Optimal Monetary Policy in an Operational Medium-Sized DSGE Model: Technical Appendix



Σχετικά έγγραφα
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

is the home less foreign interest rate differential (expressed as it

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

A Suite of Models for Dynare Description of Models

Section 8.3 Trigonometric Equations

Example Sheet 3 Solutions

Notes on the Open Economy

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Other Test Constructions: Likelihood Ratio & Bayes Tests

INTERTEMPORAL PRICE CAP REGULATION UNDER UNCERTAINTY By Ian M. Dobbs The Business School University of Newcastle upon Tyne, NE1 7RU, UK.

Math221: HW# 1 solutions

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Solution Series 9. i=1 x i and i=1 x i.

2 Composition. Invertible Mappings

Homework 3 Solutions

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR

Technical Appendix for DSGE Models for Monetary Policy Analysis

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Statistical Inference I Locally most powerful tests

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Managing Production-Inventory Systems with Scarce Resources

Notes on New-Keynesian Models

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Matrices and Determinants

NATIONAL BANK OF POLAND WORKING PAPER No. 86

Χρονοσειρές Μάθημα 3

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Congruence Classes of Invertible Matrices of Order 3 over F 2

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lecture 12 Modulation and Sampling

Homework for 1/27 Due 2/5

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Second Order Partial Differential Equations

6. MAXIMUM LIKELIHOOD ESTIMATION

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Problem Set 3: Solutions

derivation of the Laplacian from rectangular to spherical coordinates

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Homework 8 Model Solution Section

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

Areas and Lengths in Polar Coordinates

A Simple Version of the Lucas Model

Numerical Analysis FMN011

4.6 Autoregressive Moving Average Model ARMA(1,1)

Fourier Transform. Fourier Transform

Every set of first-order formulas is equivalent to an independent set

ST5224: Advanced Statistical Theory II

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

The Simply Typed Lambda Calculus

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Areas and Lengths in Polar Coordinates

C.S. 430 Assignment 6, Sample Solutions

Finite Field Problems: Solutions

Uniform Convergence of Fourier Series Michael Taylor

Approximation of distance between locations on earth given by latitude and longitude

Partial Trace and Partial Transpose

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Tridiagonal matrices. Gérard MEURANT. October, 2008

EE512: Error Control Coding

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

A Baseline DSGE Model

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

Fourier Series. Fourier Series

Solutions to Exercise Sheet 5

Global energy use: Decoupling or convergence?

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

SPECIAL FUNCTIONS and POLYNOMIALS

Mark-up Fluctuations and Fiscal Policy Stabilization in a Monetary Union: Technical appendices not for publication

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Μηχανική Μάθηση Hypothesis Testing

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

The challenges of non-stable predicates

Inverse trigonometric functions & General Solution of Trigonometric Equations

Higher Derivative Gravity Theories

5.4 The Poisson Distribution.

ω = radians per sec, t = 3 sec

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

1 String with massive end-points

The ε-pseudospectrum of a Matrix

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

A Lambda Model Characterizing Computational Behaviours of Terms

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square

Section 7.6 Double and Half Angle Formulas

Transcript:

ALLS1TehnAppx-808.ex Opimal Moneary Poliy in an Operaional Medium-Sized DSGE Model: Tehnial Appendix Malin Adolfson Sveriges Riksbank Sefan Laséen Sveriges Riksbank Jesper Lindé Sveriges Riksbank Lars E.O. Svensson Sveriges Riksbank Firs draf: Oober 2006 This version: Augus 2008 Absra Tehnial appendix o Opimal Moneary Poliy in an Operaional Medium-Sized DSGE Model JEL Classifiaion: E52, E58 Keywords: Opimal moneary poliy, foreass, judgmen This ehnial appendix of Adolfson, Laséen, Lindé, and Svensson [1] onains he deailed speifiaion of he maries A, B, C, andh in he model, as well as he deailed speifiaion of he measuremen equaion and he relaed maries D 0, D, and Ds. 1. Definiion of he maries A, B, C, D, andh and he insrumen rule [f X f x ] We wan o idenify he submaries in he model, X +1 = A 11 X + A 12 x + B 1 i + Cε +1, Hx +1 = A 22 x + A 21 X + B 2 i. We speify he predeermined variables X =(X ex0 ) 0, he forward-looking variables x,he poliy insrumen i, and he shok veor ε as follows (he number of he elemens in eah veor,x pd0 All remaining errors are ours. The views expressed in his paper are solely he responsibiliy of he auhors and should no be inerpreed as refleing he views of Sveriges Riksbank.

is also lised): X ex b 1 b 1 2 ˆ 3 ˆ, 1 4 ˆν 5 ˆζ 6 ˆζ h 7 ˆζ q 8 ˆλ f 9 ˆλ m 10 ˆλ mi 11 b φ 12 ˆΥ 13 b z 14 b z 1 15 ˆλ x 16 ˆε R 17 b π 18 b π 1 19 ˆτ k 20 ε ˆτ y 21 ˆτ 22 ˆτ w 23 ĝ 24 ˆτ k 1 25 ˆτ y 1 26 ˆτ 1 27 ˆτ w 1 28 ĝ 1 29 ˆπ 30 ŷ 31 ˆR 32 ˆπ 1 33 ŷ 1 34 ˆR 1 35 ˆπ 2 36 ŷ 2 37 ˆR 2 38 ˆπ 3 39 ŷ 3 40 ˆR 3 41 x ˆπ d 1 ˆπ m 2 ˆπ mi 3 ŷ 4 ˆπ x 5 b w 6 ĉ 7 bĩ 8 ˆψ z 9 ˆP k 0 10 Ŝ 11 Ĥ 12, X pd ˆk 13 ˆq 14 ˆμ 15 â 16 17 18 ˆγ md ˆγ mid ˆγ x 19 b x 20 m x 21 b k +1 22 b m +1 23 b k 1 42 b m 2 43 ˆR 1 3 44 ˆπ d 1 4 45 ˆπ m 1 5 46 ˆπ mi 1 6 47 ŷ 1 7 48 ˆπ x 1 8 49 b w 1 9 50 ĉ 1 10 51 bĩ 1 11 52 ˆψ z, 1 12 53 ˆP k 0 1 13 54 Ŝ 1 14 55 Ĥ 1 15 56, i ˆR, ˆk 1 16 57 ˆq 1 17 58 ˆμ 1 18 59 â 1 19 60 ˆγ md 1 20 61 ˆγ mid 1 21 62 ˆγ x ε ε z ε ν ε ζ ε ζ h ε ζ q ε λ ε λ m ε λ mi... 1 2 3 4 5 6 7 8 9... ε φ ε Υ ε z ε λx ε εr ε π ε 0 τ ε 0 x 10 11 12 13 14 15 16 : 20 21 : 23 1 22 63 b x 1 23 64 m x 1 24 65 b k 1 25 66 û 1 26 67 ˆπ d 2 27 68 ˆπ m 2 28 69 ˆπ d 3 29 70 ˆπ m 3 30 71 0., 2

