ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ

Σχετικά έγγραφα
ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ιστορία της μετάφρασης

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Εκκλησιαστικό Δίκαιο

ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Ιστορία της μετάφρασης

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο

Εισαγωγή στους Αλγορίθμους

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Παράκτια Τεχνικά Έργα

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ

Εισαγωγή στους Αλγορίθμους

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Μηχανολογικό Σχέδιο Ι

Διπλωματική Ιστορία Ενότητα 2η:

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Μάρκετινγκ Αγροτικών Προϊόντων

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Φ 619 Προβλήματα Βιοηθικής

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Εργαστήριο Χημείας Ενώσεων Συναρμογής

ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Εκκλησιαστικό Δίκαιο

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Διοικητική Λογιστική

Διδακτική της Περιβαλλοντικής Εκπαίδευσης

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Γεωργική Εκπαίδευση Ενότητα 9

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

Χώρος και Διαδικασίες Αγωγής

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Βέλτιστος Έλεγχος Συστημάτων

Εισαγωγή στους Αλγορίθμους

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Συγκριτικό Εκκλησιαστικό Δίκαιο

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΚΑΛΑΘΟΣΦΑΙΡΙΣΗΣ ΙΙ

Φ 619 Προβλήματα Βιοηθικής

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Συμπεριφορά Καταναλωτή

Στρατηγικό Μάρκετινγκ

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Διπλωματική Ιστορία. Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη. του Hitler Ιωάννης Στεφανίδης, Καθηγητής Τμήμα Νομικής Α.Π.Θ.

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Κβαντική Επεξεργασία Πληροφορίας

Χώρος και Διαδικασίες Αγωγής

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Επικοινωνία Ανθρώπου- Υπολογιστή Σχεδίαση Αλληλεπίδρασης

Διαγλωσσική μεταφορά και διαμεσολάβηση

Διαγλωσσική μεταφορά και διαμεσολάβηση

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Στατιστική. 6 ο Μάθημα: Διαστήματα Εμπιστοσύνης και Έλεγχοι Υποθέσεων. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Μάρκετινγκ Αγροτικών Προϊόντων

Συνταγματικό Δίκαιο Ενότητα 11:Εκτελεστική Λειτουργία

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εκκλησιαστικό Δίκαιο

Μάρκετινγκ Αγροτικών Προϊόντων

ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 5

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Συγκριτικό Εκκλησιαστικό Δίκαιο

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ Μέρος 1 ο : Στοιχεία Θεωρίας Ημιαγωγών Ενότητα 6 η : Πυκνότητα ενεργειακών καταστάσεων. Γεώργιος Λιτσαρδάκης Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ 6. Πυκνότητα ενεργειακών καταστάσεων.

Περιεχόμενα ενότητας 1. Ορισμός.. Υπολογισμός σε μία και τρεις διαστάσεις. 3. Υπολογισμός ενέργειας Fermi. Ημιαγωγά Υλικά : Θεωρία - Διατάξεις 5

Πυκνότητα ενεργειακών καταστάσεων Πυκνότητα ενεργειακών καταστάσεων g(e)=dw/de αριθμός w των καταστάσεων απο Ε έως Ε+dE Πυκνότητα Ενεργειακών Καταστάσεων Πηγή: White LEDs Printed on Paper A Doctoral Thesis Part I Gul Amin -August 06, 01,http://www.edn.com/design/led/4391796/White- LEDs-Printed-on-Paper-A-Doctoral-Thesis-Part-I (E = h²k²/8mπ² = h²n²/8ml²) Σε τρεις διαστάσεις: V 8m π g( E) π h 3/ E

Υπολογισμός πυκνότητας καταστάσεων Σε μια διάσταση: Ε(n) = h²n²/8ml² και o δείκτης n δίνει τον αριθμό w των καταστάσεων Στην περιοχή Ε έως E+dE είναι ο αριθμός dw των καταστάσεων είναι dn. Παραγωγίζουμε την Ε(n) = h²n²/8ml² => de= (h²n/8ml²)dn = [he/ L(m)]dn =>g(e)=dn/de = L(m)/hE = α/ε

Υπολογισμός πυκνότητας καταστάσεων Σε τρεις διαστάσεις Ε n = h²n²/8ml², αλλά w n (επειδή n²= n x ² +n y ² +n z ²) Ο αριθμός διακριτών συνδυασμών (n x, n y, n z ) μέχρι την τιμή n είναι 4πn 3 /3. Στην περιοχή n έως n+dn είναι 4πn²dn. Οι καταστάσεις στην περιοχή Ε+dE είναι (θετικά μόνο n i ) dw=(1/8)4πn²dn Ε n =(h²/8ml²)n² => n²=(8ml²/h²)e και dn = [½(8mL²/h²) 1/ /E] de =>dw=(1/8)4π(1/)(8ml²/h²) 3/ E de =>g(e)=dw/de=(π/4)(8ml²/h²) 3/ E =(L 3 /4π²)(8mπ²/h²) 3/ E [και x λόγω σπιν γίνεται :] V 8m π g( E) π h 3/ E

Η στάθμη Fermi E F Είναι η υψηλότερη ενεργειακή κατάσταση που είναι κατειλημμένη από ηλεκτρόνια στη θερμοκρασία Τ=0 Κ αριθμός w των διαθέσιμων ενεργειακών καταστάσεων μέχρι E n : w 3/ En V 8m π E n V 3 g( E) de 0 π k n 3π h 3 Αριθμός καταστάσεων μέχρι E F = αριθμός ηλεκτρονίων w=(v/3π )k F3 =N => k F = (3π Ν/V) 1/3 E F h 8m π k F 8m Η ενέργεια Fermi εξαρτάται από τον αριθμό των ελεύθερων ηλεκτρονίων ανά μονάδα όγκου του στερεού h π 3π N V /3

Σημείωμα Αναφοράς Copyright, Λιτσαρδάκης Γεώργιος. «Ημιαγωγά Υλικά: Θεωρία Διατάξεις» Έκδοση: 1.0. Θεσσαλονίκη 015. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs463.

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4.0/

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τέλος ενότητας Επεξεργασία: Καρανάσιος Νικόλαος Θεσσαλονίκη, 015