ELEMENTS BOOK 2. Fundamentals of Geometric Algebra

Σχετικά έγγραφα
Definitions. . Proposition 1

ELEMENTS BOOK 3. Fundamentals of Plane Geometry Involving Circles

ELEMENTS BOOK 4. Construction of Rectilinear Figures In and Around Circles

ELEMENTS BOOK 13. The Platonic Solids

EUCLID S ELEMENTS OF GEOMETRY

ELEMENTS BOOK 11. Elementary Stereometry

ELEMENTS BOOK 10. Incommensurable Magnitudes

EUCLID S ELEMENTS OF GEOMETRY

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Homework 8 Model Solution Section

ELEMENTS BOOK 7. Elementary Number Theory. The propositions contained in Books 7 9 are generally attributed to the school of Pythagoras.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

2 Composition. Invertible Mappings

Section 8.3 Trigonometric Equations

Οροι. ζ Επίπεδος πιφάνειά στιν, τις ξ σου τα ς φ αυτ ς ε θείαις κε ται.

CRASH COURSE IN PRECALCULUS

Section 9.2 Polar Equations and Graphs

Reminders: linear functions

Matrices and Determinants

Section 7.6 Double and Half Angle Formulas

EUCLID S ELEMENTS OF GEOMETRY

EUCLID S ELEMENTS OF GEOMETRY

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

the total number of electrons passing through the lamp.

PARTIAL NOTES for 6.1 Trigonometric Identities

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

EE512: Error Control Coding

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Areas and Lengths in Polar Coordinates

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Inverse trigonometric functions & General Solution of Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ST5224: Advanced Statistical Theory II

C.S. 430 Assignment 6, Sample Solutions

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

Areas and Lengths in Polar Coordinates

derivation of the Laplacian from rectangular to spherical coordinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Math 6 SL Probability Distributions Practice Test Mark Scheme

EUCLID S ELEMENTS IN GREEK VOLUME II BOOKS 5 9

Homework 3 Solutions

EUCLID S ELEMENTS OF GEOMETRY

On a four-dimensional hyperbolic manifold with finite volume

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων.

Trigonometry 1.TRIGONOMETRIC RATIOS

[1] P Q. Fig. 3.1

Θέμα: Αποδείξεις της τριγωνικής ανισότητας

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Second Order Partial Differential Equations

ELEMENTS BOOK 12. Proportional Stereometry

Παρατηρήσεις στα ϑέµατα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Solutions to Exercise Sheet 5

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

EUCLID S ELEMENTS IN GREEK

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Fractional Colorings and Zykov Products of graphs

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

Math221: HW# 1 solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Srednicki Chapter 55

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Trigonometric Formula Sheet

( y) Partial Differential Equations

Quadratic Expressions

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ.

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

Derivation of Optical-Bloch Equations

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=

Finite Field Problems: Solutions

Example Sheet 3 Solutions

1 String with massive end-points

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Second Order RLC Filters

6.1. Dirac Equation. Hamiltonian. Dirac Eq.


( ) 2 and compare to M.

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

Introduction to mathematical thinking. Dag Wedelin

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Numerical Analysis FMN011

ΕΒ ΟΜΗ ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑ Α JBMO ( ΓΙΑ ΜΑΘΗΤΕΣ ΚΑΤΩ ΤΩΝ 15,5 ΕΤΩΝ ) - ΣΜΥΡΝΗ

Lecture 15 - Root System Axiomatics

If we restrict the domain of y = sin x to [ π 2, π 2

Capacitors - Capacitance, Charge and Potential Difference

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Example 1: THE ELECTRIC DIPOLE

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Section 8.2 Graphs of Polar Equations

Transcript:

ELEMENTS BOOK 2 Fundamentals of Geometric Algebra 49

ÎÇÖÓ. Definitions αʹ. Πᾶν παραλληλόγραμμον ὀρθογώνιον περιέχεσθαι 1. Any rectangular parallelogram is said to be conλέγεται ὑπὸ δύο τῶν τὴν ὀρθὴν γωνίαν περιεχουσῶν tained by the two straight-lines containing the rightεὐθειῶν. angle. βʹ. Παντὸς δὲ παραλληλογράμμου χωρίου τῶν περὶ τὴν 2. And in any parallelogrammic figure, let any one διάμετρον αὐτοῦ παραλληλογράμμων ἓν ὁποιονοῦν σὺν τοῖς whatsoever of the parallelograms about its diagonal, δυσὶπαραπληρώμασιγνώμωνκαλείσθω. (taken) with its two complements, be called a gnomon.. Proposition 1 ὰνὦσιδύοεὐθεῖαι,τμηθῇδὲἡἑτέρααὐτῶνεἰςὁσα- If there are two straight-lines, and one of them is cut δηποτοῦν τμήματα, τὸ περιεχόμενον ὀρθογώνιον ὑπὸ τῶν into any number of pieces whatsoever, then the rectangle δύοεὐθειῶνἴσονἐστὶτοῖςὑπότετῆςἀτμήτουκαὶἑκάστου contained by the two straight-lines is equal to the (sum τῶν τμημάτων περιεχομένοις ὀρθογωνίοις. of the) rectangles contained by the uncut (straight-line), and every one of the pieces (of the cut straight-line). Α Γ A B D E C Η Κ Λ Θ στωσανδύοεὐθεῖαιαἱα,γ,καὶτετμήσθωἡγ, Let A and BC be the two straight-lines, and let BC ὡς ἔτυχεν, κατὰ τὰ Δ, σημεῖα λέγω, ὅτι τὸ ὑπὸ τῶν Α, be cut, at random, at points D and E. I say that the rect- Γ περιεχομένον ὀρθογώνιον ἴσον ἐστὶ τῷ τε ὑπὸ τῶν Α, angle contained by A and BC is equal to the rectangle(s) Δ περιεχομένῳ ὀρθογωνίῳ καὶ τῷ ὑπὸ τῶν Α, Δ καὶ ἔτι contained by A and BD, by A and DE, and, finally, by A τῷὑπὸτῶνα,γ. and EC. ΗχθωγὰρἀπὸτοῦτῇΓπρὸςὀρθὰςἡ,καὶ For let BF have been drawn from point B, at rightκείσθωτῇαἴσηἡη,καὶδιὰμὲντοῦητῇγπαράλληλος angles to BC [Prop. 1.11], and let BG be made equal ἤχθωἡηθ,διὰδὲτῶνδ,,γτῇηπαράλληλοιἤχθωσαν to A [Prop. 1.3], and let GH have been drawn through αἱ ΔΚ, Λ, ΓΘ. (point) G, parallel to BC [Prop. 1.31], and let DK, EL, Ισον δή ἐστι τὸ Θ τοῖς Κ, ΔΛ, Θ. καί ἐστι τὸ and CH have been drawn through (points) D, E, and C μὲν Θ τὸ ὑπὸ τῶν Α, Γ περιέχεται μὲν γὰρ ὑπὸ τῶν (respectively), parallel to BG [Prop. 1.31]. Η,Γ,ἴσηδὲἡΗτῇΑ τὸδὲκτὸὑπὸτῶνα,δ So the (rectangle) BH is equal to the (rectangles) περιέχεται μὲν γὰρ ὑπὸ τῶν Η, Δ, ἴση δὲ ἡ Η τῇ Α. τὸ BK, DL, and EH. And BH is the (rectangle contained) δὲδλτὸὑπὸτῶνα,δ ἴσηγὰρἡδκ,τουτέστινἡη, by A and BC. For it is contained by GB and BC, and BG τῇα.καὶἔτιὁμοίωςτὸθτὸὑπὸτῶνα,γ τὸἄραὑπὸ (is) equal to A. And BK (is) the (rectangle contained) by τῶνα,γἴσονἐστὶτῷτεὑπὸα,δκαὶτῷὑπὸα,δ A and BD. For it is contained by GB and BD, and BG καὶἔτιτῷὑπὸα,γ. (is) equal to A. And DL (is) the (rectangle contained) by ὰνἄραὦσιδύοεὐθεῖαι,τμηθῇδὲἡἑτέρααὐτῶνεἰς A and DE. For DK, that is to say BG [Prop. 1.34], (is) ὁσαδηποτοῦν τμήματα, τὸ περιεχόμενον ὀρθογώνιον ὑπὸ equal to A. Similarly, EH (is) also the (rectangle conτῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ tained) by A and EC. Thus, the (rectangle contained) ἑκάστουτῶντμημάτωνπεριεχομένοιςὀρθογωνίοις ὅπερ by A and BC is equal to the (rectangles contained) by A G F K L H 50

ἔδειδεῖξαι. and BD, by A and DE, and, finally, by A and EC. Thus, if there are two straight-lines, and one of them is cut into any number of pieces whatsoever, then the rectangle contained by the two straight-lines is equal to the (sum of the) rectangles contained by the uncut (straight-line), and every one of the pieces (of the cut straight-line). (Which is) the very thing it was required to show. This proposition is a geometric version of the algebraic identity: a(b + c + d + ) = a b + a c + a d +.. Proposition 2 ὰνεὐθεῖαγραμμὴτμηθῇ,ὡςἔτυχεν,τὸὑπὸτῆςὅλης If a straight-line is cut at random then the (sum of καὶ ἑκατέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον the) rectangle(s) contained by the whole (straight-line), ἐστὶτῷἀπὸτῆςὅληςτετραγώνῳ. and each of the pieces (of the straight-line), is equal to the square on the whole. Α Γ A C B D F E ὐθεῖαγὰρἡΑ τετμήσθω, ὡς ἔτυχεν, κατὰτὸγ For let the straight-line AB have been cut, at random, σημεῖον λέγω, ὅτι τὸ ὑπὸ τῶν Α, Γ περιεχόμενον at point C. I say that the rectangle contained by AB and ὀρθογώνιον μετὰ τοῦ ὑπὸ Α, ΑΓ περιεχομένου ὀρθο- BC, plus the rectangle contained by BA and AC, is equal γωνίου ἴσον ἐστὶ τῷ ἀπὸ τῆς Α τετραγώνῳ. to the square on AB. Ἀναγεγράφθω γὰρ ἀπὸ τῆς Α τετράγωνον τὸ ΑΔ, For let the square ADEB have been described on AB καὶἤχθωδιὰτοῦγὁποτέρᾳτῶναδ,παράλληλοςἡ [Prop. 1.46], and let CF have been drawn through C, Γ. parallel to either of AD or BE [Prop. 1.31]. ΙσονδήἐστὶτὸΑτοῖςΑ,Γ.καίἐστιτὸμὲνΑ So the (square) AE is equal to the (rectangles) AF τὸἀπὸτῆςατετράγωνον,τὸδὲατὸὑπὸτῶνα, and CE. And AE is the square on AB. And AF (is) the ΑΓ περιεχόμενον ὀρθογώνιον περιέχεται μὲν γὰρ ὑπὸ τῶν rectangle contained by the (straight-lines) BA and AC. ΔΑ,ΑΓ,ἴσηδὲἡΑΔτῇΑ τὸδὲγτὸὑπὸτῶνα, For it is contained by DA and AC, and AD (is) equal to Γ ἴσηγὰρἡτῇα.τὸἄραὑπὸτῶνα,αγμετὰ AB. And CE (is) the (rectangle contained) by AB and τοῦὑπὸτῶνα,γἴσονἐστὶτῷἀπὸτῆςατετραγώνῳ. BC. For BE (is) equal to AB. Thus, the (rectangle con- ὰνἄραεὐθεῖαγραμμὴτμηθῇ,ὡςἔτυχεν,τὸὑπὸτῆς tained) by BA and AC, plus the (rectangle contained) by ὅληςκαὶἑκατέρουτῶντμημάτωνπεριεχόμενονὀρθογώνιον AB and BC, is equal to the square on AB. ἴσον ἐστὶ τῷ ἀπὸ τῆς ὅλης τετραγώνῳ ὅπερ ἔδει δεῖξαι. Thus, if a straight-line is cut at random then the (sum of the) rectangle(s) contained by the whole (straightline), and each of the pieces (of the straight-line), is equal to the square on the whole. (Which is) the very thing it was required to show. 51