1.1. Predeermined variables Firs we speify he exogenous variables and he shoks, hen he endogenous predeermined variables. Row 1 - Saionary ehnology shok ˆ +1 = ρ ˆ + σ ε ε,+1. ˆ : A 11 (1, 1) = ρ, ε,+1 : C (1, 1) = σ ε. The noaion means ha he value of he persisene of he ehnology shok, ρ,isplaedinhe firs row and firs olumn of he marix A 11. The noaion ˆ : means ha he parameer value perains o ha speifi variable. Row 2 - Lagged saionary ehnology shok Row 3 - Permanen ehnology shok ˆ =ˆ. ˆ : A 11 (2, 1) = 1. ˆ,+1 = ρ μz ˆ + σ εz ε z,+1. ˆ : A 11 (3, 3) = ρ, ε z,+1 : C (3, 2) = σ ε. Row 4 - Lagged permanen ehnology shok ˆ =ˆ. ˆ : A 11 (4, 3) = 1. Row 5 - Firm money demand shok ˆν +1 = ρ νˆν + σ εν ε ν,+1. Row 6 - Consumpion preferene shok ˆν : A 11 (5, 5) = ρ ν, ε ν,+1 : C (5, 3) = σ εν. ˆζ +1 = ρ ζ ˆζ + σ εζ ε ζ,+1. ˆζ : A 11 (6, 6) = ρ ζ, ε ζ,+1 : C (6, 4) = σ εζ. 3

Row 7 - Labor supply shok ˆζ h +1 = ρ ζ hˆζ h + σ εζ h ε ζ h,+1. Row 8 - Household money demand shok ˆζ h : A 11 (7, 7) = ρ ζ h, ε ζ h,+1 : C (7, 5) = σ. εζ h ˆζ q +1 = ρ ζ qˆζh + σ εζ q ε ζ q,+1. Row 9 - Markup shok - domesi firms ˆζ q : A 11 (8, 8) = ρ ζ q, ε ζ q,+1 : C (8, 6) = σ εζ q. ˆλ d +1 = ρ λˆλd + σ ελ ε λ,+1. ˆλ d : A 11 (9, 9) = ρ λ, ε λ,+1 : C (9, 7) = σ ελ. Row 10 - Shok o subsiuion elasiiy beween domesi and foreign onsumpion goods ˆλ m +1 = ρ λ m ˆλm + σ ελ m ε λ m,+1. ˆλ m : A 11 (10, 10) = ρ η m, ε λ m,+1 : C (10, 8) = σ ελ m. Row 11 - Shok o subsiuion elasiiy beween domesi and foreign invesmen goods ˆλ mi mi +1 = ρ λ mi ˆλ + σ ε ελ mi λ mi,+1. Row 12 - Risk premium shok ˆλ mi : A 11 (11, 11) = ρ η mi, ε λ mi,+1 : C (11, 9) = σ. εη mi b φ +1 = ρ φ b φ + σ ε φε φ,+1. b φ : A 11 (12, 12) = ρ φ, ε φ,+1 : C (12, 10) = σ ε φ. 4

Row 13 - Invesmen speifi ehnology shok ˆΥ +1 = ρ Υ ˆΥ + σ ευ ε Υ,+1. ˆΥ : A 11 (13, 13) = ρ Υ, ε Υ,+1 : C (13, 11) = σ ευ. Row 14 - Relaive (asymmeri) ehnology shok (beween foreign and domesi) b z +1 = ρ z b z + σ ε z ε z,+1. b z : A 11 (14, 14) = ρ z, ε z,+1 : C (14, 12) = σ ε z. Row 15 - Lagged relaive (asymmeri) ehnology shok (beween foreign and domesi) b z = b z. b z : A 11 (15, 14) = 1. Row 16 - Markup shok - exporing firms ˆλ x,+1 = ρ λx ˆλx + σ ελx ε λx,+1. ˆλ x : A 11 (16, 16) = ρ λx, ε λx,+1 : C (16, 13) = σ ελx. Row 17 - Moneary poliy shok R,+1 = ρ εr R + σ εεr ε εr,+1. R : A 11 (17, 17) = ρ εr, ε εr,+1 : C (17, 14) = σ εεr. Row 18 - Inflaion arge b π +1 = ρ π b π + σ ε π ε π,+1. b π : A 11 (18, 18) = ρ π, ε π,+1 : C (18, 15) = σ ε π. Row 19 - Lagged inflaion arge b π = b π. b π : A 11 (19, 18) = 1. 5

Row 20 29 - Fisal VAR(2) τ +1 = Θ 1 τ + Θ 2 τ 1 + e τ,+1, (1.1) where Θ 1 = Θ 1 0 Θ 1, Θ 2 = Θ 1 0 Θ 2 and e τ = Θ 1 0 S τ ε τ N (0, Σ τ ). Rewrie (1.1) as VAR(1): ˆτ +1 Θ1 eτ,+1 ˆτ Row 30 41 - Foreign VAR(4) = Θ2 I 0 ˆτ ˆτ 1 + ˆτ : A 11 (20 : 24, 20 : 24) = Θ 1, ˆτ 1 : A 11 (20 : 24, 25 : 29) = Θ 2, ˆτ : A 11 (25:29, 20 : 24) = I, ε τ,+1 : C (20 : 24, 16 : 20) = hol Θ 1 0 S τ Θ 1 0 0 0 S τ. X +1 = Φ 1 X + Φ 2 X 1 + Φ 3 X 2 + Φ 4 X 3 + e X,+1,. (1.2) where Φ 1 = Φ 1 0 Φ 1, Φ2 = Φ 1 0 Φ 2, e., and e X = Φ 1 0 S x ε x N (0, Σ x ). Rewrie (1.2) as VAR(1): X +1 Φ 1 Φ2 Φ3 Φ4 X X e X X 1 = I 0 0 0 X,+1 1 0 I 0 0 X + 0 X 2 2 0 0 0 I 0 X 3 0 X : A 11 (30 : 32, 30 : 32) = Φ 1, X 1 : A 11 (30 : 32, 33 : 35) = Φ 2, X 2 : A 11 (30 : 32, 36 : 38) = Φ 3, X 3 : A 11 (30 : 32, 39 : 41) = Φ 4, X : A 11 (33 : 35, 30 : 32) = I, X 1 : A 11 (36 : 38, 33 : 35) = I, X 2 : A 11 (39 : 41, 36 : 38) = I, ε x,+1 : C (30 : 32, 21 : 23) = hol Φ 1 0 S x Φ 1 0 S 0 0 x. 0 Row 42 - Physial apial sok (noe ha b k+1 is predeermined variable no. 42 in period +1and forward-looking variable no. 22 in period ): b k+1 = b k+1, b k : A 12 (42, 22) = 1. Row 43 - Finanial asses (noe ha b m +1 is predeermined variable no. 43 in period +1 and forward-looking variable no. 23 in period ): b m +1 = b m +1, b m +1 : A 12 (43, 23) = 1. 6

Row 44 66 - Lagged forward-looking variables ˆR : B 1 (44, 1) = 1 ˆπ d : A 12 (45, 1) = 1 ˆπ m : A 12 (46, 2) = 1 ˆπ mi : A 12 (47, 3) = 1 ŷ : A 12 (48, 4) = 1 ˆπ x : A 12 (49, 5) = 1 b w : A 12 (50, 6) = 1 ĉ : A 12 (51, 7) = 1 bĩ : A 12 (52, 8) = 1 Row 66 - Lagged physial apial sok ˆψ z : A 12 (53, 9) = 1 ˆP k 0 : A 12 (54, 10) = 1 Ŝ : A 12 (55, 11) = 1 Ĥ : A 12 (56, 12) = 1 û : A 12 (57, 13) = 1 ˆq : A 12 (58, 14) = 1 ˆμ : A 12 (59, 15) = 1 â : A 12 (60, 16) = 1 ˆγ md : A 12 (61, 17) = 1 ˆγ mid : A 12 (62, 18) = 1 ˆγ x : A 12 (63, 19) = 1 b x : A 12 (64, 20) = 1 m x : A 12 (65, 21) = 1 b k 1 : A 11 (66, 42) = 1 Row 67 - Lagged apaiy uilizaion û 1 ˆk 1 b k 1 ˆk 1 : A 11 (67, 57) = 1 b k 1 : A 11 (67, 66) = 1 7

