ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014
|
|
- Ἀρίσταρχος Μητσοτάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: info@hms.gr, ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" Φεβρουαρίου 014 Θέματα μικρών τάξεων Πρόβλημα 1 Θεωρούμε τρίγωνο ABC και έστω Μ το μέσο της πλευράς BC. Εξωτερικά του τριγώνου θεωρούμε παραλληλόγραμμο BCDE, τέτοιο ώστε: BE AM και AM BE = Να αποδειχθεί ότι η ευθεία EM περνάει από το μέσο του ευθύγραμμου τμήματος AD. Πρόβλημα Έστω p πρώτος και m θετικός ακέραιος. Να προσδιορίσετε όλα τα ζευγάρια ( p, m ) που ικανοποιούν την εξίσωση ( ) ( 1) 3 p p+ m + p= m+. Πρόβλημα 3 Να λύσετε στους πραγματικούς αριθμούς το σύστημα: 3 z y 3 x z 3 y x x =, y =, z =. y z z x x y Πρόβλημα 4. Βάφουμε τους αριθμούς 1,, 3,...,0 με δύο χρώματα άσπρο και μαύρο έτσι, ώστε να χρησιμοποιούνται και τα δύο χρώματα. Με πόσους τρόπους μπορεί να γίνει ο χρωματισμός ώστε το γινόμενο των άσπρων αριθμών και το γινόμενο των μαύρων αριθμών να έχουν μέγιστο κοινό διαιρέτη ίσο με 1; Διάρκεια διαγωνισμού: 3 ώρες και 30 λεπτά Κάθε πρόβλημα βαθμολογείται με 5 μονάδες Καλή επιτυχία!
2 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: info@hms.gr, ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" Φεβρουαρίου 014 Ενδεικτικές λύσεις θεμάτων μικρών τάξεων Πρόβλημα 1 Θεωρούμε τρίγωνο ABC και έστω Μ το μέσο της πλευράς BC. Εξωτερικά του AM τριγώνου θεωρούμε παραλληλόγραμμο BCDE, τέτοιο ώστε: BE AM και BE = Να αποδειχθεί ότι η ευθεία EM περνάει από το μέσο του ευθύγραμμου τμήματος AD. Προεκτείνουμε την AM μέχρι να τμήσει την ED στο σημείο N. Τότε το τετράπλευρο BMNE είναι παραλληλόγραμμο, οπότε EN = BM = MC = ND. Άρα το N είναι το AM μέσον του ED. Επιπλέον παρατηρούμε ότι = και το M είναι πάνω στη διάμεσο MN του τριγώνου EAD, οπότε το M είναι το βαρύκεντρο του τριγώνου AED. Επομένως η ευθεία EM είναι η ευθεία της διαμέσου του τριγώνου AED που άγεται από την κορυφή E, οπότε θα τέμνει την πλευρά AD στο μέσο της. A Κ L B Μ C E N D Σχήμα 1 1
3 Πρόβλημα Έστω p πρώτος και m θετικός ακέραιος. Να προσδιορίσετε όλα τα ζευγάρια ( p, m ) που ικανοποιούν την εξίσωση Η δεδομένη εξίσωση γράφεται ( ) ( 1) 3 p p+ m + p= m+. ( 1) ( 1) 3 p p+ m+ = m+, (1) από την οποία προκύπτει ότι ο πρώτος αριθμός p είναι διαιρέτης του ( m + 1) 3. Επομένως, αφού p πρώτος, έπεται ότι p ( m+ 1), οπότε θα υπάρχει θετικός ακέραιος k τέτοιος ώστε m+ 1 = kp. Τότε, από την εξίσωση (1) λαμβάνουμε: Άρα είναι p, 1 3 ( ) ( ) ( ) ( ) = m= και ( pm, ) = (,1). p p + kp = kp k + 1= k p k k + 1 k k + 1 k = 1. Πρόβλημα 3 Να λύσετε στους πραγματικούς αριθμούς το σύστημα: 3 z y 3 x z 3 y x x =, y =, z =. y z z x x y Για xyz,,, που ικανοποιούν την συνθήκη xyz 0, το σύστημα γράφεται: 3 xyz= z y (1) 3 yzx= x z () 3 zxy= y x (3) Με πρόσθεση κατά μέλη των τριών εξισώσεων λαμβάνουμε: xyz x + y + z = x + y + z x + y + z xyz+ 1 = 0. ( ) ( ) ( )( ) Επειδή είναι xyz 0 έχουμε προκύπτει ότι : x + y + z > 0, οπότε από την τελευταία εξίσωση xyz = 1 (4) Χρησιμοποιώντας την εξίσωση (4) στο σύστημα των εξισώσεων (1), () και (3) έχουμε: x = z + y (5) y = x + z (6) z = y + x (7) Από τις (5) και (6) λαμβάνουμε y = z, ενώ από τις (6) και (7) λαμβάνουμε x = z, οπότε: x = y = z x= y =± z ή x= y =± z. (8) Τελικά, από τις εξισώσεις (8) και (4) έχουμε τις λύσεις: xyz,, = 1, 1, 1, xyz,, = 1,1, 1, xyz,, = 1, 1,1, xyz,, = 1,1,1. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4 Πρόβλημα 4. Βάφουμε τους αριθμούς 1,, 3,...,0 με δύο χρώματα άσπρο και μαύρο έτσι, ώστε να χρησιμοποιούνται και τα δύο χρώματα. Με πόσους τρόπους μπορεί να γίνει ο χρωματισμός ώστε το γινόμενο των άσπρων αριθμών και το γινόμενο των μαύρων αριθμών να έχουν μέγιστο κοινό διαιρέτη ίσο με 1; Το 1 μπορεί να βαφεί με τρόπους (ή άσπρο ή μαύρο). Το μπορεί να βαφεί με τρόπους (ή άσπρο ή μαύρο). Τώρα όλοι οι άρτιοι πρέπει να πάρουν το χρώμα του, οπότε οι αριθμοί,4,6,8,10,1,14,16,18,0 παίρνουν το χρώμα του. Επίσης όλοι οι αριθμοί που έχουν κοινό διαιρέτη με αυτούς παίρνουν το χρώμα του, δηλαδή οι αριθμοί 3,5,7,9,15 παίρνουν το χρώμα του. Οι αριθμοί που απέμειναν (που είναι οι πρώτοι μεγαλύτεροι του 10, δηλαδή οι 11,13,17,19) μπορούν να βαφούν με τρόπους (ή άσπρο ή μαύρο). 6 Επομένως, συνολικά ο χρωματισμός μπορεί να γίνει με = = 64 τρόπους. Πρέπει όμως να αφαιρέσουμε και τις δύο περιπτώσεις που τους βάφουμε όλους μαύρους ή όλους άσπρους. Άρα έχουμε συνολικά 6 τρόπους. 3
5 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: info@hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: info@hms.gr Πρόβλημα 1 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" Φεβρουαρίου 014 Βρείτε όλα τα πολυώνυμα ( x) ισότητα για κάθε x. Θέματα μεγάλων τάξεων Ρ με πραγματικούς συντελεστές που ικανοποιούν την ( x 6x 8) ( x) ( x x) ( x ) + Ρ = + Ρ, Πρόβλημα Βρείτε τις τιμές του ακέραιου αριθμού n για τις οποίες ο αριθμός ισούται με τον κύβο ρητού αριθμού. 8n 5 Α= n + 5 Πρόβλημα 3 Θεωρούμε μια n n σκακιέρα, όπου άρτιος θετικός ακέραιος, στην οποία τοποθετούνται όλοι οι αριθμοί 1,,3,...n, ένας σε κάθε τετραγωνάκι. Καλούμε S 1 το άθροισμα των αριθμών που βρίσκονται στα άσπρα τετράγωνα και S το άθροισμα των αριθμών που βρίσκονται στα μαύρα τετράγωνα. Να βρεθούν όλοι οι αριθμοί n που είναι τέτοιοι, ώστε να είναι δυνατή μία τοποθέτηση, για την οποία ισχύει: S1 39 S = 64.. Πρόβλημα 4 Δίνεται κύκλος c ( O,R ) (με κέντρο το σημείο O και ακτίνα R ) και δύο σημεία του A, B τέτοια, ώστε R < AB < R. Ο κύκλος c 1 ( A,r ) (με κέντρο το σημείο A και ακτίνα r, 0 < r < R), τέμνει τον κύκλο c ( O,R ), στα σημεία C και D (το σημείο C ανήκει στο μικρό τόξο AB ). Από το σημείο B, θεωρούμε τις εφαπτόμενες BE και BF στον κύκλο c 1 ( A,r ), έτσι ώστε από τα σημεία επαφής E, F, το σημείο E βρίσκεται εκτός του κύκλου c ( O,R ). Οι ευθείες EC και DF τέμνονται στο σημείο M. Να αποδείξετε ότι το τετράπλευρο BCFM είναι εγγράψιμο. Διάρκεια εξέτασης 4 ώρες. Κάθε πρόβλημα βαθμολογείται με 5 μονάδες Καλή επιτυχία!