This proposition is a geometric version of the algebraic identity: a b + a c = a 2 if a = b + c.. Proposition 3 ὰνεὐθεῖαγραμμὴτμηθῇ,ὡςἔτυχεν,τὸὑπὸτῆςὅλης If a straight-line is cut at random then the rectangle καὶ ἑνὸς τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ contained by the whole (straight-line), and one of the τῷ τε ὑπὸ τῶν τμημάτων περιεχομένῳ ὀρθογωνίῳ καὶ τῷ pieces (of the straight-line), is equal to the rectangle con- ἀπὸ τοῦ προειρημένου τμήματος τετραγώνῳ. tained by (both of) the pieces, and the square on the aforementioned piece. Α Γ A C B F D E ὐθεῖαγὰρἡΑτετμήσθω, ὡςἔτυχεν, κατὰτὸγ For let the straight-line AB have been cut, at random, λέγω, ὅτι τὸ ὑπὸ τῶν Α, Γ περιεχόμενον ὀρθογώνιον at (point) C. I say that the rectangle contained by AB ἴσονἐστὶτῷτεὑπὸτῶναγ,γπεριεχομένῳὀρθογωνίῳ and BC is equal to the rectangle contained by AC and μετὰτοῦἀπὸτῆςγτετραγώνου. CB, plus the square on BC. ἈναγεγράφθωγὰρἀπὸτῆςΓτετράγωνοντὸΓΔ, For let the square CDEB have been described on CB καὶδιήχθωἡδἐπὶτὸ,καὶδιὰτοῦαὁποτέρᾳτῶνγδ, [Prop. 1.46], and let ED have been drawn through to παράλληλοςἤχθωἡα.ἴσονδήἐστιτὸατοῖςαδ, F, and let AF have been drawn through A, parallel to Γ καί ἐστι τὸ μὲν Α τὸ ὑπὸ τῶν Α, Γ περιεχόμενον either of CD or BE [Prop. 1.31]. So the (rectangle) AE ὀρθογώνιον περιέχεταιμὲνγὰρὑπὸτῶνα,,ἴσηδὲἡ is equal to the (rectangle) AD and the (square) CE. And τῇγ τὸδὲαδτὸὑπὸτῶναγ,γ ἴσηγὰρἡδγ AE is the rectangle contained by AB and BC. For it is τῇγ τὸδὲδτὸἀπὸτῆςγτετράγωνον τὸἄραὑπὸ contained by AB and BE, and BE (is) equal to BC. And τῶν Α, Γ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ὑπὸ AD (is) the (rectangle contained) by AC and CB. For τῶναγ,γπεριεχομένῳὀρθογωνίῳμετὰτοῦἀπὸτῆςγ DC (is) equal to CB. And DB (is) the square on CB. τετραγώνου. Thus, the rectangle contained by AB and BC is equal to ὰνἄραεὐθεῖαγραμμὴτμηθῇ,ὡςἔτυχεν,τὸὑπὸτῆς the rectangle contained by AC and CB, plus the square ὅλης καὶ ἑνὸς τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον on BC. ἐστὶ τῷ τε ὑπὸ τῶν τμημάτων περιεχομένῳ ὀρθογωνίῳ καὶ Thus, if a straight-line is cut at random then the rectτῷ ἀπὸ τοῦ προειρημένου τμήματος τετραγώνῳ ὅπερ ἔδει angle contained by the whole (straight-line), and one of δεῖξαι. the pieces (of the straight-line), is equal to the rectangle contained by (both of) the pieces, and the square on the aforementioned piece. (Which is) the very thing it was required to show. This proposition is a geometric version of the algebraic identity: (a + b) a = a b + a 2.. Proposition 4 ὰν εὐθεῖα γραμμὴ τμηθῇ, ὡς ἔτυχεν, τὸ ἀπὸ τῆς If a straight-line is cut at random then the square ὅληςτετράγωνονἴσονἐστὶτοῖςτεἀπὸτῶντμημάτωντε- on the whole (straight-line) is equal to the (sum of the) τραγώνοις καὶ τῷ δὶς ὑπὸ τῶν τμημάτων περιεχομένῳ ὀρθο- squares on the pieces (of the straight-line), and twice the 52

γωνίῳ. Α Γ rectangle contained by the pieces. A C B Θ Η Κ H G K D F E ὐθεῖα γὰρ γραμμὴ ἡ Α τετμήσθω, ὡς ἔτυχεν, κατὰ For let the straight-line AB have been cut, at random, τὸγ.λέγω,ὅτιτὸἀπὸτῆςατετράγωνονἴσονἐστὶτοῖς at (point) C. I say that the square on AB is equal to τεἀπὸτῶναγ,γτετραγώνοιςκαὶτῷδὶςὑπὸτῶναγ, the (sum of the) squares on AC and CB, and twice the Γπεριεχομένῳὀρθογωνίῳ. rectangle contained by AC and CB. Ἀναγεγράφθω γὰρ ἀπὸ τῆς Α τετράγωνον τὸ ΑΔ, For let the square ADEB have been described on AB καὶἐπεζεύχθωἡδ,καὶδιὰμὲντοῦγὁποτέρᾳτῶναδ, [Prop. 1.46], and let BD have been joined, and let CF παράλληλοςἤχθωἡγ,διὰδὲτοῦηὁποτέρᾳτῶνα, have been drawn through C, parallel to either of AD or ΔπαράλληλοςἤχθωἡΘΚ.καὶἐπεὶπαράλληλόςἐστινἡ EB [Prop. 1.31], and let HK have been drawn through ΓτῇΑΔ,καὶεἰςαὐτὰςἐμπέπτωκενἡΔ,ἡἐκτὸςγωνία G, parallel to either of AB or DE [Prop. 1.31]. And since ἡὑπὸγηἴσηἐστὶτῇἐντὸςκαὶἀπεναντίοντῇὑπὸαδ. CF is parallel to AD, and BD has fallen across them, the ἀλλ ἡ ὑπὸ ΑΔ τῇ ὑπὸ ΑΔ ἐστιν ἴση, ἐπεὶ καὶ πλευρὰ ἡ external angle CGB is equal to the internal and opposite ΑτῇΑΔἐστινἴση καὶἡὑπὸγηἄραγωνιάτῇὑπὸηγ (angle) ADB [Prop. 1.29]. But, ADB is equal to ABD, ἐστινἴση ὥστεκαὶπλευρὰἡγπλευρᾷτῇγηἐστινἴση since the side BA is also equal to AD [Prop. 1.5]. Thus, ἀλλ ἡμὲνγτῇηκἐστινἴση.ἡδὲγητῇκ καὶἡηκ angle CGB is also equal to GBC. So the side BC is ἄρατῇκἐστινἴση ἰσόπλευρονἄραἐστὶτὸγηκ.λέγω equal to the side CG [Prop. 1.6]. But, CB is equal to δή,ὅτικαὶὀρθογώνιον. ἐπεὶγὰρπαράλληλόςἐστινἡγη GK, and CG to KB [Prop. 1.34]. Thus, GK is also equal τῇκ[καὶεἰςαὐτὰςἐμπέπτωκενεὐθεῖαἡγ],αἱἄραὑπὸ to KB. Thus, CGKB is equilateral. So I say that (it is) ΚΓ,ΗΓγωνίαιδύοὀρθαῖςεἰσινἴσαι. ὀρθὴδὲἡὑπὸ also right-angled. For since CG is parallel to BK [and the ΚΓ ὀρθὴἄρακαὶἡὑπὸγη ὥστεκαὶαἱἀπεναντίον straight-line CB has fallen across them], the angles KBC αἱὑπὸγηκ,ηκὀρθαίεἰσιν. ὀρθογώνιονἄραἐστὶτὸ and GCB are thus equal to two right-angles [Prop. 1.29]. ΓΗΚ ἐδείχθη δὲ καὶ ἰσόπλευρον τετράγωνον ἄρα ἐστίν But KBC (is) a right-angle. Thus, BCG (is) also a rightκαί ἐστιν ἀπὸ τῆς Γ. διὰ τὰ αὐτὰ δὴ καὶ τὸ Θ τετράγωνόν angle. So the opposite (angles) CGK and GKB are also ἐστιν καί ἐστιν ἀπὸ τῆς ΘΗ, τουτέστιν[ἀπὸ] τῆς ΑΓ τὰ right-angles [Prop. 1.34]. Thus, CGKB is right-angled. ἄραθ,κγτετράγωναἀπὸτῶναγ,γεἰσιν. καὶἐπεὶ And it was also shown (to be) equilateral. Thus, it is a ἴσονἐστὶτὸαητῷη,καίἐστιτὸαητὸὑπὸτῶναγ, square. And it is on CB. So, for the same (reasons), Γ ἴσηγὰρἡηγτῇγ καὶτὸηἄραἴσονἐστὶτῷ HF is also a square. And it is on HG, that is to say [on] ὑπὸαγ,γ τὰἄρααη, Η ἴσαἐστὶτῷ δὶςὑπὸτῶν AC [Prop. 1.34]. Thus, the squares HF and KC are ΑΓ,Γ.ἔστιδὲκαὶτὰΘ,ΓΚτετράγωναἀπὸτῶνΑΓ, on AC and CB (respectively). And the (rectangle) AG Γ τὰἄρατέσσαρατὰθ,γκ,αη,ηἴσαἐστὶτοῖςτε is equal to the (rectangle) GE [Prop. 1.43]. And AG is ἀπὸτῶναγ,γτετραγώνοιςκαὶτῷδὶςὑπὸτῶναγ,γ the (rectangle contained) by AC and CB. For GC (is) περιεχομένῳὀρθογωνίῳ. ἀλλὰτὰθ,γκ,αη,ηὅλον equal to CB. Thus, GE is also equal to the (rectangle ἐστὶτὸαδ,ὅἐστινἀπὸτῆςατετράγωνον τὸἄρα contained) by AC and CB. Thus, the (rectangles) AG ἀπὸτῆςατετράγωνονἴσονἐστὶτοῖςτεἀπὸτῶναγ, and GE are equal to twice the (rectangle contained) by ΓτετραγώνοιςκαὶτῷδὶςὑπὸτῶνΑΓ,Γπεριεχομένῳ AC and CB. And HF and CK are the squares on AC ὀρθογωνίῳ. and CB (respectively). Thus, the four (figures) HF, CK, ὰνἄραεὐθεῖαγραμμὴτμηθῇ,ὡςἔτυχεν,τὸἀπὸτῆς AG, and GE are equal to the (sum of the) squares on 53