Rows 68-71 - Lagged inflaion ˆπ d 1 : A 11 (68, 45) = 1 ˆπ m 1 : A 11 (69, 46) = 1 ˆπ d 2 : A 11 (70, 68) = 1 ˆπ m 2 : A 11 (71, 69) = 1 1.2. Forward-looking variables Row 1 - Domesi inflaion ˆπ d b π = β 1+κ d β κ dβ (1 ρ π ) 1+κ d β m d α ˆR f = m d αĥ αˆk + b w + Rewrie he above equaions as: ˆπ d +1 ρ π b π + κ d ˆπ d 1 b π 1+κ d β b π + (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) ˆ + Ĥ ˆk + b w + ˆR f ˆε, νr v(r 1) + 1 ˆR ν(r 1) 1 + v(r 1) + 1 ˆν β 1+κ d β ˆπd +1 = ˆπ d + κ d 1+κ d β ˆπd 1 + m d + ˆλ d, νr v(r 1) + 1 ˆR ν(r 1) 1 + v(r 1) + 1 ˆν ˆε + αˆ + (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) + (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) + (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) (1 κ d)(βρ π 1) b π 1+κ d β. αĥ (1 ξ d)(1 βξ d ) αˆk ξ d (1 + κ d β) b w + (1 ξ d)(1 βξ d ) νr ξ d (1 + κ d β) v(r 1) + 1 ˆR 1 + ν(r 1) v(r 1) + 1 ˆν + (1 ξ d)(1 βξ d ) αˆμ ξ d (1 + κ d β) z ˆε + (1 ξ d)(1 βξ d ) ˆλ d ξ d (1 + κ d β) 8

ˆπ d +1 : H (1, 1) = β 1+κ d β ˆπ d : A 22 (1, 1) = 1 ˆπ d 1 : A 21 (1, 45) = κ d 1+κ d β b π β : A 21 (1, 18) = 1 1+κ d β ρ π κ d 1+κ d β κ dβ (1 ρ π ) 1+κ d β ˆλ d : A 21 (1, 9) = (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) ˆλ d : A 21 (1, 9) = 1 (resaled) Marginal os : b w : A 22 (1, 6) = (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) Ĥ : A 22 (1, 12) = (1 ξ d)(1 βξ d ) α ξ d (1 + κ d β) ˆk : A 22 (1, 13) = (1 ξ d)(1 βξ d ) α ξ d (1 + κ d β) ˆε : A 21 (1, 1) = (1 ξ d)(1 βξ d ) ξ d (1 + κ d β) ˆ : A 21 (1, 3) = (1 ξ d)(1 βξ d ) α ξ d (1 + κ d β) ˆν : A 21 (1, 5) = (1 ξ d)(1 βξ d ) ν(r 1) ξ d (1 + κ d β) v(r 1) + 1 ˆR 1 : A 21 (1, 44) = (1 ξ d)(1 βξ d ) νr ξ d (1 + κ d β) v(r 1) + 1 Row 2 - Impored onsumpion inflaion ˆπ m b π = β ˆπ m +1 1+κ m β ρ π b π + κ m m ˆπ 1 b π 1+κ m β κ mβ (1 ρ π ) b π + (1 ξ m)(1 βξ m ) 1+κ m β ξ m (1 + κ m β) m m m x ˆγ x ˆγ md m m + m ˆλ, 9

β +1 : H (2, 2) = 1+κ m β ˆπ m : A 22 (2, 2) = 1 ˆπ m 1 : A 21 (2, 46) = κ m 1+κ m β ˆπ m b π : A 21 (2, 18) = 1 β 1+κ m β ρ π κ m ˆλ m : A 21 (2, 10) = (1 ξ m)(1 βξ m ) ξ m (1 + κ m β) ˆλ m : A 21 (2, 10) = 1 (resaled) Marginal os : m x : A 22 (2, 21) = (1 ξ m)(1 βξ m ) ξ m (1 + κ m β) ˆγ x : A 22 (2, 19) = (1 ξ m)(1 βξ m ) ξ m (1 + κ m β) ˆγ md : A 22 (2, 17) = (1 ξ m)(1 βξ m ) ξ m (1 + κ m β) Row 3 - Impored invesmen inflaion ˆπ mi b π = 1+κ m β κ mβ (1 ρ π ) 1+κ m β β ˆπ mi +1 1+κ mi β ρ π b π + κ mi mi ˆπ 1 b π 1+κ mi β κ miβ (1 ρ π ) b π + (1 ξ mi)(1 βξ mi ) 1+κ mi β ξ mi (1 + κ mi β) m mi m x ˆγ x ˆγ mi,d m mi + mi ˆλ, ˆπ mi β +1 : H (3, 3) = 1+κ mi β ˆπ mi : A 22 (3, 3) = 1 ˆπ mi 1 : A 21 (3, 47) = κ mi 1+κ mi β Marginal os : ˆγ mid : A 22 (3, 18) = (1 ξ mi)(1 βξ mi ) ξ mi (1 + κ mi β) ˆγ x : A 22 (3, 19) = (1 ξ mi)(1 βξ mi ) ξ mi (1 + κ mi β) m x : A 22 (3, 21) = (1 ξ mi)(1 βξ mi ) ξ mi (1 + κ mi β) ˆλ mi : A 21 (3, 11) = (1 ξ mi)(1 βξ mi ) ξ mi (1 + κ mi β) ˆλ mi : A 21 (3, 11) = 1 (resaled) b π : β A 21 (3, 18) = 1 1+κ mi β ρ π κ mi 1+κ mi β κ miβ (1 ρ π ) 1+κ mi β 10

Row 4 - Oupu gap 0= ŷ + λ fˆ + λ f αˆk λ f αˆ + λ f (1 α) Ĥ ŷ : A 22 (4, 4) = 1 Ĥ : A 22 (4, 12) = λ f (1 α) ˆk : A 22 (4, 13) = λ f α Row 5 - Expor prie inflaion ˆπ x b π = ˆ : A 21 (4, 1) = λ f ˆ : A 21 (4, 3) = λ f α β ˆπ x +1 1+κ x β ρ π b π + κ x x ˆπ 1+κ x β 1 b π κ xβ (1 ρ π ) b π + (1 ξ x)(1 βξ x ) 1+κ x β ξ x (1 + κ x β) m x + ˆλ x, ˆπ x +1 : H (5, 5) = β 1+κ x β ˆπ x : A 22 (5, 5) = 1 ˆπ x 1 : A 21 (5, 49) = κ x 1+κ x β Marginal os : m x : A 22 (5, 21) = (1 ξ x)(1 βξ x ) ξ x (1 + κ x β) ˆλ x : A 21 (5, 16) = (1 ξ x)(1 βξ x ) ξ x (1 + κ x β) ˆλ x : A 21 (5, 16) = 1 (resaled) b π : β A 21 (5, 18) = 1 1+κ x β ρ π κ x 1+κ x β κ xβ (1 ρ π ) 1+κ x β Row 6 - Real wage d η 0 ŵ 1 + η 1 ŵ + η 2 ŵ +1 + η 3 ˆπ b π + d η4 ˆπ +1 ρ b π π 0 = E +η 5 ˆπ 1 b π + η6 ˆπ ρ π b π +η 7 ˆψτ z + η 8 Ĥ + η 9ˆτ y + η 10ˆτ w + η 11ˆζh bπ = (1 ω ) γ d (1 η ) bπ d + ω (γ m ) (1 η ) bπ m 11

where η b w ξ w σ L λ w b w 1+βξ 2 w b w βξ w b w ξ w b w βξ w b w ξ w κ w b w βξ w κ w 1 λ w (1 λ w )σ L (1 λ w ) τ y (1 τ y ) (1 λ w ) τ w (1+τ w ) (1 λ w ) η 0 η 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η 11. (1.3) Colle erms and use he definiion of bπ : µ η 2 ŵ +1 + η 4ˆπ d +1 = η 0 ŵ 1 η 1 ŵ η 3 + η 6 (1 ω ) γ d (1 η ) bπ d η 6 ω (γ m ) (1 η ) bπ m η 5 µ(1 ω ) γ d (1 η ) bπ d 1 η 5 (ω ) )(γ m ) (1 η bπ m 1 η 7 ˆψτ z η 8 Ĥ η 9ˆτ y η 10ˆτ w η 11ˆζh +[η 3 + ρ π η 4 + η 5 + ρ π η 6 ] b π 12

