1 σε μια τυχαία μεταβλητή X και υπάρχει Y L 1 (P) με X n Y για κάθε n 1, τότε X L 1 (P) και E( lim X n G) = lim E(X n G). 2.4 Η δεσμευμένη μέση τιμή ως προβολή Το σύνολο H := L 2 (Ω, F, P) εφοδιασμένο με το εσωτερικό γινόμενο (X, Y) E(XY) = XY d P είναι χώρος Hilbert (δες Παράρτημα Βʹ). Ο H 0 := L 2 (Ω, G, P) είναι υπόχωρος του H και μάλιστα κλειστός. Εχουμε ορίσει τη δεσμευμένη μέση τιμή ως προς την G για τα στοιχεία του L 1 (Ω, F, P) H. Ομως για τα στοιχεία του H η δεσμευμένη μέση τιμή έχει την εξής γεωμετρική ερμηνεία. Πρόταση Η απεικόνιση T : H H 0 με T(X) = E(X G) είναι η ορθογώνια προβολή στον υπόχωρο H 0. Απόδειξη. Κατ αρχάς, η T παίρνει πράγματι τιμές στον H 0 γιατί από το Πόρισμα 2.14 (για p = 2), αν X H, τότε E(X G) H 0. Κάθε X H γράφεται ως X = E(X G) + {X E(X G)} με E(X G) H 0. Μένει να δείξουμε ότι X E(X G) H 0, δηλαδή E(Y{X E(X G)}) = 0 για κάθε Y H 0. Αυτό αφήνεται ως άσκηση (Ασκηση 2.9).
8 2.4 Η δεσμευμένη μέση τιμή ως προβολή 15 X L 2 (Ω, G, P) 0 E(X G) Σχήμα 2.2: Η δεσμευμένη μέση τιμή ως προβολή. Ο περιβάλλων χώρος είναι ο L 2 (Ω, F, P), και ο υπόχωρος L 2 (Ω, G, P) παριστάνεται από ένα επίπεδο. Ασκήσεις Στις ασκήσεις πιο κάτω υποθέτουμε ότι δουλεύουμε σε έναν χώρο πιθανότητας (Ω, F, P) και ότι η G είναι σ-άλγεβρα υποσύνολο της F. 2.1 Εστω (Ω, F, µ) χώρος μέτρου και 0 F με µ( 0 ) > 0. (α) Να δειχθεί ότι η συνάρτηση ν : F [0, ] με ν() = µ( 0 ) είναι μέτρο στον (Ω, F ). Αυτό το μέτρο ονομάζεται περιορισμός του µ στο 0. Κανονικοποιώντας το (δηλαδή διαιρώντας το με τη συνολική του μάζα), παίρνουμε το μέτρο πιθανότητας ˆν() = ν() ν(ω) = µ( 0). µ( 0 ) (β) Να δειχθεί ότι για κάθε X : Ω [, ] μετρήσιμη με X dµ < ή με X 0 ισχύει ότι X dˆν = 1 X dµ. µ( 0 ) Εστω (X, Y) διδιάστατη τυχαία μεταβλητή με πυκνότητα f : R 2 [0, ) και h : R R Borel μετρήσιμη ώστε E h(x) <. Η Y έχει πυκνότητα f Y (y) := f (x, y) dx για κάθε y R. Για x, y R θέτουμε f (x,y) f f X Y (x y) := Y (y) αν f Y (y) 0, 0 αν f Y (y) = 0. Τέλος θέτουμε φ(y) := h(x) f X Y (x y) dx για κάθε y R. Να δειχθεί ότι E(h(X) Y) = φ(y). 2.3 Εστω X L 1 (Ω, F, P) με X(ω) > 0 για κάθε ω Ω. Να δειχθεί ότι: (α) E(X G) > 0 με πιθανότητα 1. (β) E ( X E(X G)) = Εστω X L 1 (Ω, F, P) με X(ω) 0 για κάθε ω Ω. Ισχύει απαραίτητα E(X G) 0 με πιθανότητα 1; 2.5 Εστω X : Ω R τυχαία μεταβλητή με Ε(X 2 ) < και F 1 F 2 F σ-άλγεβρες. Να δειχθεί ότι Ποια είναι η γεωμετρική ερμηνεία της ανισότητας; Ε(Ε(X F 1 ) 2 ) Ε(Ε(X F 2 ) 2 ).