ὅληςτετράγωνονἴσονἐστὶτοῖςτεἀπὸτῶντμημάτωντε- AC and BC, and twice the rectangle contained by AC τραγώνοιςκαὶτῷδὶςὑπὸτῶντμημάτωνπεριεχομένῳὀρθο- and CB. But, the (figures) HF, CK, AG, and GE are γωνίῳ ὅπερἔδειδεῖξαι. (equivalent to) the whole of ADEB, which is the square on AB. Thus, the square on AB is equal to the (sum of the) squares on AC and CB, and twice the rectangle contained by AC and CB. Thus, if a straight-line is cut at random then the square on the whole (straight-line) is equal to the (sum of the) squares on the pieces (of the straight-line), and twice the rectangle contained by the pieces. (Which is) the very thing it was required to show. This proposition is a geometric version of the algebraic identity: (a + b) 2 = a 2 + b 2 + 2 a b.. Proposition 5 ὰνεὐθεῖαγραμμὴτμηθῇεἰςἴσακαὶἄνισα,τὸὑπὸτῶν If a straight-line is cut into equal and unequal (pieces) ἀνίσων τῆς ὅλης τμημάτων περιεχόμενον ὀρθογώνιον μετὰ then the rectangle contained by the unequal pieces of the τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου ἴσον ἐστὶ τῷ whole (straight-line), plus the square on the (difference) ἀπὸ τῆς ἡμισείας τετραγώνῳ. between the (equal and unequal) pieces, is equal to the square on half (of the straight-line). Α Γ A C D B Κ Λ Θ Μ Ξ Η Ν Μ K L E O H N P ὐθεῖαγάρτιςἡΑτετμήσθωεἰςμὲνἴσακατὰτὸ For let any straight-line AB have been cut equally at Γ,εἰςδὲἄνισακατὰτὸΔ λέγω,ὅτιτὸὑπὸτῶναδ,δ C, and unequally at D. I say that the rectangle contained περιεχόμενονὀρθογώνιονμετὰτοῦἀπὸτῆςγδτετραγώνου by AD and DB, plus the square on CD, is equal to the ἴσον ἐστὶ τῷ ἀπὸ τῆς Γ τετραγώνῳ. square on CB. ἈναγεγράφθωγὰρἀπὸτῆςΓτετράγωνοντὸΓ, For let the square CEFB have been described on CB καὶἐπεζεύχθωἡ,καὶδιὰμὲντοῦδὁποτέρᾳτῶνγ, [Prop. 1.46], and let BE have been joined, and let DG παράλληλοςἤχθωἡδη,διὰδὲτοῦθὁποτέρᾳτῶν have been drawn through D, parallel to either of CE or Α,παράλληλοςπάλινἤχθωἡΚΜ,καὶπάλινδιὰτοῦΑ BF [Prop. 1.31], and again let KM have been drawn ὁποτέρᾳτῶνγλ,μπαράλληλοςἤχθωἡακ.καὶἐπεὶἴσον through H, parallel to either of AB or EF [Prop. 1.31], ἐστὶ τὸ ΓΘ παραπλήρωμα τῷ Θ παραπληρώματι, κοινὸν and again let AK have been drawn through A, parallel to προσκείσθω τὸ ΔΜ ὅλον ἄρα τὸ ΓΜ ὅλῳ τῷ Δ ἴσον either of CL or BM [Prop. 1.31]. And since the comple- ἐστίν. ἀλλὰτὸγμτῷαλἴσονἐστίν,ἐπεὶκαὶἡαγτῇ ment CH is equal to the complement HF [Prop. 1.43], Γἐστινἴση καὶτὸαλἄρατῷδἴσονἐστίν. κοινὸν let the (square) DM have been added to both. Thus, προσκείσθωτὸγθ ὅλονἄρατὸαθτῷμνξ γνώμονι the whole (rectangle) CM is equal to the whole (rect- ἴσονἐστίν. ἀλλὰτὸαθτὸὑπὸτῶναδ,δἐστιν ἴση angle) DF. But, (rectangle) CM is equal to (rectangle) γὰρἡδθτῇδ καὶὁμνξἄραγνώμωνἴσοςἐστὶτῷ AL, since AC is also equal to CB [Prop. 1.36]. Thus, ὑπὸαδ,δ.κοινὸνπροσκείσθωτὸλη,ὅἐστινἴσοντῷ (rectangle) AL is also equal to (rectangle) DF. Let (rect- ἀπὸτῆςγδ ὁἄραμνξγνώμωνκαὶτὸληἴσαἐστὶτῷ angle) CH have been added to both. Thus, the whole ὑπὸτῶναδ,δπεριεχομένῳὀρθογωνίῳκαὶτῷἀπὸτῆς (rectangle) AH is equal to the gnomon NOP. But, AH G M F 54

ΓΔτετραγώνῳ.ἀλλὰὁΜΝΞγνώμωνκαὶτὸΛΗὅλονἐστὶ is the (rectangle contained) by AD and DB. For DH τὸγτετράγωνον,ὅἐστινἀπὸτῆςγ τὸἄραὑπὸτῶν (is) equal to DB. Thus, the gnomon NOP is also equal ΑΔ, Δ περιεχόμενον ὀρθογώνιον μετὰ τοῦ ἀπὸ τῆς ΓΔ to the (rectangle contained) by AD and DB. Let LG, τετραγώνουἴσονἐστὶτῷἀπὸτῆςγτετραγώνῳ. which is equal to the (square) on CD, have been added to ὰνἄραεὐθεῖαγραμμὴτμηθῇεἰςἴσακαὶἄνισα,τὸὑπὸ both. Thus, the gnomon NOP and the (square) LG are τῶν ἀνίσων τῆς ὅλης τμημάτων περιεχόμενον ὀρθογώνιον equal to the rectangle contained by AD and DB, and the μετὰτοῦἀπὸτῆςμεταξὺτῶντομῶντετραγώνουἴσονἐστὶ square on CD. But, the gnomon NOP and the (square) τῷἀπὸτῆςἡμισείαςτετραγώνῳ.ὅπερἔδειδεῖξαι. LG is (equivalent to) the whole square CEFB, which is on CB. Thus, the rectangle contained by AD and DB, plus the square on CD, is equal to the square on CB. Thus, if a straight-line is cut into equal and unequal (pieces) then the rectangle contained by the unequal pieces of the whole (straight-line), plus the square on the (difference) between the (equal and unequal) pieces, is equal to the square on half (of the straight-line). (Which is) the very thing it was required to show. Note the (presumably mistaken) double use of the label M in the Greek text. This proposition is a geometric version of the algebraic identity: a b + [(a + b)/2 b] 2 = [(a + b)/2] 2.. Proposition 6 ὰν εὐθεῖα γραμμὴ τμηθῇ δίχα, προστεθῇ δέ τις αὐτῇ If a straight-line is cut in half, and any straight-line εὐθεῖα ἐπ εὐθείας, τὸ ὑπὸ τῆς ὅλης σὺν τῇ προσκειμένῃ καὶ added to it straight-on, then the rectangle contained by τῆς προσκειμένης περιεχόμενον ὀρθόγώνιον μετὰ τοῦ ἀπὸ the whole (straight-line) with the (straight-line) having τῆς ἡμισείας τετραγώνου ἴσον ἐστὶ τῷ ἀπὸ τῆς συγκειμένης being added, and the (straight-line) having being added, ἔκ τε τῆς ἡμισείας καὶ τῆς προσκειμένης τετραγώνῳ. plus the square on half (of the original straight-line), is equal to the square on the sum of half (of the original straight-line) and the (straight-line) having been added. Α Κ Λ Γ Θ Ν Ο Ξ Μ A K L C B D N H P O M Η E G F ὐθεῖαγάρτιςἡΑτετμήσθωδίχακατὰτὸΓσημεῖον, For let any straight-line AB have been cut in half at προσκείσθωδέτιςαὐτῇεὐθεῖαἐπ εὐθείαςἡδ λέγω, point C, and let any straight-line BD have been added to ὅτι τὸ ὑπὸ τῶν ΑΔ, Δ περιεχόμενον ὀρθογώνιον μετὰ it straight-on. I say that the rectangle contained by AD τοῦἀπὸτῆςγτετραγώνουἴσονἐστὶτῷἀπὸτῆςγδτε- and DB, plus the square on CB, is equal to the square τραγώνῳ. on CD. ἈναγεγράφθωγὰρἀπὸτῆςΓΔτετράγωνοντὸΓΔ, For let the square CEFD have been described on καὶἐπεζεύχθωἡδ,καὶδιὰμὲντοῦσημείουὁποτέρᾳ CD [Prop. 1.46], and let DE have been joined, and τῶνγ,δπαράλληλοςἤχθωἡη,διὰδὲτοῦθσημείου let BG have been drawn through point B, parallel to ὁποτέρᾳτῶνα,παράλληλοςἤχθωἡκμ,καὶἔτιδιὰ either of EC or DF [Prop. 1.31], and let KM have τοῦαὁποτέρᾳτῶνγλ,δμπαράλληλοςἤχθωἡακ. been drawn through point H, parallel to either of AB πεὶοὖνἴσηἐστὶνἡαγτῇγ,ἴσονἐστὶκαὶτὸαλ or EF [Prop. 1.31], and finally let AK have been drawn 55