ˆπ d +1 : H (6, 1) = η 4 ŵ +1 : H (6, 6) = η 2 µ bπ d : A 22 (6, 1) = η 3 + η 6 (1 ω ) γ d (1 η ) bπ m : A 22 (6, 2) = η 6 ω (γ m ) (1 η ) ŵ : A 22 (6, 6) = η 1 ˆψ τ z : A 22 (6, 9) = η 7 Ĥ : A 22 (6, 12) = η 8 Resaling he labor supply shok so is oeffiien is of he same magniude as ŵ i hˆζh : A 21 (6, 7) = η 11 > 0 A 21 (6, 7) = η ˆζ h 1 : if η 11 < 0 A 21 (6, 7) = η 1 =0 A 21 (6, 7) = η 11 b π : A 21 (6, 18) = (η 3 + ρ π η 4 + η 5 + ρ π η 6 ) ˆτ y : A 21 (6, 21) = η 9 ˆτ w : A 21 (6, 23) = η 10 bπ d 1 : A 21 (6, 45) = η 5 (1 ω ) γ d (1 η ) bπ m 1 : A 21 (6, 46) = η 5 ω (γ m ) (1 η ) ŵ 1 : A 21 (6, 50) = η 0 Row 7 - Consumpion bβ ĉ +1 + μ 2 z + b 2 β ĉ b ĉ 1 + b ˆμz βˆ,+1 + E +( bβ)( b) ˆψ z + τ 1+τ (μ z bβ)( b)ˆτ +( bβ)( b)ˆγ d ( b) ˆζ bβˆζ =0 +1 bγ d = ω (γ m ) (1 η ) bγ md ˆ,+1 = ρ μz ˆ ˆζ +1 = ρ ζ ˆζ bβ ĉ +1 = μ 2 z + b 2 β ĉ b ĉ 1 + b 1 βρ μz ˆ +( bβ)( b) ˆψ z + τ 1+τ ( bβ)( b)ˆτ +( bβ)( b) ω (γ m ) (1 η ) bγ md ( b) bβρ ζ ˆζ 13

ĉ +1 : H (7, 7) = bβ ĉ : A 22 (7, 7) = μ 2 z + b 2 β ĉ 1 : A 21 (7, 51) = b ˆψ z : A 22 (7, 9) = ( bβ)( b) bγ md : A 22 (7, 17) = ( bβ)( b) ω (γ m ) (1 η ) ˆ : A 21 (7, 3) = b 1 βρ μz Resaling of ˆζ o give i he same oeffiien as ĉ hˆζ : A 21 (7, 6) = ( b) i bβρ ζ ˆζ : A 21 (7, 6) = μ 2 z + b 2 β ˆτ : A 21 (7, 22) = τ 1+τ ( bβ)( b) Row 8 - Invesmen n E ˆPk + ˆΥ h io ˆγ i,d μ 2 zs 00 ( ) b ĩ bĩ 1 β b ĩ +1 bĩ +ˆ βˆ,+1 =0 bγ i,d = ω i γ i,mi (1 η i ) bγ mi,d ˆ,+1 = ρ μz ˆ μ 2 zs 00 ( ) βbĩ +1 = μ 2 zs 00 ( )(1+β)bĩ μ 2 zs 00 ( )bĩ 1 ˆP k +ω i γ i,mi (1 η i ) bγ mi,d + μ 2 zs 00 ( ) 1 βρ μz ˆ ˆΥ bĩ +1 : H (8, 8) = μ 2 zs 00 ( ) β bĩ : A 22 (8, 8) = μ 2 zs 00 ( )(1+β) bĩ 1 : A 21 (8, 52) = μ 2 zs 00 ( ) ˆP k : A 22 (8, 10) = 1 bγ mi,d : A 22 (8, 18) = ω i γ i,mi (1 η i ) ˆ : A 21 (8, 3) = μ 2 zs 00 ( ) 1 βρ μz Resaling of ˆΥ o give i he same oeffiien as bĩ ˆΥ : A 21 (8, 13) = μ 2 zs 00 ( )(1+β) 14

Row 9 - Lagrange muliplier (firs order ondiion wih respe o m +1 ) E μˆψ z + μˆψ z,+1 μˆπ d +1 μˆ,+1 + μ k βτ ˆR + τ k 1 τ k (β μ)ˆτ k +1 = 0 ˆ,+1 = ρ μz ˆ μˆψ z,+1 μˆπ d +1 = μˆψ z μ k βτ ˆR + μˆ,+1 τ k 1 τ k (β μ)ˆτ k +1 ˆ,+1 = ρ μz ˆ 0 = μˆψ z + μˆψ z,+1 μˆ,+1 + μ k βτ ˆR μˆπ d +1 + τ k 1 τ k (β μ)ˆτ k +1 ˆ,+1 = ρ μz ˆ ˆτ k +1 = Θ 1 (1, 1) ˆτ k + Θ 1 (1, 2) ˆτ y + Θ 1 (1, 3) ˆτ + Θ 1 (1, 4) ˆτ w + Θ 1 (1, 5) ĝ + Θ 2 (1, 1) ˆτ k 1 + Θ 2 (1, 2) ˆτ y 1 + Θ 2 (1, 3) ˆτ 1 + Θ 2 (1, 4) ˆτ w 1 + Θ 2 (1, 5) ĝ 1 k μˆψ z,+1 μˆπ d +1 = μˆψ z + μρ μz ˆ μ βτ ˆR τ k 1 τ k (β μ) Θ 1 (1, 1) ˆτ k τ k 1 τ k (β μ) Θ 1 (1, 2) ˆτ y τ k 1 τ k (β μ) Θ 1 (1, 3) ˆτ τ k 1 τ k (β μ) Θ 1 (1, 4) ˆτ w τ k 1 τ k (β μ) Θ 1 (1, 5) ĝ τ k 1 τ k (β μ) Θ 2 (1, 1) ˆτ k 1 τ k 1 τ k (β μ) Θ 2 (1, 2) ˆτ y 1 τ k 1 τ k (β μ) Θ 2 (1, 3) ˆτ 1 τ k 1 τ k (β μ) Θ 2 (1, 4) ˆτ w 1 τ k 1 τ k (β μ) Θ 2 (1, 5) ĝ 1 ˆπ d +1 : H (9, 1) = μ ˆψ z,+1 : H (9, 9) = μ ˆψ z : A 22 (9, 9) = μ ˆR : B 2 (9, 1) = μ k βτ 15