9 16 Δεσμευμένη μέση τιμή 2.6 Εστω X L 2 (Ω, F, P). Να δειχθεί ότι E(X E(X G)) E(X 2 ). 2.7 Αν οι X, Y L 2 (Ω, F, P) ικανοποιούν E(Y G) = X και E(Y 2 ) = E(X 2 ), τότε X = Y με πιθανότητα Αν οι X, Y L 2 (Ω, F, P) ικανοποιούν E(Y 2 G) = X 2 και E(Y G) = X, τότε X = Y με πιθανότητα Για X L 2 (Ω, F, P) και Y L 2 (Ω, G, P), να δειχθεί ότι (α) δηλαδή X E(X G) Y. (β) E(YX) = E(Y E(X G)), E((X E(X G)) 2 ) E((X Y) 2 ), και η ισότητα ισχύει αν και μόνο αν Y = E(X G), δηλαδή ισούνται με πιθανοτητα 1. Με άλλα λόγια, η E(X G) είναι το (ουσιαστικά μοναδικό) εγγύτερο στο X σημείο του υποχώρου L 2 (Ω, G, P) Για X, Y L 2 (Ω, F, P) να δειχθεί ότι E(E(X G) Y) = E(X E(Y G)) Για X L 2 (Ω, F, P) ονομάζουμε την τυχαία μεταβλητή Var(X G) := E{(X E(X G)) 2 G} δεσμευμένη διασπορά της X ως προς τη σ-άλγεβρα G. Να δειχθεί ότι: (α) Var(X G) = E(X 2 G) {E(X G)} 2. (β) Var(X) = E(Var(X G)) + Var(E(X G)). Στην τελευταία ισότητα η Var στην πρώτη και στην τρίτη ποσότητα είναι η συνηθισμένη διασπορά τυχαίας μεταβλητής Εστω X 1, X 2,..., X n ανεξάρτητες τυχαίες μεταβλητές με μέση τιμή 0 και διασπορά 1. Θέτουμε F 0 := {, Ω}, F k := σ(x 1, X 2,..., X n ) για 1 k n. Εστω και τυχαίες μεταβλητές a 1, a 2,..., a n ώστε η a k να είναι F k 1 -μετρήσιμη και φραγμένη για 1 k n. Να δειχθεί ότι n 2 E a k X k n = E(a 2 k ). k= Εστω X, Y ανεξάρτητες τυχαίες μεταβλητές ώστε E X, E Y < και E(X) = 0. Να δειχθεί ότι E X + Y E Y (Αλλαγή μέτρου και δεσμευμένη μέση τιμή) Εστω P μέτρο στον (Ω, F ) και f : Ω [0, ] τυχαία μεταβλητή με E P ( f ) = 1. Να δειχθεί ότι: (α) Η συνάρτηση Q : F [0, ] με Q() := f d P = f 1 d P είναι μέτρο πιθανότητας. [Γράφουμε d Q = f d P.] (β) Για κάθε X 0 τυχαία μεταβλητή ισχύει k=1 E Q (X) = E P (X f ). Και για X : Ω [, ] τυχαία μεταβλητή, E Q ( X ) < E P ( X f ) <. (γ) Για G F σ-άλγεβρα και X L 1 (Ω, F, Q), E Q (X G) = E P(X f G) E P ( f G).