τῷ ΓΘ. ἀλλὰ τὸ ΓΘ τῷ Θ ἴσον ἐστίν. καὶ τὸ ΑΛ ἄρα τῷ through A, parallel to either of CL or DM [Prop. 1.31]. Θ ἐστιν ἴσον. κοινὸν προσκείσθω τὸ ΓΜ ὅλον ἄρα τὸ Therefore, since AC is equal to CB, (rectangle) AL is ΑΜτῷΝΞΟγνώμονίἐστινἴσον.ἀλλὰτὸΑΜἐστιτὸὑπὸ also equal to (rectangle) CH [Prop. 1.36]. But, (rectanτῶναδ,δ ἴσηγάρἐστινἡδμτῇδ καὶὁνξοἄρα gle) CH is equal to (rectangle) HF [Prop. 1.43]. Thus, γνώμωνἴσοςἐστὶτῷὑπὸτῶναδ,δ[περιεχομένῳὀρθο- (rectangle) AL is also equal to (rectangle) HF. Let (rectγωνίῳ]. κοινὸνπροσκείσθωτὸλη,ὅἐστινἴσοντῷἀπὸ angle) CM have been added to both. Thus, the whole τῆςγτετραγώνῳ τὸἄραὑπὸτῶναδ,δπεριεχόμενον (rectangle) AM is equal to the gnomon NOP. But, AM ὀρθογώνιονμετὰτοῦἀπὸτῆςγτετραγώνουἴσονἐστὶ is the (rectangle contained) by AD and DB. For DM is τῷνξογνώμονικαὶτῷλη.ἀλλὰὁνξογνώμωνκαὶ equal to DB. Thus, gnomon NOP is also equal to the τὸληὅλονἐστὶτὸγδτετράγωνον,ὅἐστινἀπὸτῆς [rectangle contained] by AD and DB. Let LG, which ΓΔ τὸἄραὑπὸτῶναδ,δπεριεχόμενονὀρθογώνιον is equal to the square on BC, have been added to both. μετὰτοῦἀπὸτῆςγτετραγώνουἴσονἐστὶτῷἀπὸτῆςγδ Thus, the rectangle contained by AD and DB, plus the τετραγώνῳ. square on CB, is equal to the gnomon NOP and the ὰν ἄρα εὐθεῖα γραμμὴ τμηθῇ δίχα, προστεθῇ δέ τις (square) LG. But the gnomon N OP and the (square) αὐτῇ εὐθεῖα ἐπ εὐθείας, τὸ ὑπὸ τῆς ὅλης σὺν τῇ προ- LG is (equivalent to) the whole square CEFD, which is σκειμένῃ καὶ τῆς προσκειμένης περιεχόμενον ὀρθόγώνιον on CD. Thus, the rectangle contained by AD and DB, μετὰτοῦἀπὸτῆςἡμισείαςτετραγώνουἴσονἐστὶτῷἀπὸ plus the square on CB, is equal to the square on CD. τῆς συγκειμένης ἔκ τε τῆς ἡμισείας καὶ τῆς προσκειμένης Thus, if a straight-line is cut in half, and any straightτετραγώνῳ ὅπερ ἔδει δεῖξαι. line added to it straight-on, then the rectangle contained by the whole (straight-line) with the (straight-line) having being added, and the (straight-line) having being added, plus the square on half (of the original straightline), is equal to the square on the sum of half (of the original straight-line) and the (straight-line) having been added. (Which is) the very thing it was required to show. This proposition is a geometric version of the algebraic identity: (2 a + b) b + a 2 = (a + b) 2. Þ. Proposition 7 ὰνεὐθεῖαγραμμὴτμηθῇ,ὡςἔτυχεν,τὸἀπὸτῆςὅλης If a straight-line is cut at random then the sum of καὶ τὸ ἀφ ἑνὸς τῶν τμημάτων τὰ συναμφότερα τετράγωνα the squares on the whole (straight-line), and one of the ἴσαἐστὶτῷτεδὶςὑπὸτῆςὅληςκαὶτοῦεἰρημένουτμήματος pieces (of the straight-line), is equal to twice the rectanπεριεχομένῳ ὀρθογωνίῳ καὶ τῷ ἀπὸ τοῦ λοιποῦ τμήματος gle contained by the whole, and the said piece, and the τετραγώνῳ. square on the remaining piece. Α Γ A C B Λ L Θ Κ Μ Η H K M G F Ν D N E ὐθεῖαγάρτιςἡΑτετμήσθω,ὡςἔτυχεν,κατὰτὸΓ For let any straight-line AB have been cut, at random, σημεῖον λέγω,ὅτιτὰἀπὸτῶνα,γτετράγωναἴσαἐστὶ at point C. I say that the (sum of the) squares on AB and τῷτεδὶςὑπὸτῶνα,γπεριεχομένῳὀρθογωνίῳκαὶτῷ BC is equal to twice the rectangle contained by AB and 56

ἀπὸτῆςγατετραγώνῳ. BC, and the square on CA. Ἀναγεγράφθω γὰρ ἀπὸ τῆς Α τετράγωνον τὸ ΑΔ For let the square ADEB have been described on AB καὶ καταγεγράφθω τὸ σχῆμα. [Prop. 1.46], and let the (rest of) the figure have been πεὶ οὖν ἴσον ἐστὶ τὸ ΑΗ τῷ Η, κοινὸν προσκείσθω drawn. τὸγ ὅλονἄρατὸαὅλῳτῷγἴσονἐστίν τὰἄρα Therefore, since (rectangle) AG is equal to (rectan- Α,ΓδιπλάσιάἐστιτοῦΑ.ἀλλὰτὰΑ,ΓὁΚΛΜ gle) GE [Prop. 1.43], let the (square) CF have been ἐστιγνώμωνκαὶτὸγτετράγωνον ὁκλμἄραγνώμων added to both. Thus, the whole (rectangle) AF is equal καὶτὸγδιπλάσιάἐστιτοῦα.ἔστιδὲτοῦαδιπλάσιον to the whole (rectangle) CE. Thus, (rectangle) AF plus καὶτὸδὶςὑπὸτῶνα,γ ἴσηγὰρἡτῇγ ὁἄρα (rectangle) CE is double (rectangle) AF. But, (rectan- ΚΛΜγνώμωνκαὶτὸΓτετράγωνονἴσονἐστὶτῷδὶςὑπὸ gle) AF plus (rectangle) CE is the gnomon KLM, and τῶνα,γ.κοινὸνπροσκείσθωτὸδη,ὅἐστινἀπὸτῆς the square CF. Thus, the gnomon KLM, and the square ΑΓ τετράγωνον ὁ ἄρα ΚΛΜ γνώμων καὶ τὰ Η, ΗΔ CF, is double the (rectangle) AF. But double the (rectτετράγωνα ἴσα ἐστὶ τῷ τε δὶς ὑπὸ τῶν Α, Γ περιεχομένῳ angle) AF is also twice the (rectangle contained) by AB ὀρθογωνίῳκαὶτῷἀπὸτῆςαγτετραγώνῳ. ἀλλὰὁκλμ and BC. For BF (is) equal to BC. Thus, the gnomon γνώμωνκαὶτὰη,ηδτετράγωναὅλονἐστὶτὸαδκαὶ KLM, and the square CF, are equal to twice the (rectτὸγ,ἅἐστινἀπὸτῶνα,γτετράγωνα τὰἄραἀπὸτῶν angle contained) by AB and BC. Let DG, which is Α,Γτετράγωναἴσαἐστὶτῷ[τε]δὶςὑπὸτῶνΑ,Γ the square on AC, have been added to both. Thus, the περιεχομένῳ ὀρθογωνίῳ μετὰ τοῦ ἀπὸ τῆς ΑΓ τετραγώνου. gnomon KLM, and the squares BG and GD, are equal ὰν ἄρα εὐθεῖα γραμμὴ τμηθῇ, ὡς ἔτυχεν, τὸ ἀπὸ to twice the rectangle contained by AB and BC, and the τῆςὅληςκαὶτὸἀφ ἑνὸςτῶντμημάτωντὰσυναμφότερα square on AC. But, the gnomon KLM and the squares τετράγωνα ἴσα ἐστὶ τῷ τε δὶς ὑπὸ τῆς ὅλης καὶ τοῦ BG and GD is (equivalent to) the whole of ADEB and εἰρημένου τμήματος περιεχομένῳ ὀρθογωνίῳ καὶ τῷ ἀπὸ CF, which are the squares on AB and BC (respectively). τοῦλοιποῦτμήματοςτετραγώνῳ ὅπερἔδειδεῖξαι. Thus, the (sum of the) squares on AB and BC is equal to twice the rectangle contained by AB and BC, and the square on AC. Thus, if a straight-line is cut at random then the sum of the squares on the whole (straight-line), and one of the pieces (of the straight-line), is equal to twice the rectangle contained by the whole, and the said piece, and the square on the remaining piece. (Which is) the very thing it was required to show. This proposition is a geometric version of the algebraic identity: (a + b) 2 + a 2 = 2(a + b) a + b 2.. Proposition 8 ὰνεὐθεῖαγραμμὴτμηθῇ,ὡςἔτυχεν,τὸτετράκιςὑπὸ If a straight-line is cut at random then four times the τῆς ὅλης καὶ ἑνὸς τῶν τμημάτων περιεχόμενον ὀρθογώνιον rectangle contained by the whole (straight-line), and one μετὰ τοῦ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνου ἴσον ἐστὶ of the pieces (of the straight-line), plus the square on the τῷἀπότετῆςὅληςκαὶτοῦεἰρημένουτμήματοςὡςἀπὸ remaining piece, is equal to the square described on the μιᾶς ἀναγραφέντι τετραγώνῳ. whole and the former piece, as on one (complete straight- ὐθεῖαγάρτιςἡΑτετμήσθω,ὡςἔτυχεν,κατὰτὸ line). Γσημεῖον λέγω, ὅτιτὸτετράκιςὑπὸτῶνα,γπε- For let any straight-line AB have been cut, at random, ριεχόμενον ὀρθογώνιον μετὰ τοῦ ἀπὸ τῆς ΑΓ τετραγώνου at point C. I say that four times the rectangle contained ἴσονἐστὶτῷἀπὸτῆςα,γὡςἀπὸμιᾶςἀναγραφέντι by AB and BC, plus the square on AC, is equal to the τετραγώνῳ. square described on AB and BC, as on one (complete κβεβλήσθω γὰρ ἐπ εὐθείας[τῇ Α εὐθεῖα] ἡ Δ, straight-line). καὶκείσθωτῇγἴσηἡδ,καὶἀναγεγράφθωἀπὸτῆς For let BD have been produced in a straight-line ΑΔ τετράγωνον τὸ ΑΔ, καὶ καταγεγράφθω διπλοῦν τὸ [with the straight-line AB], and let BD be made equal σχῆμα. to CB [Prop. 1.3], and let the square AEFD have been described on AD [Prop. 1.46], and let the (rest of the) figure have been drawn double. 57