Row 10 - Prie of apial ˆ : A 21 (9, 3) = μρ μz ˆτ k : A 21 (9, 20) = τ k 1 τ k (β μ) Θ 1 (1, 1) ˆτ y : A 21 (9, 21) = τ k 1 τ k (β μ) Θ 1 (1, 2) ˆτ : A 21 (9, 22) = τ k 1 τ k (β μ) Θ 1 (1, 3) ˆτ w : A 21 (9, 23) = τ k 1 τ k (β μ) Θ 1 (1, 4) ĝ : A 21 (9, 24) = τ k 1 τ k (β μ) Θ 1 (1, 5) ˆτ k 1 : A 21 (9, 25) = τ k 1 τ k (β μ) Θ 2 (1, 1) ˆτ y 1 : A 21 (9, 26) = τ k 1 τ k (β μ) Θ 2 (1, 2) ˆτ 1 : A 21 (9, 27) = τ k 1 τ k (β μ) Θ 2 (1, 3) ˆτ w 1 : A 21 (9, 28) = τ k 1 τ k (β μ) Θ 2 (1, 4) ĝ 1 : A 21 (9, 29) = τ k 0 = ˆψ z +ˆ,+1 ˆψ β(1 δ) z,+1 + τ k β(1 δ) 1 τ k ˆτ k +1 μ, z ˆr k +1 = ρ μz ˆ + b w +1 + 1 τ k (β μ) Θ 2 (1, 5) ˆPk,+1 + ˆP k β(1 δ) ˆr +1 k νr v(r 1) + 1 ˆR ν(r 1) + v(r 1) + 1 ρ νˆν + Ĥ+1 ˆk +1 ˆτ k +1 = Θ 1 (1, 1) ˆτ k + Θ 1 (1, 2) ˆτ y + Θ 1 (1, 3) ˆτ + Θ 1 (1, 4) ˆτ w + Θ 1 (1, 5) ĝ + Θ 2 (1, 1) ˆτ k 1 + Θ 2 (1, 2) ˆτ y 1 + Θ 2 (1, 3) ˆτ 1 + Θ 2 (1, 4) ˆτ w 1 + Θ 2 (1, 5) ĝ 1 16

β(1 δ) ˆψ z,+1 + β(1 δ) ˆk+1 ˆPk,+1 + β(1 δ) " = ˆψ z + ρ μz β(1 δ) # ρ μ μz z β(1 δ) ν(r 1) v(r 1) + 1 ρ νˆν b w +1 + β(1 δ) Ĥ μ +1 z ˆ + ˆP k β(1 δ) νr v(r 1) + 1 ˆR τ k β(1 δ) 1 τ k Θ1 (1, 1) ˆτ k + τ k β(1 δ) 1 τ k Θ1 (1, 2) ˆτ y + τ k β(1 δ) 1 τ k Θ1 (1, 3) ˆτ + τ k β(1 δ) 1 τ k Θ1 (1, 4) ˆτ w + τ k β(1 δ) 1 τ k Θ1 (1, 5) ĝ + τ k β(1 δ) 1 τ k Θ2 (1, 1) ˆτ k 1 + τ k β(1 δ) 1 τ k Θ2 (1, 2) ˆτ y 1 μ + τ k β(1 δ) z 1 τ k Θ2 (1, 3) ˆτ 1 + τ k β(1 δ) 1 τ k Θ2 (1, 4) ˆτ w 1 + τ k β(1 δ) 1 τ k Θ2 (1, 5) ĝ 1 b w +1 : H (10, 6) = β(1 δ) ˆψ z,+1 : H (10, 9) = 1 β(1 δ) ˆP k,+1 : H (10, 10) = Ĥ +1 : H (10, 12) = β(1 δ) û +1 : H (10, 13) = β(1 δ) ˆψ z : A 22 (10, 9) = 1 ˆψ z : A 22 (10, 9) = 1 ˆP k : A 22 (10, 10) = 1 17

ˆR : B 2 (10, 1) = β(1 δ) νr v(r 1) + 1 ˆ : A 21 (10, 3) = ρ μz β(1 δ) ρ μ μz z ˆν : A 21 (10, 5) = β(1 δ) ν(r 1) v(r 1) + 1 ρ ν ˆτ k : A 21 (10, 20) = τ k ˆτ y : A 21 (10, 21) = τ k ˆτ : A 21 (10, 22) = τ k ˆτ w : A 21 (10, 23) = τ k ĝ : A 21 (10, 24) = τ k ˆτ k 1 : A 21 (10, 25) = τ k ˆτ y 1 : A 21 (10, 26) = τ k ˆτ 1 : A 21 (10, 27) = τ k ˆτ w 1 : A 21 (10, 28) = τ k ĝ 1 : A 21 (10, 29) = τ k 1 τ k β(1 δ) Θ1 (1, 1) 1 τ k β(1 δ) Θ1 (1, 2) 1 τ k β(1 δ) Θ1 (1, 3) 1 τ k β(1 δ) Θ1 (1, 4) 1 τ k β(1 δ) Θ1 (1, 5) 1 τ k β(1 δ) Θ2 (1, 1) 1 τ k β(1 δ) Θ2 (1, 2) 1 τ k β(1 δ) Θ2 (1, 3) 1 τ k β(1 δ) Θ2 (1, 4) 1 τ k β(1 δ) Θ2 (1, 5) Row 11 - Change in nominal exhange rae (UIP) 1 s φ E Ŝ+1 = φ s Ŝ + ˆR ˆR + φ a â b φ Ŝ+1 : H (11, 11) = 1 s φ Ŝ : A 22 (11, 11) = φ s â : A 22 (11, 16) = φ a ˆR : B 2 (11, 1) = 1 b φ : A 21 (11, 12) = 1 ˆR : A 21 (11, 32) = 1 18

Row 12 - Hours worked (aggregae resoure onsrain) (1 ω ) γ d η ĉ + η y ˆγ d +(1 ω i ) γ id η i ĩ b ĩ + η y iˆγ id + g y ĝ + y y i = λ d hˆε + α ˆk ˆ +(1 α) Ĥ 1 k τ r k k y ĉ + η y ˆγ d i λ d hˆε + α ˆk ˆ +(1 α) Ĥ 0 = (1 ω ) γ d η 0 = (1 ω ) γ d η +(1 ω i ) γ id η i ĩ +(1 ω i ) γ id η i ĩ y + 1 k τ r k k y bγ d = ω (γ m ) (1 η ) bγ md bγ i,d = ω i γ i,mi (1 η i ) bγ mi,d y ĉ +(1 ω ) γ d η y η iω i γ i,mi (1 η i ) bγ mi,d λ d α λ dˆε + λ d αˆ λ d (1 α) Ĥ 1 ˆk b k b ĩ + η iˆγ id + g y ĝ + y y 1 ˆk b k ŷ η f ˆγ x + b z ŷ η f ˆγ x + b z y η ω (γ m ) (1 η ) bγ md +(1 ω i ) γ id η i ĩ y b ĩ y ĉ : A 22 (12, 7) = (1 ω ) γ d η y η f ˆγ x + g y ĝ + y y ŷ + y y b z 1 ˆk 1 τ k r k k y bĩ : A 22 (12, 8) = (1 ω i ) γ id η i ĩ y Ĥ : A 22 (12, 12) = λ d (1 α) ˆk : A 22 (12, 13) = λ d α 1 k τ r k k 1 y μ z γ d η bγ md : A 22 (12, 17) = (1 ω ) bγ mi,d : A 22 (12, 18) = (1 ω i ) ˆγ x : A 22 (12, 19) = y y η f ˆε : A 21 (12, 1) = λ d ˆ : A 21 (12, 3) = λ d α b z : A 21 (12, 14) = y y ĝ : A 21 (12, 24) = g y ŷ : A 21 (12, 31) = y y b k : A 21 (12, 42) = 1 k τ r k k 1 y y y η ω (γ m ) (1 η ) γ id η i ĩ y η iω i γ i,mi (1 η i ) 1 τ k r k k y 1 b k 19