5.1 Μετρήσιμες συναρτήσεις
5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο
Διαβάστε περισσότεραΕισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία
1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν
Διαβάστε περισσότεραΕφαρμογές στην κίνηση Brown
13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε
Διαβάστε περισσότεραΑνεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Διαβάστε περισσότεραΑνεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Διαβάστε περισσότεραΑναλυτικές ιδιότητες
8 Αναλυτικές ιδιότητες 8. Βαθμός συνέχειας* Ξέρουμε ότι η κίνηση Brown είναι συνεχής και θα δείξουμε αργότερα ότι είναι πουθενά διαφορίσιμη. Πόσο ομαλή είναι λοιπόν; Μια ασθενέστερη μορφή ομαλότητας είναι
Διαβάστε περισσότεραΕστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.
2 Μέτρα 2.1 Μέτρα σε μετρήσιμο χώρο Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. Ορισμός 2.1. Μέτρο στον (X, A) λέμε κάθε συνάρτηση µ : A [0, ] που ικανοποιεί τις
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ
Δημήτρης Χελιώτης ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ B τ u(x):=e x {f(b τ ) u(x) = } x ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Εισαγωγή στον
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ
Δημήτρης Χελιώτης ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ B τ u(x):=e x {f(b τ ) u(x) = } x ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Εισαγωγή στον
Διαβάστε περισσότεραMartingales. 3.1 Ορισμός και παραδείγματα
3 Martingales 3.1 Ορισμός και παραδείγματα Εστω χώρος πιθανότητας (Ω, F, P). Διήθηση σε αυτό τον χώρο λέμε μια αύξουσα ακολουθία (F n ) n 0 σ-αλγεβρών, η καθεμία από τις οποίες είναι υποσύνολο της F. Δηλαδή,
Διαβάστε περισσότεραΑνελίξεις σε συνεχή χρόνο
4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς
Διαβάστε περισσότεραΑνεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Διαβάστε περισσότεραΟ Ισχυρός Νόμος των Μεγάλων Αριθμών
1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε
Διαβάστε περισσότεραΕπίλυση ειδικών μορφών ΣΔΕ
15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα
Διαβάστε περισσότεραΚατασκευή της κίνησης Brown και απλές ιδιότητες
5 Κατασκευή της κίνησης Brown και απλές ιδιότητες 51 Ορισμός, ύπαρξη, και μοναδικότητα Ορισμός 51 Μια στοχαστική ανέλιξη { : t } ορισμένη σε έναν χώρο πιθανότητας (Ω, F, P) και με τιμές στο R λέγεται (μονοδιάστατη)
Διαβάστε περισσότεραΑποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα
Διαβάστε περισσότεραΧαρακτηριστικές συναρτήσεις
13 Χαρακτηριστικές συναρτήσεις 13.1 Μετασχηματισμός Fourier μέτρου πιθανότητας στο R Εστω (Ω, F, µ) χώρος μέτρου και f : Ω C Borel-μετρήσιμη συνάρτηση. Το πραγματικό και φανταστικό μέρος της f, που τα
Διαβάστε περισσότεραΟ τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2
12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει
Διαβάστε περισσότεραΗ εξίσωση Black-Scholes
8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το
Διαβάστε περισσότεραΜεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης
7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε (X = = (X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων αριθμών
Διαβάστε περισσότεραΜεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης
7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ) ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = ) = P(X = ) = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων
Διαβάστε περισσότεραΔημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ
Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Ενα δεύτερο μάθημα στις πιθανότητες Ενα δεύτερο
Διαβάστε περισσότερα602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις
602. Συναρτησιακή Ανάλυση Υποδείξεις για τις Ασκήσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 2018 Περιεχόμενα 1 Χώροι με νόρμα 1 2 Χώροι πεπερασμένης διάστασης 23 3 Γραμμικοί τελεστές και γραμμικά
Διαβάστε περισσότεραΜεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης
7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = = P(X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις
Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε
Διαβάστε περισσότεραΣτοχαστικές διαφορικές εξισώσεις
14 Στοχαστικές διαφορικές εξισώσεις 14.1 Γενικά Στοχαστική διαφορική εξίσωση λέμε μια εξίσωση της μορφής dx = µ(, X ) d + σ(, X ) db, X = x, (14.1) με µ, σ : [, ) R R μετρήσιμες συναρτήσεις, x R, και B
Διαβάστε περισσότεραΑς υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού
Διαβάστε περισσότεραΚεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.
Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη
Διαβάστε περισσότερα{ i f i == 0 and p > 0
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων
Διαβάστε περισσότεραΟι γέφυρες του ποταμού... Pregel (Konigsberg)
Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα
Διαβάστε περισσότεραΓραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος
Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης
Διαβάστε περισσότεραΕξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος
ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου
Διαβάστε περισσότερα21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου
Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο
Διαβάστε περισσότεραΕυρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα
17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη
Διαβάστε περισσότεραΗ ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.
A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με
Διαβάστε περισσότεραΚεφάλαιο 1. Πίνακες και απαλοιφή Gauss
Κεφάλαιο 1 Πίνακες και απαλοιφή Gauss Γύρω απ το γινομένου πινάκων Κάτι σαν τυπολόγιο Αν AB = C, τότε: 1 (C) i j = (i-γραμμή A) ( j-στήλη B) Το συμβολίζει εσωτερικό γινόμενο 2 (i-γραμμή C) = k(a) ik (k-γραμμή
Διαβάστε περισσότερα«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»
HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση
Διαβάστε περισσότεραΕπιχειρησιακή Ερευνα Ι
Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.
Διαβάστε περισσότεραΠΙΘΑΝΟΤΗΤΕΣ 2. Σάμης Τρέβεζας
ΠΙΘΑΝΟΤΗΤΕΣ 2 Σάμης Τρέβεζας ii ΣΑΜΗΣ ΤΡΕΒΕΖΑΣ Λέκτορας Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Πιθανότητες ΙΙ Σημειώσεις σε εξέλιξη... (02/03) Περιεχόμενα 1 Δομές σε Οικογένειες
Διαβάστε περισσότεραΠερίληψη. του Frostman 4.1. Τέλος, η ϑεωρία του μέτρου Hausdorff αναπτύσσεται περαιτέρω στην τελευταία παράγραφο. Εισαγωγή 2
Το Μέτρο και η Διάσταση Hausdorff Γεωργακόπουλος Νίκος Τερεζάκης Αλέξης Περίληψη Αναπτύσσουμε τη ϑεωρία του μέτρου και της διάστασης Hausdorff με εφαρμογές στον υπολογισμό διαστάσεων συνόλων fractal (Θεώρημα
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός
Διαβάστε περισσότεραΠιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών
Πιθανότητες ΙΙ o Μέρος Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 4 Απριλίου 7 Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής
Διαβάστε περισσότεραΤο κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:
Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ
Διαβάστε περισσότεραΕκφωνήσεις και Λύσεις των Θεμάτων
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.
Διαβάστε περισσότεραιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27
ιάσταση του Krull Χ. Χαραλάμπους Α.Π.Θ. Θεσσαλονίκη Ιανουάριος, 2017 Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, 2017 1 / 27 Ορισμοί Εστω R (αντιμεταθετικός) δακτύλιος. Ορισμός Η διάσταση του Krull
Διαβάστε περισσότεραΣυναρτήσεις. Σημερινό μάθημα
Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές
Διαβάστε περισσότεραΕισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή)
Εισαωή στη Μιαδική Ανάλυση Σημειώσεις (Πρώτη Ολοκληρωμένη Γραφή) Ε. Στεφανόπουλος Τμήμα Μαθηματικών Πανεπιστήμιο Αιαίου Καρλόβασι Καλοκαίρι 26 Πρόλοος Οι σημειώσεις αυτές είναι αποτέλεσμα επεξερασίας
Διαβάστε περισσότεραΔ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1
Διαβάστε περισσότεραΓενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016
Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα
Διαβάστε περισσότερα1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και
ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Εαρινό Εξάμηνο 0 Ασκήσεις για προσωπική μελέτη Είναι απολύτως απαραίτητο να μπορείτε να τις λύνετε, τουλάχιστον τις υπολογιστικές! Εστω ότι A, B, C είναι γενικοί πίνακες,
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance
Διαβάστε περισσότεραΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.
ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται
Διαβάστε περισσότερα17 Μαρτίου 2013, Βόλος
Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης
Διαβάστε περισσότεραHY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.
HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων
Διαβάστε περισσότεραΕκφωνήσεις και Λύσεις των Θεμάτων
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις
Διαβάστε περισσότεραΕισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες
Διαβάστε περισσότεραΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 07 08 ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ
Διαβάστε περισσότεραΣχέσεις και ιδιότητές τους
Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση
Διαβάστε περισσότεραΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.
ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει
ΕΙΣΑΓΩΓΗ ------------------------------------------------------------------------------------- H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει αντικείμενο
Διαβάστε περισσότεραΗ Θεωρια Αριθμων στην Εκπαιδευση
Η Θεωρια Αριθμων στην Εκπαιδευση Καθηγητὴς Ν.Γ. Τζανάκης Εφαρμογὲς τῶν συνεχῶν κλασμάτων 1 1. Η τιμὴ τοῦ π μὲ σωστὰ τὰ 50 πρῶτα δεκαδικὰ ψηφία μετὰ τὴν ὑποδιαστολή, εἶναι 3.14159265358979323846264338327950288419716939937511.
Διαβάστε περισσότερα( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»
( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε
Διαβάστε περισσότεραΤο Θεώρημα Μοναδικότητας των Stone και von Neumann
Κ Ε Το Θεώρημα Μοναδικότητας των Stone και von Neumann Διπλωματική Εργασία Ειδίκευσης στα Θεωρητικά Μαθηματικά Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών Αθήνα 2011 Αφιερώνεται στην οικογένεια μου ii Περίληψη
Διαβάστε περισσότεραΙσοπεριμετρικές ανισότητες για το
Ισοπεριμετρικές ανισότητες για το μέτρο του Gauss Διπλωματική Εργασία Μαρία Μαστροθεοδώρου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 018 Περιεχόμενα 1 Εισαγωγή 1 1.1 Το ισοπεριμετρικό πρόβλημα................................
Διαβάστε περισσότεραΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα
ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα
Διαβάστε περισσότερατους στην Κρυπτογραφία και τα
Οι Ομάδες των Πλεξίδων και Εφαρμογές τους στην Κρυπτογραφία και τα Πολυμερή Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών ΕΜΠ Επιβλέπουσα Καθηγήτρια: Λαμπροπούλου Σοφία Ιούλιος, 2013 Περιεχόμενα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
Διαβάστε περισσότεραΤαξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα
Διαβάστε περισσότεραΕισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο Αλυσίδες Markov
Διαβάστε περισσότεραΑρτιες και περιττές συναρτήσεις
Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό
Διαβάστε περισσότεραΑρτιες και περιττές συναρτήσεις
Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το
Διαβάστε περισσότεραΔιανυσματικές Συναρτήσεις
Κεφάλαιο 5 Διανυσματικές Συναρτήσεις 51 Διανυσματατικές συναρτήσεις Μια συνάρτηση με τιμές στοr n, n>1 λέγεται διανυσματική συνάρτηση Τις διανυσματικές συναρτήσεις ϑα τις συμβολίζουμε με παχειά γράμματα,
Διαβάστε περισσότεραΣημειώσεις Μαθηματικών Μεθόδων. Οικονομικό Πανεπιστήμιο Αθηνών
Σημειώσεις Μαθηματικών Μεθόδων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Φεβρουαρίου 08 Κεφάλαιο Το Μιγαδικό Εκθετικό Είναι γνωστό ότι η εκθετική συνάρτηση e x έχει το ανάπτυγμα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 1. Εστω η στοίβα S και ο παρακάτω αλγόριθμος επεξεργασίας της. Να καταγράψετε την κατάσταση
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 017-018 Φροντιστήριο 5 1. Δικαιολογήστε όλες τις απαντήσεις σας. i. Δώστε τις 3 βασικές ιδιότητες ενός AVL δένδρου.