Α Γ A C B D Μ Η Τ Κ Ν M G T K N Ξ Σ Υ Π Ρ Ο O S U Q R P Θ Λ E H L F πεὶοὖνἴσηἐστὶνἡγτῇδ,ἀλλὰἡμὲνγτῇηκ Therefore, since CB is equal to BD, but CB is equal ἐστινἴση,ἡδὲδτῇκν,καὶἡηκἄρατῇκνἐστινἴση. to GK [Prop. 1.34], and BD to KN [Prop. 1.34], GK is διὰτὰαὐτὰδὴκαὶἡπρτῇροἐστινἴση.καὶἐπεὶἴσηἐστὶν thus also equal to KN. So, for the same (reasons), QR is ἡγτῂδ,ἡδὲηκτῇκν,ἴσονἄραἐστὶκαὶτὸμὲν equal to RP. And since BC is equal to BD, and GK to ΓΚτῷΚΔ,τὸδὲΗΡτῷΡΝ.ἀλλὰτὸΓΚτῷΡΝἐστιν KN, (square) CK is thus also equal to (square) KD, and ἴσον παραπληρώματα γὰρ τοῦ ΓΟ παραλληλογράμμου καὶ (square) GR to (square) RN [Prop. 1.36]. But, (square) τὸκδἄρατῷηρἴσονἐστίν τὰτέσσαραἄρατὰδκ,γκ, CK is equal to (square) RN. For (they are) comple- ΗΡ, ΡΝ ἴσα ἀλλήλοις ἐστίν. τὰ τέσσαρα ἄρα τετραπλάσιά ments in the parallelogram CP [Prop. 1.43]. Thus, ἐστιτοῦγκ.πάλινἐπεὶἴσηἐστὶνἡγτῇδ,ἀλλὰἡμὲν (square) KD is also equal to (square) GR. Thus, the ΔτῇΚ,τουτέστιτῇΓΗἴση,ἡδὲΓτῇΗΚ,τουτέστι four (squares) DK, CK, GR, and RN are equal to one τῇηπ,ἐστινἴση,καὶἡγηἄρατῇηπἴσηἐστίν.καὶἐπεὶ another. Thus, the four (taken together) are quadruple ἴσηἐστὶνἡμὲνγητῇηπ,ἡδὲπρτῇρο,ἴσονἐστὶκαὶτὸ (square) CK. Again, since CB is equal to BD, but BD μὲναητῷμπ,τὸδὲπλτῷρ.ἀλλὰτὸμπτῷπλἐστιν (is) equal to BK that is to say, CG and CB is equal ἴσον παραπληρώματα γὰρ τοῦ ΜΛ παραλληλογράμμου καὶ to GK that is to say, GQ CG is thus also equal to GQ. τὸαηἄρατῷρἴσονἐστίν τὰτέσσαραἄρατὰαη,μπ, And since CG is equal to GQ, and QR to RP, (rectan- ΠΛ, Ρ ἴσα ἀλλήλοις ἐστίν τὰ τέσσαρα ἄρα τοῦ ΑΗ ἐστι gle) AG is also equal to (rectangle) M Q, and (rectangle) τετραπλάσια.ἐδείχθηδὲκαὶτὰτέσσαρατὰγκ,κδ,ηρ, QL to (rectangle) RF [Prop. 1.36]. But, (rectangle) MQ ΡΝτοῦΓΚτετραπλάσια τὰἄραὀκτώ,ἃπεριέχειτὸνστυ is equal to (rectangle) QL. For (they are) complements γνώμονα, τετραπλάσιά ἐστι τοῦ ΑΚ. καὶ ἐπεὶ τὸ ΑΚ τὸ ὑπὸ in the parallelogram M L [Prop. 1.43]. Thus, (rectangle) τῶν Α, Δ ἐστιν ἴση γὰρ ἡ Κ τῇ Δ τὸ ἄρα τετράκις AG is also equal to (rectangle) RF. Thus, the four (rect- ὑπὸτῶνα,δτετραπλάσιόνἐστιτοῦακ.ἐδείχθηδὲ angles) AG, MQ, QL, and RF are equal to one another. τοῦ ΑΚ τετραπλάσιος καὶ ὁ ΣΤΥ γνώμων τὸ ἄρα τετράκις Thus, the four (taken together) are quadruple (rectan- ὑπὸτῶνα,δἴσονἐστὶτῷστυγνώμονι.κοινὸνπρο- gle) AG. And it was also shown that the four (squares) σκείσθωτὸξθ,ὅἐστινἴσοντῷἀπὸτῆςαγτετραγώνῳ τὸ CK, KD, GR, and RN (taken together are) quadruple ἄρα τετράκις ὑπὸ τῶν Α, Δ περιεχόμενον ὀρθογώνιον (square) CK. Thus, the eight (figures taken together), μετὰτοῦἀπὸαγτετραγώνουἴσονἐστὶτῷστυγνώμονι which comprise the gnomon STU, are quadruple (rectκαὶτῷξθ.ἀλλὰὁστυγνώμωνκαὶτὸξθὅλονἐστὶτὸ angle) AK. And since AK is the (rectangle contained) ΑΔτετράγωνον,ὅἐστινἀπὸτῆςΑΔ τὸἄρατετράκις by AB and BD, for BK (is) equal to BD, four times the ὑπὸ τῶν Α, Δ μετὰ τοῦ ἀπὸ ΑΓ ἴσον ἐστὶ τῷ ἀπὸ ΑΔ (rectangle contained) by AB and BD is quadruple (rectτετραγώνῳ ἴσηδὲἡδτῇγ.τὸἄρατετράκιςὑπὸτῶν angle) AK. But the gnomon STU was also shown (to Α, Γ περιεχόμενον ὀρθογώνιον μετὰ τοῦ ἀπὸ ΑΓ τε- be equal to) quadruple (rectangle) AK. Thus, four times τραγώνουἴσονἐστὶτῷἀπὸτῆςαδ,τουτέστιτῷἀπὸτῆς the (rectangle contained) by AB and BD is equal to the ΑκαὶΓὡςἀπὸμιᾶςἀναγραφέντιτετραγώνῳ. gnomon STU. Let OH, which is equal to the square on ὰν ἄρα εὐθεῖα γραμμὴ τμηθῇ, ὡς ἔτυχεν, τὸ τετράκις AC, have been added to both. Thus, four times the rect- ὑπὸ τῆς ὅλης καὶ ἑνὸς τῶν τμημάτων περιεχόμενον ὀρθογώ- angle contained by AB and BD, plus the square on AC, νιον μετὰ τοῦ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνου ἴσου is equal to the gnomon ST U, and the (square) OH. But, 58

ἐστὶτῷἀπότετῆςὅληςκαὶτοῦεἰρημένουτμήματοςὡς the gnomon STU and the (square) OH is (equivalent to) ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ ὅπερ ἔδει δεῖξαι. the whole square AEF D, which is on AD. Thus, four times the (rectangle contained) by AB and BD, plus the (square) on AC, is equal to the square on AD. And BD (is) equal to BC. Thus, four times the rectangle contained by AB and BC, plus the square on AC, is equal to the (square) on AD, that is to say the square described on AB and BC, as on one (complete straight-line). Thus, if a straight-line is cut at random then four times the rectangle contained by the whole (straight-line), and one of the pieces (of the straight-line), plus the square on the remaining piece, is equal to the square described on the whole and the former piece, as on one (complete straight-line). (Which is) the very thing it was required to show. This proposition is a geometric version of the algebraic identity: 4(a + b) a + b 2 = [(a + b) + a] 2.. Proposition 9 ὰνεὐθεῖαγραμμὴτμηθῇεἰςἴσακαὶἄνισα, τὰἀπὸ If a straight-line is cut into equal and unequal (pieces) τῶν ἀνίσων τῆς ὅλης τμημάτων τετράγωνα διπλάσιά ἐστι then the (sum of the) squares on the unequal pieces of the τοῦτεἀπὸτῆςἡμισείαςκαὶτοῦἀπὸτῆςμεταξὺτῶντομῶν whole (straight-line) is double the (sum of the) square τετραγώνου. on half (the straight-line) and (the square) on the (difference) between the (equal and unequal) pieces. E Η G F Α Γ A C D B ὐθεῖαγάρτιςἡΑτετμήσθωεἰςμὲνἴσακατὰτὸ For let any straight-line AB have been cut equally at Γ,εἱςδὲἄνισακατὰτὸΔ λέγω,ὅτιτὰἀπὸτῶναδ,δ C, and unequally at D. I say that the (sum of the) squares τετράγωναδιπλάσιάἐστιτῶνἀπὸτῶναγ,γδτετραγώνων. on AD and DB is double the (sum of the squares) on AC ΗχθωγὰρἀπὸτοῦΓτῇΑπρὸςὀρθὰςἡΓ,καὶ and CD. κείσθω ἴση ἑκατέρᾳ τῶν ΑΓ, Γ, καὶ ἐπεζεύχθωσαν αἱ Α, For let CE have been drawn from (point) C, at right-,καὶδιὰμὲντοῦδτῇγπαράλληλοςἤχθωἡδ,διὰ angles to AB [Prop. 1.11], and let it be made equal to δὲτοῦτῇαἡη,καὶἐπεζεύχθωἡα.καὶἐπεὶἴση each of AC and CB [Prop. 1.3], and let EA and EB ἐστὶνἡαγτῇγ,ἴσηἐστὶκαὶἡὑπὸαγγωνίατῇὑπὸ have been joined. And let DF have been drawn through ΑΓ.καὶἐπεὶὀρθήἐστινἡπρὸςτῷΓ,λοιπαὶἄρααἱὑπὸ (point) D, parallel to EC [Prop. 1.31], and (let) FG ΑΓ,ΑΓμιᾷὀρθῇἴσαιεἰσίν καίεἰσινἴσαι ἡμίσειαἄρα (have been drawn) through (point) F, (parallel) to AB ὀρθῆςἐστινἑκατέρατῶνὑπὸγα,γα.δὶατὰαὐτὰδὴ [Prop. 1.31]. And let AF have been joined. And since καὶἑκατέρατῶνὑπὸγ,γἡμίσειάἐστινὀρθῆς ὅλη AC is equal to CE, the angle EAC is also equal to the ἄραἡὑπὸαὀρθήἐστιν. καὶἐπεὶἡὑπὸηἡμίσειά (angle) AEC [Prop. 1.5]. And since the (angle) at C is ἐστινὀρθῆς,ὀρθὴδὲἡὑπὸη ἴσηγάρἐστιτῇἐντὸςκαὶ a right-angle, the (sum of the) remaining angles (of tri- ἀπεναντίοντῇὑπὸγ λοιπὴἄραἡὑπὸηἡμίσειάἐστιν angle AEC), EAC and AEC, is thus equal to one right- 59