Row 13 - Capial-servies flow û = 1 ˆr k 1 τ k σ a σ a (1 τ k ) ˆτ k, û ˆk b k, ˆr k = ˆ + b w + ˆR f + Ĥ ˆk. 0= (1 + σ a ) ˆk + σ a b k +ˆ + b w + ˆR f + Ĥ 0= (1 + σ a ) ˆk + σ a b k + b w + Ĥ + νr v(r 1) + 1 ˆR 1 +ˆ + b w : A 22 (13, 6) = 1 Ĥ : A 22 (13, 12) = 1 ˆk : A 22 (13, 13) = (1 + σ a ) τ k (1 τ k ) ˆτ k ν(r 1) v(r 1) + 1 ˆν τ k (1 τ k ) ˆτ k ˆ : A 21 (13, 3) = 1 ˆν : ν(r 1) A 21 (13, 5) = v(r 1) + 1 ˆτ k : A 21 (13, 20) = τ k (1 τ k ) b k : A 21 (13, 42) = σ a ˆR =1 : νr A 21 (13, 44) = v(r 1) + 1 Row 14 - Real money balanes ˆq = 1 ˆζ q + τ k σ q 1 τ k ˆτ k ˆψ z R R 1 ˆR 1, 0= σ q ˆq ˆψ z R R 1 ˆR 1 + ˆζ q + τ k 1 τ k ˆτ k, ˆψ z : A 22 (14, 9) = 1 ˆq : A 22 (14, 14) = σ q ˆζ q : A 21 (14, 8) = 1 ˆτ k : A 21 (14, 20) = τ k 1 τ k ˆR 1 : A 21 (14, 44) = R R 1 20

Row 15 - Loan marke learing ν wh ˆν + b w + Ĥ = μ m π d ˆμ + b m ˆπ d ˆ qˆq, 0= ν whˆν ν wh b w ν whĥ + μ m π d ˆμ + μ m π d b m μ m π d ˆπ d μ m π d ˆ qˆq, Row 16 - Ne foreign asses ˆπ d : A 22 (15, 1) = μ m π d b w : A 22 (15, 6) = ν wh Ĥ : A 22 (15, 12) = ν wh ˆq : A 22 (15, 14) = q ˆμ : A 22 (15, 15) = μ m π d ˆν : A 21 (15, 5) = ν wh ˆ : A 21 (15, 3) = μ m π d b m : A 21 (15, 43) = μ m π d â = y m x η f y ˆγ x + y ŷ + y b z +( m +ĩ m )ˆγ f m ĉ + m η (1 ω ) γ d (1 η ) ˆγ md ĩ m bĩ +ĩ m η i (1 ω i ) γ id (1 η i ) ˆγ mid + R â 1, π ˆγ f = m x +ˆγ x, 0 = â [ y ( m +ĩ m )] m x η f y ( m +ĩ m ) ˆγ x, + y ŷ + y b z m ĉ + m η (1 ω ) γ d (1 η ) ˆγ md ĩ m bĩ +ĩ m η i (1 ω i ) γ id (1 η i ) ˆγ mid + R â 1, π 21

ĉ : A 22 (16, 7) = m bĩ : A 22 (16, 8) = ĩ m â : A 22 (16, 16) = 1 ˆγ md : A 22 (16, 17) = m η (1 ω ) γ d (1 η ) ˆγ mid : A 22 (16, 18) = ĩ m η i (1 ω i ) γ id (1 η i ) ˆγ x : A 22 (16, 19) = η f y +( m +ĩ m ) m x : A 22 (16, 21) = [ y +( m +ĩ m )] b z : A 21 (16, 14) = y ŷ : A 21 (16, 31) = y â 1 : A 21 (16, 60) = R π Row 17 - Relaive prie - impored ons vs. domesi 0= ˆγ md +ˆγ md 1 +ˆπ m ˆπ d ˆπ d : A 22 (17, 1) = 1 ˆπ m : A 22 (17, 2) = 1 ˆγ md : A 22 (17, 17) = 1 ˆγ md 1 : A 21 (17, 61) = 1 Row 18 - Relaive prie - impored invesmen vs. domesi 0= ˆγ mid +ˆγ mid 1 +ˆπ mi ˆπ d ˆπ d : A 22 (18, 1) = 1 ˆπ mi : A 22 (18, 3) = 1 ˆγ mid : A 22 (18, 18) = 1 ˆγ mid 1 : A 21 (18, 62) = 1 Row 19 - Relaive prie - expor vs. foreign 0= ˆγ x +ˆγ x 1 +ˆπ x ˆπ ˆπ x : A 22 (19, 5) = 1 ˆγ x : A 22 (19, 19) = 1 ˆπ : A 21 (19, 30) = 1 ˆγ x 1 : A 21 (19, 63) = 1 22

Row 20 - Real exhange rae b x = ω (γ m ) (1 η md )ˆγ ˆγ x, m x 0 = b x ω (γ m ) (1 η md )ˆγ ˆγ x, m x m x = m x 1 + bπ d bπ x S b ˆγ x = ˆγ x 1 +ˆπ x ˆπ ˆγ md = ˆγ md 1 +ˆπ m ˆπ d Row 21 - Marginal os expor ˆγ md : A 22 (20, 17) = ω (γ m ) (1 η ) ˆγ x, : A 22 (20, 19) = 1 b x : A 22 (20, 20) = 1 m x : A 22 (20, 21) = 1 0= m x + m x 1 + bπ d bπ x b S bπ d : A 22 (21, 1) = 1 bπ x : A 22 (21, 5) = 1 S b : A 22 (21, 11) = 1 m x : A 22 (21, 21) = 1 m x 1 : A 21 (21, 65) = 1 Row 22 - Physial apial sok (noe ha b k+1 is predeermined variable no. 42 in period +1and forward-looking variable no. 22 in period ): 0= b k+1 +(1 δ) 1 b k (1 μ δ) 1 ˆμ z + 1 (1 δ) 1μz ˆΥ + 1 (1 δ) 1μz bĩ, z b k+1 : A 22 (22, 22) = 1, b k : A 21 (22, 42) = (1 δ) 1, ˆ : A 21 (22, 3) = (1 δ) 1, ˆΥ : A 21 (22, 13) = 1 (1 δ) 1μz, ˆΥ : A 21 (22, 13) = S 00 μ 2 z (1 + β) µ1 (1 δ) 1μz (resaled shok!) bĩ : A 22 (22, 8) = 1 (1 δ) 1. 23