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
Διαβάστε περισσότεραΜαθηματικά Πληροφορικής
Πανεπιστήμιο Αθηνών Μαθηματικά Πληροφορικής Ηλίας Κουτσουπιάς Αθήνα, Οκτώβριος 2009 Περιεχόμενα Περιεχόμενα 1 Σύνολα... 5 ΆλλαΣύμβολα... 6 1 Υποθέσεις και Θεωρήματα 9 1.1 Παρατήρηση-Υπόθεση-Απόδειξη...
Διαβάστε περισσότεραΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα
Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Διαβάστε περισσότεραΕισαγωγή στις Διακριτές Πιθανότηες. Οικονομικό Πανεπιστήμιο Αθηνών
Εισαγωγή στις Διακριτές Πιθανότηες Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών 27 Δεκεμβρίου 2010 2 Κεφάλαιο 1 Συνδιαστική Ανάλυση και Μαθηματικές Τεχνικές Η απαρίθμηση των στοιχείων
Διαβάστε περισσότεραΑλγόριθμοι & Βελτιστοποίηση
Αλγόριθμοι & Βελτιστοποίηση ΠΜΣ / ΕΤΥ : Μεταπτυχιακό Μάθημα 4η Ενότητα: Γραμμικά Συστήματα Εξισωσεων και Pivots Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης (kontog@cs.uoi.gr) Τμήμα Μηχανικών
Διαβάστε περισσότεραΜονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραΧαρτοφυλάκια και arbitrage
16 Χαρτοφυλάκια και arbitrage 16.1 Αγορές μετοχών Ποια είναι η χρήση και η σημασία των μετοχών μιας εταιρείας; Κατά τη σύστασή της ή σε άλλες στιγμές του χρόνου ύπαρξής της χρειάζεται να συγκεντρώσει κεφάλαιο
Διαβάστε περισσότεραΗ ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS
Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS ΕΛΕΝΗ ΤΑΝΤΟΥΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΗΣ ΤΣΟΛΟΜΥΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΑΜΟΣ 2009 Στην μητέρα μου που μπορεί και με ανέχεται ακόμα,
Διαβάστε περισσότεραΠροτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της
Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ
ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
Διαβάστε περισσότεραΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία
ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο
Διαβάστε περισσότεραΠΡΟΛΟΓΟΣ. Αθήνα, 12 Απριλίου 2016.
Αλγεβρική Γεωμετρία ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος Κεφάλαιο 1. Αλγεβρικές ποικιλότητες 1 1. Αλγεβρικά Σύνολα 1 2. Το Θεώρημα Ριζών του Hilbert 7 3. Συγγενείς Αλγεβρικές Ποικιλότητες 14 4. Πολλαπλότητα και Πολλαπλότητα
Διαβάστε περισσότεραΗμέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης
Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών
Διαβάστε περισσότεραΠαραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.
Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης
Διαβάστε περισσότεραΕκφωνήσεις και Λύσεις των Θεμάτων
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΚΑΤΕΥΘΥΝΣΗΣ) Τετάρτη 8 Μαΐου 26 Εκφωνήσεις και Λύσεις των Θεμάτων η LaT E X-έκδοση ( 22/5/26)
Διαβάστε περισσότεραΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983
20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000
Διαβάστε περισσότεραΈννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν
1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή
Διαβάστε περισσότεραεπίπεδων καμπυλών Χειμερινό Εξάμηνο I(P, F G) των F και G σε ένα σημείο P A 2 K
Θεωρία Τομών Επίπεδων Καμπυλών Εργασία στο πλαίσιο τού μαθήματος Αλγεβρικές Καμπύλες (με κωδ. αριθμό Α 19) Χειμερινό Εξάμηνο 2008-2009 Μιχαήλ Γκίκας 1 Αριθμός τομής δυο συσχετικών επίπεδων καμπυλών Εστω
Διαβάστε περισσότεραΚληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading
Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική
Διαβάστε περισσότερα