ὀρθῆς ἴση ἄρα[ἐστὶν] ἡ ὑπὸ Η γωνία τῇ ὑπὸ Η ὥστε angle [Prop. 1.32]. And they are equal. Thus, (angles) καὶπλευρὰἡητῇηἐστινἴση.πάλινἐπεὶἡπρὸςτῷ CEA and CAE are each half a right-angle. So, for the γωνίαἡμίσειάἐστινὀρθῆς,ὀρθὴδὲἡὑπὸδ ἴσηγὰρ same (reasons), (angles) CEB and EBC are also each πάλινἐστὶτῇἐντὸςκαὶἀπεναντίοντῇὑπὸγ λοιπὴἄρα half a right-angle. Thus, the whole (angle) AEB is a ἡὑπὸδἡμίσειάἐστινὀρθῆς ἴσηἄραἡπρὸςτῷγωνία right-angle. And since GEF is half a right-angle, and τῇὑπὸδ ὥστεκαὶπλευρὰἡδπλευρᾷτῇδἐστιν EGF (is) a right-angle for it is equal to the internal and ἴση. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΓ τῇ Γ, ἴσον ἐστὶ καὶ τὸ ἀπὸ ΑΓ opposite (angle) ECB [Prop. 1.29] the remaining (anτῷἀπὸγ τὰἄραἀπὸτῶναγ,γτετράγωναδιπλάσιά gle) EFG is thus half a right-angle [Prop. 1.32]. Thus, ἐστιτοῦἀπὸαγ.τοῖςδὲἀπὸτῶναγ,γἴσονἐστὶτὸἀπὸ angle GEF [is] equal to EFG. So the side EG is also τῆςατετράγωνον ὀρθὴγὰρἡὑπὸαγγωνία τὸἄρα equal to the (side) GF [Prop. 1.6]. Again, since the an- ἀπὸτῆςαδιπλάσιόνἐστιτοῦἀπὸτῆςαγ.πάλιν,ἐπεὶἴση gle at B is half a right-angle, and (angle) FDB (is) a ἐστὶνἡητῇη,ἴσονκαὶτὸἀπὸτῆςητῷἀπὸτῆςη right-angle for again it is equal to the internal and opτὰ ἄρα ἀπὸ τῶν Η, Η τετράγωνα διπλάσιά ἐστι τοῦ ἀπὸ posite (angle) ECB [Prop. 1.29] the remaining (angle) τῆςητετραγώνου.τοῖςδὲἀπὸτῶνη,ητετραγώνοις BFD is half a right-angle [Prop. 1.32]. Thus, the angle at ἴσον ἐστὶ τὸ ἀπὸ τῆς τετράγωνον τὸ ἄρα ἀπὸ τῆς B (is) equal to DF B. So the side F D is also equal to the τετράγωνονδιπλάσιόνἐστιτοῦἀπὸτῆςη.ἴσηδὲἡη side DB [Prop. 1.6]. And since AC is equal to CE, the τῇγδ τὸἄραἀπὸτῆςδιπλάσιόνἐστιτοῦἀπὸτῆςγδ. (square) on AC (is) also equal to the (square) on CE. ἔστιδὲκαὶτὸἀπὸτῆςαδιπλάσιοντοῦἀπὸτῆςαγ τὰ Thus, the (sum of the) squares on AC and CE is dou- ἄραἀπὸτῶνα,τετράγωναδιπλάσιάἐστιτῶνἀπὸτῶν ble the (square) on AC. And the square on EA is equal ΑΓ,ΓΔτετραγώνων. τοῖςδὲἀπὸτῶνα,ἴσονἐστὶ to the (sum of the) squares on AC and CE. For angle τὸἀπὸτῆςατετράγωνον ὀρθὴγάρἐστινἡὑπὸα ACE (is) a right-angle [Prop. 1.47]. Thus, the (square) γωνία τὸἄραἀπὸτῆςατετράγωνονδιπλάσιόνἐστιτῶν on EA is double the (square) on AC. Again, since EG ἀπὸτῶναγ,γδ.τῷδὲἀπὸτῆςαἴσατὰἀπὸτῶναδ, is equal to GF, the (square) on EG (is) also equal to Δ ὀρθὴγὰρἡπρὸςτῷδγωνία τὰἄραἀπὸτῶναδ,δ the (square) on GF. Thus, the (sum of the squares) on διπλάσιά ἐστι τῶν ἀπὸ τῶν ΑΓ, ΓΔ τετραγώνων. ἴση δὲ ἡ EG and GF is double the square on GF. And the square ΔτῇΔ τὰἄραἀπὸτῶναδ,δτετράγωναδιπλάσιά on EF is equal to the (sum of the) squares on EG and ἐστιτῶνἀπὸτῶναγ,γδτετράγώνων. GF [Prop. 1.47]. Thus, the square on EF is double the ὰνἄραεὐθεῖαγραμμὴτμηθῇεἰςἴσακαὶἄνισα,τὰἀπὸ (square) on GF. And GF (is) equal to CD [Prop. 1.34]. τῶνἀνίσωντῆςὅληςτμημάτωντετράγωναδιπλάσιάἐστι Thus, the (square) on EF is double the (square) on CD. τοῦτεἀπὸτῆςἡμισείαςκαὶτοῦἀπὸτῆςμεταξὺτῶντομῶν And the (square) on EA is also double the (square) on τετραγώνου ὅπερἔδειδεῖξαι. AC. Thus, the (sum of the) squares on AE and EF is double the (sum of the) squares on AC and CD. And the square on AF is equal to the (sum of the squares) on AE and EF. For the angle AEF is a right-angle [Prop. 1.47]. Thus, the square on AF is double the (sum of the squares) on AC and CD. And the (sum of the squares) on AD and DF (is) equal to the (square) on AF. For the angle at D is a right-angle [Prop. 1.47]. Thus, the (sum of the squares) on AD and DF is double the (sum of the) squares on AC and CD. And DF (is) equal to DB. Thus, the (sum of the) squares on AD and DB is double the (sum of the) squares on AC and CD. Thus, if a straight-line is cut into equal and unequal (pieces) then the (sum of the) squares on the unequal pieces of the whole (straight-line) is double the (sum of the) square on half (the straight-line) and (the square) on the (difference) between the (equal and unequal) pieces. (Which is) the very thing it was required to show. This proposition is a geometric version of the algebraic identity: a 2 + b 2 = 2[([a + b]/2) 2 + ([a + b]/2 b) 2 ]. 60

. Proposition 10 ὰν εὐθεῖα γραμμὴ τμηθῇ δίχα, προστεθῇ δέ τις αὐτῇ If a straight-line is cut in half, and any straight-line εὐθεῖαἐπ εὐθείας,τὸἀπὸτῆςὅληςσὺντῇπροσκειμένῃ added to it straight-on, then the sum of the square on καὶ τὸ ἀπὸ τῆς προσκειμένης τὰ συναμφότερα τετράγωνα the whole (straight-line) with the (straight-line) having διπλάσιάἐστιτοῦτεἀπὸτῆςἡμισείαςκαὶτοῦἀπὸτῆςσυγ- been added, and the (square) on the (straight-line) havκειμένηςἔκτετῆςἡμισείαςκαὶτῆςπροσκειμένηςὡςἀπὸ ing been added, is double the (sum of the square) on half μιᾶς ἀναγραφέντος τετραγώνου. (the straight-line), and the square described on the sum of half (the straight-line) and (straight-line) having been added, as on one (complete straight-line). E F Α Γ A C B D Η ὐθεῖαγάρτιςἡΑτετμήσθωδίχακατὰτὸΓ,προ- For let any straight-line AB have been cut in half at σκείσθω δέ τις αὐτῇ εὐθεῖα ἐπ εὐθείας ἡ Δ λέγω, ὅτι τὰ (point) C, and let any straight-line BD have been added ἀπὸτῶναδ,δτετράγωναδιπλάσιάἐστιτῶνἀπὸτῶν to it straight-on. I say that the (sum of the) squares on ΑΓ,ΓΔτετραγώνων. AD and DB is double the (sum of the) squares on AC ΗχθωγὰρἀπὸτοῦΓσημείουτῇΑπρὸςὀρθὰςἡΓ, and CD. καὶκείσθωἴσηἑκατέρᾳτῶναγ,γ,καὶἐπεζεύχθωσαν For let CE have been drawn from point C, at rightαἱα, καὶδιὰμὲντοῦτῇαδπαράλληλοςἤχθωἡ angles to AB [Prop. 1.11], and let it be made equal to,διὰδὲτοῦδτῇγπαράλληλοςἤχθωἡδ.καὶἐπεὶ each of AC and CB [Prop. 1.3], and let EA and EB have εἰς παραλλήλους εὐθείας τὰς Γ, Δ εὐθεῖά τις ἐνέπεσεν been joined. And let EF have been drawn through E, ἡ,αἱὑπὸγ,δἄραδυσὶνὀρθαῖςἴσαιεἰσίν αἱ parallel to AD [Prop. 1.31], and let FD have been drawn ἄρα ὑπὸ, Δ δύο ὀρθῶν ἐλάσσονές εἰσιν αἱ δὲ through D, parallel to CE [Prop. 1.31]. And since some ἀπ ἐλασσόνων ἢ δύο ὀρθῶν ἐκβαλλόμεναι συμπίπτουσιν straight-line EF falls across the parallel straight-lines EC αἱ ἄρα, Δ ἐκβαλλόμεναι ἐπὶ τὰ, Δ μέρη συμ- and FD, the (internal angles) CEF and EFD are thus πεσοῦνται. ἐκβεβλήσθωσαν καὶ συμπιπτέτωσαν κατὰ τὸ Η, equal to two right-angles [Prop. 1.29]. Thus, F EB and καὶ ἐπεζεύχθω ἡ ΑΗ. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΓ τῇ Γ, ἴση EF D are less than two right-angles. And (straight-lines) ἐστὶκαὶγωνίαἡὑπὸαγτῇὑπὸαγ καὶὀρθὴἡπρὸςτῷ produced from (internal angles whose sum is) less than Γ ἡμίσεια ἄρα ὀρθῆς[ἐστιν] ἑκατέρα τῶν ὑπὸ ΑΓ, ΑΓ. two right-angles meet together [Post. 5]. Thus, being proδιὰτὰαὐτὰδὴκαὶἑκατέρατῶνὑπὸγ,γἡμίσειάἐστιν duced in the direction of B and D, the (straight-lines) ὀρθῆς ὀρθὴἄραἐστὶνἡὑπὸα.καὶἐπεὶἡμίσειαὀρθῆς EB and FD will meet. Let them have been produced, ἐστινἡὑπὸγ,ἡμίσειαἄραὀρθῆςκαὶἡὑπὸδη.ἔστι and let them meet together at G, and let AG have been δὲκαὶἡὑπὸδηὀρθή ἴσηγάρἐστιτῇὑπὸδγ ἐναλλὰξ joined. And since AC is equal to CE, angle EAC is also γάρ λοιπὴἅραἡὑπὸδηἡμίσειάἐστινὀρθῆς ἡἄραὑπὸ equal to (angle) AEC [Prop. 1.5]. And the (angle) at ΔΗτῇὑπὸΔΗἐστινἴση ὥστεκαὶπλευρὰἡδπλευρᾷ C (is) a right-angle. Thus, EAC and AEC [are] each τῇηδἐστινἴση. πάλιν, ἐπεὶἡὑπὸηἡμίσειάἐστιν half a right-angle [Prop. 1.32]. So, for the same (rea- ὀρθῆς,ὀρθὴδὲἡπρὸςτῷ ἴσηγάρἐστιτῇἀπεναντίοντῇ sons), CEB and EBC are also each half a right-angle. πρὸςτῷγ λοιπὴἄραἡὑπὸηἡμίσειάἐστινὀρθῆς ἴση Thus, (angle) AEB is a right-angle. And since EBC ἄραἡὑπὸηγωνίατῇὑπὸη ὥστεκαὶπλευρὰἡη is half a right-angle, DBG (is) thus also half a rightπλευρᾷτῇἐστινἴση. καὶἐπεὶ[ἴσηἐστὶνἡγτῇγα], angle [Prop. 1.15]. And BDG is also a right-angle. For ἴσονἐστὶ[καὶ]τὸἀπὸτῆςγτετράγωνοντῷἀπὸτῆςγα it is equal to DCE. For (they are) alternate (angles) G 61