Row 23 - Finanial asses (noe ha b m +1 is predeermined variable no. 43 in period +1 and forward-looking variable no. 23 in period ) 1.3. Speifying D 0= b m +1 +ˆμ ˆ ˆπ d + b m b m +1 : A 22 (23, 23) = 1 ˆ : A 21 (23, 3) = 1 b m : A 21 (23, 43) = 1 ˆπ d : A 22 (23, 1) = 1 ˆμ : A 22 (23, 15) = 1 We also speify he arge variables, for onveniene inluding some variables of ineres whih may have zero weigh in he loss funion. They are he quarerly and four-quarerly CPI inflaion gaps relaive o seady-sae inflaion, whih equals he offiial inflaion arge; he oupu gap relaive o seady-sae oupu (we may also use he gap relaive o poenial oupu, meaning he flexprie and flexwage oupu level); he quarerly ineres rae; he quarerly ineres-rae differenial; and he real exhange rae. The inflaion and ineres raes are all measured a an annual rae. Then he veor of arge variables, Y, and he orresponding marix D saisfy where Y [4ˆπ pi Quarerly CPI inflaion gap: 4ˆπ pi, ˆπ pi, ŷ, 4 ˆR, 4( ˆR ˆR 1 ), b x ] 0 D ˆπ pi =ˆπ pi +ˆπ pi 1 +ˆπpi 2 +ˆπpi 3. =4[(1 ω )(γ d ) (1 η ) bπ d + ω (γ m ) (1 η ) bπ m ], (1.4) X x i, bπ d : D(1,n X +1)=4(1 ω )(γ d ) (1 η ), bπ m : D(1,n X +2)=4ω (γ m ) (1 η ). Four-quarer CPI inflaion gap: ˆπ pi =ˆπ pi +ˆπ pi 1 +ˆπpi 2 +ˆπpi 3. (1.5) ˆπ d : D(2,n X +1)=(1 ω )(γ d ) (1 η ), ˆπ d 1 : D(2, 45) = (1 ω )(γ d ) (1 η ), ˆπ d 2 : D(2, 68) = (1 ω )(γ d ) (1 η ), ˆπ d 3 : D(2, 70) = (1 ω )(γ d ) (1 η ), bπ m : D(2,n X +2)=ω (γ m ) (1 η ), bπ m 1 : D(2, 46) = ω (γ m ) (1 η ), bπ m 2 : D(2, 69) = ω (γ m ) (1 η ), bπ m 3 : D(2, 71) = ω (γ m ) (1 η ). 24

Alernaively, we ould inorporae he exogenous ime-varying inflaion arge in he inflaion gap, 1 Y [4(ˆπ pi b π ), ˆπ pi 4b π, ŷ, 4 ˆR, 4( ˆR ˆR X 1 ), b x ] 0 D x i, in whih ase b π : D(1, 18) = 4, b π : D(2, 18) = 4. Oupu gap, Ineres rae, ŷ : D(3,n X +4)=1. ˆR : D(4,n X + n x + n i )=4. Ineres-rae differenial, ˆR : D(5,n X + n x + n i )=4, ˆR 1 : D(5, 44) = 4. Real exhange rae, b x : D(6,n X + 20) = 1. 1.4. Defining f X and f x - Ineres rae rule i = f X X + f x x h i ˆR = ρ R ˆR 1 +(1 ρ R ) b π + r π ˆπ 1 b π + ry ŷ 1 + r x b x 1 +r π ˆπ ˆπ 1 + r y (ŷ ŷ 1 )+ε R ˆR = ρ R ˆR 1 +(1 ρ R ) b π +(1 ρ R ) r πˆπ 1 (1 ρ R ) r π b π +(1 ρ R ) r y ŷ 1 +(1 ρ R ) r x b x 1 + r πˆπ r πˆπ 1 + r y ŷ r y ŷ 1 + ε R = ρ R ˆR 1 +(1 ρ R )[1 r π ] b π + r π (1 ω )(γ d ) (1 η ) bπ d +r π (ω )(γ m ) (1 η ) bπ m +[(1 ρ R ) r π r π ](1 ω )(γ d ) (1 η ) bπ d 1 +[(1 ρ R ) r π r π ] ω (γ m ) (1 η ) bπ m 1 +r y ŷ +[(1 ρ R ) r y r y ]ŷ 1 +(1 ρ R ) r x b x 1 + ε R 1 Noe ha one ould alernaive replae 4 π by π + π 1 + π 2 + π 3 and onsider he laer he ime-varying four-quarer inflaion arge. 25

ˆR 1 : f X (1, 44) = ρ R b π : f X (1, 18) = (1 ρ R )[1 r π ] bπ d : f x (1, 1) = r π (1 ω )(γ d ) (1 η ) bπ m : f x (1, 2) = r π ω (γ m ) (1 η ) bπ d 1 : f X (1, 45) = [(1 ρ R ) r π r π ](1 ω )(γ d ) (1 η ) bπ m 1 : f X (1, 46) = [(1 ρ R ) r π r π ](ω )(γ m ) (1 η ) ŷ : f x (1, 4) = r y ŷ flex : f x (1,n x +4)= r y ŷ 1 : f X (1, 48) = (1 ρ R ) r y r y ŷ flex 1 : f X (1,n X +48)= ((1 ρ R ) r y r y ) b x 1 : f X (1, 64) = (1 ρ R ) r x ε R : f X (1, 17) = 1 2. Poenial oupu under flexible pries and wages - expanding he sae The flexible prie and wage model is parameerized under i) ξ d = ξ m = ξ mi = ξ x = ξ w =0,ii) seing he four markup as well as he fisal shoks o zero (σ ελ = σ ελ m = σ = σ ελ mi ε λ x =0, and Θ 1 0 S τ =0 5x5, respeively), and iii) we solve he sysem under he assumpion ha ˆπ pi =0.The flexprie model an be wrien where, and X +1 H f x +1 H f This implies he following soluion where x flex = " x flex i flex # H 0 1 nx = A f X x i, A f + C 0 nx n ε 0 ni n ε A 11 A 12 B 1 A 21 A 22 B 2 0 1 nx e 1 0 bπ d : e 1 (1, 1) = (1 ω )(γ d ) (1 η ), bπ m : e 1 (1, 2) = ω (γ m ) (1 η ). X flex = M flex X flex 1 + Cflex ε, x flex = F flex Xflex, = F flex M flex X flex 1 + F flex C flex ε, ε +1, (2.1) and F flex =[ Fx flex F flex i ] 0. We expand he sae of he disored eonomy wih he predeermined sae variables in he flexprie model so ha Ẋ =(X 0,X flex0 ) 0, whih implies Ẋ +1 = A 11 Ẋ + Ȧ12x + Ḃ1i + Ċε +1, 26,

Ḣx +1 = Ȧ21Ẋ + Ȧ22x + Ḃ2i, A where Ȧ11 = 11 0 nx nx A 0 nx nx M flex, Ȧ12 = 12, 0 nx nx Ȧ 21 = B A 21 0 nx nx, Ȧ22 = A 22, Ḃ 1 = 1, Ḃ 0 2 = B 2, nx ni C Ċ = C flex, and Ḣ = H. We also need o hange he arge variable marix o inlude he flexprie oupu gap X Y [4ˆπ pi, ˆπ pi, ˆπ d, (y y flex ), 4 ˆR, 4( ˆR ˆR 1 ), b x ] 0 Ḋ X flex x i. Ḋ = D X D X flex D x 0 D i, where D above has been pariioned suh ha D = D X D x 0 D i and D X flex is defined so ha ŷ flex : D X flex(4,n X +4)= F flex x,4. 3. The measuremen equaion and he definiion of he maries D 0, D, and D s Le s (X, 0 Ξ 0 1,x0,i 0 ) 0 and all s he sae of he eonomy (alhough i inludes nonpredeermined variables). The soluion o he model under opimal poliy under ommimen an be wrien in Klein form as s +1 X +1 x +1 i +1 = M 0 0 f x M 0 0 f i M 0 0 s + I f x f i Cε+1. As noed in Adolfson e al. [1, Appendix C], i an also be wrien in AIM form as s +1 = Bs + Cε +1, (3.1) where C ΦΨ and he innovaion Cε has he disribuion N(0,Q) wih Q E[ Cε +1 ( Cε +1 ) 0 ]= C C 0.Consider he sae unobservable, le Z denoe he n Z -veor of observable variables, and le he measuremen equaion be Z = D 0 + D s s + η, (3.2) where η is an n Z -veor of measuremen errors wih disribuion N(0, Σ η ) (he veor η here should no be onfused wih veor η of oeffiiens speified in (1.3)). We assume ha he marix R is diagonal wih very small elemens. 2 Equaions (3.1) and (3.2) orrespond o he sae-spae form for he derivaion of he Kalman filer in Hamilon [3]. Noe ha he marix D s is relaed o he marix D [ D X Dx Di ] (pariioned onformably wih X, x,andi )as D s =[ D X 0 D x Di ], sine s inludes he veor of predeermined variables Ξ 1. 2 The role of he measuremen errors in he esimaion of he model and he sae of he eonomy is furher disussed in Adolfson e al. [2]. 27