τετραγώνῳ τὰ ἄρα ἀπὸ τῶν Γ, ΓΑ τετράγωνα διπλάσιά [Prop. 1.29]. Thus, the remaining (angle) DGB is half ἐστιτοῦἀπὸτῆςγατετραγώνου.τοῖςδὲἀπὸτῶνγ,γα a right-angle. Thus, DGB is equal to DBG. So side BD ἴσονἐστὶτὸἀπὸτῆςα τὸἄραἀπὸτῆςατετράγωνον is also equal to side GD [Prop. 1.6]. Again, since EGF is διπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΑΓ τετραγώνου. πάλιν, ἐπεὶ ἴση half a right-angle, and the (angle) at F (is) a right-angle, ἐστὶνἡητῇ,ἴσονἐστὶκαὶτὸἀπὸτῆςητῷἀπὸτῆς for it is equal to the opposite (angle) at C [Prop. 1.34], τὰἄραἀπὸτῶνη,διπλάσιάἐστιτοῦἀπὸτῆς. the remaining (angle) FEG is thus half a right-angle. τοῖςδὲἀπὸτῶνη,ἴσονἐστὶτὸἀπὸτῆςη τὸἄρα Thus, angle EGF (is) equal to FEG. So the side GF ἀπὸτῆςηδιπλάσιόνἐστιτοῦἀπὸτῆς.ἴσηδὲἡτῇ is also equal to the side EF [Prop. 1.6]. And since [EC ΓΔ τὸἄραἀπὸτῆςητετράγωνονδιπλάσιόνἐστιτοῦἀπὸ is equal to CA] the square on EC is [also] equal to the τῆςγδ.ἐδείχθηδὲκαὶτὸἀπὸτῆςαδιπλάσιοντοῦἀπὸ square on CA. Thus, the (sum of the) squares on EC τῆςαγ τὰἄραἀπὸτῶνα,ητετράγωναδιπλάσιάἐστι and CA is double the square on CA. And the (square) τῶνἀπὸτῶναγ,γδτετραγώνων. τοῖςδὲἀπὸτῶνα, on EA is equal to the (sum of the squares) on EC and Η τετραγώνοις ἴσον ἐστὶ τὸ ἀπὸ τῆς ΑΗ τετράγωνον τὸ CA [Prop. 1.47]. Thus, the square on EA is double the ἄραἀπὸτῆςαηδιπλάσιόνἐστιτῶνἀπὸτῶναγ,γδ.τῷ square on AC. Again, since FG is equal to EF, the δὲἀπὸτῆςαηἴσαἐστὶτὰἀπὸτῶναδ,δη τὰἄραἀπὸ (square) on FG is also equal to the (square) on FE. τῶναδ,δη[τετράγωνα]διπλάσιάἐστιτῶνἀπὸτῶναγ, Thus, the (sum of the squares) on GF and FE is dou- ΓΔ[τετραγώνων]. ἴσηδὲἡδητῇδ τὰἄραἀπὸτῶν ble the (square) on EF. And the (square) on EG is equal ΑΔ,Δ[τετράγωνα]διπλάσιάἐστιτῶνἀπὸτῶνΑΓ,ΓΔ to the (sum of the squares) on GF and FE [Prop. 1.47]. τετραγώνων. Thus, the (square) on EG is double the (square) on EF. ὰν ἄρα εὐθεῖα γραμμὴ τμηθῇ δίχα, προστεθῇ δέ τις And EF (is) equal to CD [Prop. 1.34]. Thus, the square αὐτῇ εὐθεῖα ἐπ εὐθείας, τὸ ἀπὸ τῆς ὅλης σὺν τῇ προ- on EG is double the (square) on CD. But it was also σκειμένῃ καὶ τὸ ἀπὸ τῆς προσκειμένης τὰ συναμφότερα shown that the (square) on EA (is) double the (square) τετράγωνα διπλάσιά ἐστι τοῦ τε ἀπὸ τῆς ἡμισείας καὶ τοῦ on AC. Thus, the (sum of the) squares on AE and EG is ἀπὸ τῆς συγκειμένης ἔκ τε τῆς ἡμισείας καὶ τῆς προ- double the (sum of the) squares on AC and CD. And the σκειμένης ὡς ἀπὸ μιᾶς ἀναγραφέντος τετραγώνου ὅπερ square on AG is equal to the (sum of the) squares on AE ἔδει δεῖξαι. and EG [Prop. 1.47]. Thus, the (square) on AG is double the (sum of the squares) on AC and CD. And the (sum of the squares) on AD and DG is equal to the (square) on AG [Prop. 1.47]. Thus, the (sum of the) [squares] on AD and DG is double the (sum of the) [squares] on AC and CD. And DG (is) equal to DB. Thus, the (sum of the) [squares] on AD and DB is double the (sum of the) squares on AC and CD. Thus, if a straight-line is cut in half, and any straightline added to it straight-on, then the sum of the square on the whole (straight-line) with the (straight-line) having been added, and the (square) on the (straight-line) having been added, is double the (sum of the square) on half (the straight-line), and the square described on the sum of half (the straight-line) and (straight-line) having been added, as on one (complete straight-line). (Which is) the very thing it was required to show. This proposition is a geometric version of the algebraic identity: (2 a + b) 2 + b 2 = 2[a 2 + (a + b) 2 ].. Proposition 11 Τὴν δοθεῖσαν εὐθεῖαν τεμεῖν ὥστε τὸ ὑπὸ τῆς ὅλης καὶ To cut a given straight-line such that the rectangle τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον contained by the whole (straight-line), and one of the εἶναιτῷἀπὸτοῦλοιποῦτμήματοςτετραγώνῳ. pieces (of the straight-line), is equal to the square on the remaining piece. 62

Η F G Α Θ A H B E Γ Κ στωἡδοθεῖσαεὐθεῖαἡα δεῖδὴτὴνατεμεῖν Let AB be the given straight-line. So it is required to ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων cut AB such that the rectangle contained by the whole περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ (straight-line), and one of the pieces (of the straightτμήματοςτετραγώνῳ. line), is equal to the square on the remaining piece. Ἀναγεγράφθω γὰρ ἀπὸ τῆς Α τετράγωνον τὸ ΑΔΓ, For let the square ABDC have been described on AB καὶτετμήσθωἡαγδίχακατὰτὸσημεῖον,καὶἐπεζεύχθω [Prop. 1.46], and let AC have been cut in half at point ἡ,καὶδιήχθωἡγαἐπὶτὸ,καὶκείσθωτῇἴσηἡ E [Prop. 1.10], and let BE have been joined. And let,καὶἀναγεγράφθωἀπὸτῆςατετράγωνοντὸθ,καὶ CA have been drawn through to (point) F, and let EF διήχθωἡηθἐπὶτὸκ λέγω,ὅτιἡατέτμηταικατὰτὸθ, be made equal to BE [Prop. 1.3]. And let the square ὥστετὸὑπὸτῶνα,θπεριεχόμενονὀρθογώνιονἴσον FH have been described on AF [Prop. 1.46], and let GH ποιεῖντῷἀπὸτῆςαθτετραγώνῳ. have been drawn through to (point) K. I say that AB has πεὶ γὰρ εὐθεῖα ἡ ΑΓ τέτμηται δίχα κατὰ τὸ, been cut at H such as to make the rectangle contained by πρόσκειται δὲ αὐτῇ ἡ Α, τὸ ἄρα ὑπὸ τῶν Γ, Α πε- AB and BH equal to the square on AH. ριεχόμενον ὀρθογώνιον μετὰ τοῦ ἀπὸ τῆς Α τετραγώνου For since the straight-line AC has been cut in half at ἴσον ἐστὶ τῷ ἀπὸ τῆς τετραγώνῳ. ἴση δὲ ἡ τῇ E, and F A has been added to it, the rectangle contained τὸἄραὑπὸτῶνγ,αμετὰτοῦἀπὸτῆςαἴσονἐστὶ by CF and FA, plus the square on AE, is thus equal to τῷἀπὸ.ἀλλὰτῷἀπὸἴσαἐστὶτὰἀπὸτῶνα, the square on EF [Prop. 2.6]. And EF (is) equal to EB. Α ὀρθὴ γὰρ ἡ πρὸς τῷ Α γωνία τὸ ἄρα ὑπὸ τῶν Γ, Thus, the (rectangle contained) by CF and F A, plus the ΑμετὰτοῦἀπὸτῆςΑἴσονἐστὶτοῖςἀπὸτῶνΑ,Α. (square) on AE, is equal to the (square) on EB. But, κοινὸνἀφῃρήσθωτὸἀπὸτῆςα λοιπὸνἄρατὸὑπὸτῶν the (sum of the squares) on BA and AE is equal to the Γ,ΑπεριεχόμενονὀρθογώνιονἴσονἐστὶτῷἀπὸτῆςΑ (square) on EB. For the angle at A (is) a right-angle τετραγώνῳ. καί ἐστι τὸ μὲν ὑπὸ τῶν Γ, Α τὸ Κ ἴση [Prop. 1.47]. Thus, the (rectangle contained) by CF and γὰρἡατῇη τὸδὲἀπὸτῆςατὸαδ τὸἄρακἴσον FA, plus the (square) on AE, is equal to the (sum of ἐστὶ τῷ ΑΔ. κοινὸν ἀρῃρήσθω τὸ ΑΚ λοιπὸν ἄρα τὸ Θ the squares) on BA and AE. Let the square on AE have τῷθδἴσονἐστίν. καίἐστιτὸμὲνθδτὸὑπὸτῶνα, been subtracted from both. Thus, the remaining rectan- Θ ἴσηγὰρἡατῇδ τὸδὲθτὸἀπὸτῆςαθ τὸ gle contained by CF and FA is equal to the square on ἄραὑπὸτῶνα,θπεριεχόμενονὀρθογώνιονἴσονἐστὶ AB. And FK is the (rectangle contained) by CF and τῷἀπὸθατετραγώνῳ. FA. For AF (is) equal to FG. And AD (is) the (square) ΗἄραδοθεῖσαεὐθεῖαἡΑτέτμηταικατὰτὸΘὥστε on AB. Thus, the (rectangle) FK is equal to the (square) τὸ ὑπὸ τῶν Α, Θ περιεχόμενον ὀρθογώνιον ἴσον ποιεῖν AD. Let (rectangle) AK have been subtracted from both. τῷ ἀπὸ τῆς ΘΑ τετραγώνῳ ὅπερ ἔδει ποιῆσαι. Thus, the remaining (square) F H is equal to the (rectangle) HD. And HD is the (rectangle contained) by AB and BH. For AB (is) equal to BD. And FH (is) the (square) on AH. Thus, the rectangle contained by AB C K D 63