3.1. Differene speifiaion The veor of observable variables is π d ln(w /P ) ln C ln I b x R Ĥ... Z = 1 2 3 4 5 6 7... y ln X ln M π pi π def,i ln Y π R 8 9 10 11 12 13 14 15 and orresponds o he daa used in esimaing Ramses. Nex, we need speify how he daa orresponds o he model variables: 0 (3.3) π d = 400(π 1)π +4πˆπ d, ln(w /P ) = 100ln + b w +ˆ, ln C = 100ln + ĉ + d + m η d m h (γ m ) 1 (γ d ) 1i bγ md +ˆμ z, ĩ ln I = 100ln + bĩ + ĩ d +ĩ m η ĩ d ĩ m γ i,mi 1 i γ i,d 1 bγ mi,d ĩ ĩ + 1 k τ r k k 1 û +ˆμ, z b x = b x, R = 400(R 1)R +4R ˆR, Ĥ = Ĥ, y = 100ln + ŷ +ˆ, ln X = 100ln + h ŷ η f bγ x, + b z ln M = 100ln + m m +ĩ m ĉ + ĩm m +ĩ m bĩ m i +ˆ, m +ĩ m η (1 ω )(γ d ) (1 η ) bγ md γ i,d (1 η i ) bγ mi,d +ˆ, ĩm m +ĩ m η i(1 ω i ) π pi 400(π 1)π +4πˆπ pi +4π τ 1+τ ˆτ (3.4) = 400(π 1)π +4π(1 ω )(γ d ) (1 η ) bπ d +4πω (γ m ) (1 η ) bπ m +4π τ 1+τ ˆτ, π def,i = 400(π 1)π +4πĩ π d ˆπ d +4πĩ π m ˆπ mi ĩ +4π π d Id η I d +I m i ω i γ i,mi (1 η i ) ĩ π m Im η I d +I m i (1 ω i ) γ i,d (1 η i ) ln Y = 100ln + ŷ + b z +ˆ, π = 400(π 1)π +4πˆπ, R = 400(R 1)R +4R ˆR. bγ mi,d, Domesi inflaion π d = 400(π 1)π +4πˆπ d, 28

D 0 (1, 1) = 400(π 1)π D s 1,n X +1 = 4π Change in real wage ln(w /P ) = 100 ln + b w b w 1 +ˆ, Change in real onsumpion ln C = 100 ln +ĉ ĉ 1 + d + m η d m D 0 (2, 1) = 100 ln μ z b w : Ds 2,n X +6 =1 b w 1 : Ds (2, 50) = 1 ˆ : Ds (2, 3) = 1 d + m η d m h (γ m ) 1 (γ d ) 1i bγ md h (γ m ) 1 (γ d ) 1i bγ md 1 +ˆ, D 0 (3, 1) = 100 ln ĉ : Ds 3,n X +7 =1 ĉ 1 : Ds (3, 51) = 1 bγ md : Ds 3,n X +17 = d + m η d m h(γ m ) 1 (γ d ) 1i bγ md 1 : D s (3, 61) = d + m η d m h(γ m ) 1 (γ d ) 1i ˆ : Ds (3, 3) = 1 Change in real invesmen ĩ ln I = 100 ln +bĩ bĩ 1 + ĩ d +ĩ m η ĩ d ĩ m γ i,mi 1 i γ i,d 1 ĩ ĩ ĩ ĩ d +ĩ m η ĩ d ĩ m γ i,mi 1 i γ i,d 1 bγ mi,d 1 ĩ ĩ + 1 k τ r k k 1 ˆk 1 k τ r k k 1 b k û = ˆk b k bγ mi,d 1 τ k r k k 1 û 1 +ˆ, 29

D 0 (4, 1) = 100 ln μ z bĩ : Ds 4,n X +8 =1 bĩ 1 : Ds (4, 52) = 1 bγ mi,d : Ds 4,n X +18 = bγ mi,d 1 : Ds (4, 62) = ĩ ˆk : Ds 4,n X +13 = b k : Ds (4, 42) = 1 k τ r k k 1 ĩ ĩ d +ĩ m η ĩ d ĩ m γ i,mi 1 i γ i,d 1 ĩ ĩ ĩ d +ĩ m η ĩ d ĩ m γ i,mi 1 i γ i,d 1 ĩ ĩ 1 k τ r k k 1 û 1 : Ds (4, 67) = 1 k τ r k k 1 ˆ : Ds (4, 3) = 1 Real exhange rae b x = b x b x : D s 5,n X +20 =1 Ineres rae R = 400(R 1)R +4R ˆR, D 0 (6, 1) = 400(R 1)R ˆR : Ds 6,n X + n x + n i =4R Hours worked Ĥ = Ĥ, Ĥ : Ds 7,n X +12 =1 Change in oupu (GDP) y = 100 ln +ŷ ŷ 1 +ˆ, D 0 (8, 1) = 100 ln ŷ : Ds 8,n X +4 =1 ŷ 1 : Ds (8, 48) = 1 ˆ : Ds (8, 3) = 1 30

Change in real expors ln X = 100 ln +ŷ ŷ 1 η f bγ x, + η f bγ x, 1 + b z b z 1 +ˆ, Change in real impors ln M = 100 ln + m m +ĩ m ĉ + m D 0 (9, 1) = 100 ln ŷ : Ds (9, 31) = 1 ŷ 1 : Ds (9, 34) = 1 bγ x, : Ds 9,n X +19 = η f bγ x, 1 : Ds (9, 63) = η f b z : Ds (9, 14) = 1 b z 1 : Ds (9, 15) = 1 ˆ : Ds (9, 3) = 1 m m +ĩ m ĉ 1 1 + m +ĩ m η (1 ω )(γ d ) (1 η ) bγ md ĩm m +ĩ m η i(1 ω i ) m m +ĩ m η (1 ω )(γ d ) (1 η ) bγ md ĩm m +ĩ mb ĩ ĩm m +ĩ mb ĩ 1 γ i,d (1 η i ) bγ mi,d + ĩm m +ĩ m η i(1 ω i ) γ i,d (1 η i ) bγ mi,d 1 +ˆ, CPI inflaion D 0 (10, 1) = 100 ln ĉ : Ds 10,n X +7 = m m +ĩ m ĉ 1 : Ds (10, 51) = m m +ĩ m bγ md : D s 10,n X +17 = m m +ĩ m η (1 ω )(γ d ) (1 η ) bγ md 1 : Ds (10, 61) = m m +ĩ m η (1 ω )(γ d ) (1 η ) bĩ : Ds 10,n X +8 = ĩm m +ĩ m bĩ 1 : Ds (10, 52) = ĩm m +ĩ m bγ mi,d : Ds 10,n X +18 = ĩm m +ĩ m η i(1 ω i ) bγ mi,d 1 : Ds (10, 62) = ĩm m +ĩ m η i(1 ω i ) ˆ : Ds (10, 3) = 1 γ i,d (1 η i ) π pi = 400(π 1)π +4π(1 ω )bπ d +4πω bπ m +4π τ 1+τ ˆτ 4π τ 1+τ ˆτ 1, 31 γ i,d (1 η i )