and BH is equal to the square on HA. Thus, the given straight-line AB has been cut at (point) H such as to make the rectangle contained by AB and BH equal to the square on HA. (Which is) the very thing it was required to do. This manner of cutting a straight-line so that the ratio of the whole to the larger piece is equal to the ratio of the larger to the smaller piece is sometimes called the Golden Section.. Proposition 12 ν τοῖς ἀμβλυγωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν In obtuse-angled triangles, the square on the side sub- ἀμβλεῖανγωνίανὑποτεινούσηςπλευρᾶςτετράγωνονμεῖζόν tending the obtuse angle is greater than the (sum of the) ἐστι τῶν ἀπὸ τῶν τὴν ἀμβλεῖαν γωνίαν περιεχουσῶν squares on the sides containing the obtuse angle by twice πλευρῶν τετραγώνων τῷ περιεχομένῳ δὶς ὑπὸ τε μιᾶς τῶν the (rectangle) contained by one of the sides around the περὶ τὴν ἀμβλεῖαν γωνίαν, ἐφ ἣν ἡ κάθετος πίπτει, καὶ τῆς obtuse angle, to which a perpendicular (straight-line) ἀπολαμβανομένης ἐκτὸς ὑπὸ τῆς καθέτου πρὸς τῇ ἀμβλείᾳ falls, and the (straight-line) cut off outside (the triangle) γωνίᾳ. by the perpendicular (straight-line) towards the obtuse angle. B Α Γ D A C στω ἀμβλυγώνιον τρίγωνον τὸ ΑΓ ἀμβλεῖαν ἔχον Let ABC be an obtuse-angled triangle, having the anτὴνὑπὸαγ,καὶἤχθωἀπὸτοῦσημείουἐπὶτὴνγα gle BAC obtuse. And let BD be drawn from point B, ἐκβληθεῖσαν κάθετος ἡ Δ. λέγω, ὅτι τὸ ἀπὸ τῆς Γ perpendicular to CA produced [Prop. 1.12]. I say that τετράγωνονμεῖζόνἐστιτῶνἀπὸτῶνα,αγτετραγώνων the square on BC is greater than the (sum of the) squares τῷδὶςὑπὸτῶνγα,αδπεριεχομένῳὀρθογωνίῳ. on BA and AC, by twice the rectangle contained by CA πεὶγὰρεὐθεῖαἡγδτέτμηται,ὡςἔτυχεν,κατὰτὸα and AD. σημεῖον,τὸἄραἀπὸτῆςδγἴσονἐστὶτοῖςἀπὸτῶνγα, For since the straight-line CD has been cut, at ran- ΑΔτετραγώνοιςκαὶτῷδὶςὑπὸτῶνΓΑ,ΑΔπεριεχομένῳ dom, at point A, the (square) on DC is thus equal to ὀρθογωνίῳ. κοινὸνπροσκείσθωτὸἀπὸτῆςδ τὰἄρα the (sum of the) squares on CA and AD, and twice the ἀπὸτῶνγδ,δἴσαἐστὶτοῖςτεἀπὸτῶνγα,αδ,δτε- rectangle contained by CA and AD [Prop. 2.4]. Let the τραγώνοιςκαὶτῷδὶςὑπὸτῶνγα,αδ[περιεχομένῳὀρθο- (square) on DB have been added to both. Thus, the (sum γωνίῳ]. ἀλλὰτοῖςμὲνἀπὸτῶνγδ,δἴσονἐστὶτὸἀπὸ of the squares) on CD and DB is equal to the (sum of τῆςγ ὀρθὴγὰρἡπροςτῷδγωνία τοῖςδὲἀπὸτῶναδ, the) squares on CA, AD, and DB, and twice the [rect- ΔἴσοντὸἀπὸτῆςΑ τὸἄραἀπὸτῆςγτετράγωνον angle contained] by CA and AD. But, the (square) on ἴσονἐστὶτοῖςτεἀπὸτῶνγα,ατετραγώνοιςκαὶτῷδὶς CB is equal to the (sum of the squares) on CD and DB. ὑπὸτῶνγα,αδπεριεχομένῳὀρθογωνίῳ ὥστετὸἀπὸτῆς For the angle at D (is) a right-angle [Prop. 1.47]. And ΓτετράγωνοντῶνἀπὸτῶνΓΑ,Ατετραγώνωνμεῖζόν the (square) on AB (is) equal to the (sum of the squares) ἐστιτῷδὶςὑπὸτῶνγα,αδπεριεχομένῳὀρθογωνίῳ. on AD and DB [Prop. 1.47]. Thus, the square on CB νἄρατοῖςἀμβλυγωνίοιςτριγώνοιςτὸἀπὸτῆςτὴν is equal to the (sum of the) squares on CA and AB, and ἀμβλεῖαν γωνίαν ὑποτεινούσης πλευρᾶς τετράγωνον μεῖζόν twice the rectangle contained by CA and AD. So the ἐστι τῶν ἀπὸ τῶν τὴν ἀμβλεῖαν γωνίαν περιεχουσῶν square on CB is greater than the (sum of the) squares on 64

πλευρῶν τετραγώνων τῷ περιχομένῳ δὶς ὑπό τε μιᾶς τῶν CA and AB by twice the rectangle contained by CA and περὶ τὴν ἀμβλεῖαν γωνίαν, ἐφ ἣν ἡ κάθετος πίπτει, καὶ τῆς AD. ἀπολαμβανομένης ἐκτὸς ὑπὸ τῆς καθέτου πρὸς τῇ ἀμβλείᾳ Thus, in obtuse-angled triangles, the square on the γωνίᾳ ὅπερ ἔδει δεῖξαι. side subtending the obtuse angle is greater than the (sum of the) squares on the sides containing the obtuse angle by twice the (rectangle) contained by one of the sides around the obtuse angle, to which a perpendicular (straight-line) falls, and the (straight-line) cut off outside (the triangle) by the perpendicular (straight-line) towards the obtuse angle. (Which is) the very thing it was required to show. This proposition is equivalent to the well-known cosine formula: BC 2 = AB 2 + AC 2 2 AB AC cos BAC, since cos BAC = AD/AB.. Proposition 13 ν τοῖς ὀξυγωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀξεῖαν In acute-angled triangles, the square on the side subγωνίαν ὑποτεινούσης πλευρᾶς τετράγωνον ἔλαττόν ἐστι tending the acute angle is less than the (sum of the) τῶν ἀπὸ τῶν τὴν ὀξεῖαν γωνίαν περιεχουσῶν πλευρῶν τε- squares on the sides containing the acute angle by twice τραγώνων τῷ περιεχομένῳ δὶς ὑπό τε μιᾶς τῶν περὶ τὴν the (rectangle) contained by one of the sides around the ὀξεῖαν γωνίαν, ἐφ ἣν ἡ κάθετος πίπτει, καὶ τῆς ἀπολαμβα- acute angle, to which a perpendicular (straight-line) falls, νομένης ἐντὸς ὑπὸ τῆς καθέτου πρὸς τῇ ὀξείᾳ γωνίᾳ. and the (straight-line) cut off inside (the triangle) by the perpendicular (straight-line) towards the acute angle. Α A Γ B D C στω ὀξυγώνιον τρίγωνον τὸ ΑΓ ὀξεῖαν ἔχον τὴν Let ABC be an acute-angled triangle, having the anπρὸςτῷγωνίαν,καὶἤχθωἀπὸτοῦασημείουἐπὶτὴν gle at (point) B acute. And let AD have been drawn from Γ κάθετος ἡ ΑΔ λέγω, ὅτι τὸ ἀπὸ τῆς ΑΓ τετράγωνον point A, perpendicular to BC [Prop. 1.12]. I say that the ἔλαττόνἐστιτῶνἀπὸτῶνγ,ατετραγώνωντῷδὶςὑπὸ square on AC is less than the (sum of the) squares on τῶν Γ, Δ περιεχομένῳ ὀρθογωνίῳ. CB and BA, by twice the rectangle contained by CB and πεὶγὰρεὐθεῖαἡγτέτμηται,ὡςἔτυχεν,κατὰτὸ BD. Δ, τὰἄραἀπὸτῶνγ,δτετράγωναἴσαἐστὶτῷτε For since the straight-line CB has been cut, at ranδὶςὑπὸτῶνγ,δπεριεχομένῳὀρθογωνίῳκαὶτῷἀπὸ dom, at (point) D, the (sum of the) squares on CB and τῆς ΔΓ τετραγώνῳ. κοινὸν προσκείσθω τὸ ἀπὸ τῆς ΔΑ BD is thus equal to twice the rectangle contained by CB τετράγωνον τὰἄραἀπὸτῶνγ,δ,δατετράγωναἴσα and BD, and the square on DC [Prop. 2.7]. Let the ἐστὶτῷτεδὶςὑπὸτῶνγ,δπεριεχομένῳὀρθογωνίῳ square on DA have been added to both. Thus, the (sum καὶτοῖςἀπὸτῶναδ,δγτετραγώνιος.ἀλλὰτοῖςμὲνἀπὸ of the) squares on CB, BD, and DA is equal to twice τῶν Δ, ΔΑ ἴσον τὸ ἀπὸ τῆς Α ὀρθὴ γὰρ ἡ πρὸς τῷ Δ the rectangle contained by CB and BD, and the (sum of γωνίᾳ τοῖςδὲἀπὸτῶναδ,δγἴσοντὸἀπὸτῆςαγ τὰ the) squares on AD and DC. But, the (square) on AB ἄραἀπὸτῶνγ,αἴσαἐστὶτῷτεἀπὸτῆςαγκαὶτῷδὶς (is) equal to the (sum of the squares) on BD and DA. ὑπὸτῶνγ,δ ὥστεμόνοντὸἀπὸτῆςαγἔλαττόνἐστι For the angle at (point) D is a right-angle [Prop. 1.47]. 65