6 Ενδεικτικές λύσεις θεμάτων μεγάλων τάξεων Πρόβλημα 1 Βρείτε όλα τα πολυώνυμα ισότητα για κάθε x. x με πραγματικούς συντελεστές που ικανοποιούν την x 6x 8 x x x x, Η δεδομένη ισότητα γράφεται στη μορφή x x4 x x x x, για κάθε x, (1) οπότε, για x 0, και 4προκύπτουν οι ισότητες: x 0 0. Επομένως το πολυώνυμο έχει παράγοντες τους x, x και x, οπότε έχουμε: x x x x Q x, () Qx όπου το είναι πολυώνυμο με πραγματικούς συντελεστές. Λόγω της () η σχέση (1) γίνεται: x x4 xxqx xxxxx4qx, (3) για κάθε x. Ισοδύναμα, έχουμε x x x x4 x Q x xq x 0, για κάθε x. (4) Από τη σχέση (4), επειδή το πολυώνυμο x x x x 4 δεν είναι το μηδενικό πολυώνυμο, προκύπτει η ισότητα: x Q x xq x 0, για κάθε x. (5) Από την τελευταία σχέση για 0 όπου γίνεται: x λαμβάνουμε ότι Q 0 0, οπότε Qx xrx, Rx πολυώνυμο με πραγματικούς συντελεστές. Λόγω της (5) η σχέση (4) xxr x x x R x 0 xxrxrx 0, από την οποία, αφού xx0 x, προκύπτει ότι: RxR x, για κάθε x. Από την τελευταία σχέση προκύπτει ότι R x R x k k Rx παράδειγμα ισχύει cr 0 Rk, k. Άρα είναι R x c,,, για κάθε x, οπότε το πολυώνυμο παίρνει την ίδια τιμή για άπειρες τιμές του x, για οπότε για κάθε x, x x x x Q x x x x xr x cx x 4.
7 Πρόβλημα Βρείτε τις τιμές του ακέραιου αριθμού ισούται με τον κύβο ρητού αριθμού. n για τις οποίες ο αριθμός 8n 5 n 5 (1 ος τρόπος) Έστω pq,, q0, με pq, 1 και τέτοιοι ώστε 8n 5 p. (1) n 5 q Τότε θα είναι και p, q 1, ενώ από τη σχέση (1) λαμβάνουμε: q 8n5 p n 5, () από την οποία έπεται ότι p 8n5 και q n5 υπάρχει k έτσι ώστε: 3 8n5kp 3 και n5 kq. ( 3 Πράγματι, αν υποθέσουμε ότι 8n 5 kp, k, τότε από τη σχέση () λαμβάνουμε τις σχέσεις (3). Από τις σχέσεις (3) προκύπτει ότι: 8 n5 8n5 k 8q p Επομένως οι αριθμοί Παρατηρούμε όμως ότι k q p q qp p k,qp και 4q qp p 4 3 q pq p q p 3 3) είναι διαιρέτες του 65. q 1 mod3 και επιπλέον ισχύει 4q pq p 3q pq 3, οπότε, αφού ο αριθμός 4q pq p είναι διαιρέτης του 65 η μοναδική δυνατή τιμή του είναι 4q pq p 133q pq 13, οπότε έχουμε τις περιπτώσεις: 4q qp p 13, k 1, q p 5. Τότε έχουμε: p q 5 και 4q q q5 q5 13 p q5, q 5q0 pq5, q p1, q. Τότε και για τις δύο περιπτώσεις έχουμε 3 p 1, οπότε θα είναι: 8 n n 5 n5n 3. q 8 n 5 8 ος τρόπος Όπως στον πρώτο τρόπο φθάνουμε στη σχέση () και τη λύνουμε ως προς n, οπότε λαμβάνουμε: 55 q p n. (4) 8q p 3 Έστω d 5 q p,8q p. Τότε d 5q p 8q p 13 q και αφού pq, 1 έπεται ότι d 13. Επομένως 8q p d q p q p q pq p
8 3 Παρατηρούμε ότι και επιπλέον ισχύει 4q pq p 3q pq 3, οπότε, αφού ο αριθμός 4q pq p είναι διαιρέτης του 65 η μοναδική δυνατή τιμή του είναι 4q pq p 3q pq 1 mod3 4q pq p 1q pq 13. Από τη σχέση (5) προκύπτει ότι q, οπότε έχουμε τις περιπτώσεις: Αν q 0 ή q 1, οπότε p q p q (5) 13 ή 10, αδύνατες με pq,. 1, pq, 1, ή pq, 1, ή pq, 3, ή pq, 3,. q p, δεκτές είναι μόνο οι λύσεις pq, 1, ή pq, 1, Αν q, τότε pq από την οποία προκύπτουν οι λύσεις : Επειδή ( ) 65 από τις οποίες προκύπτει ότι n 3., Πρόβλημα 3 Θεωρούμε μια n n σκακιέρα, όπου άρτιος θετικός ακέραιος, στην οποία τοποθετούνται όλοι οι αριθμοί, ένας σε κάθε τετραγωνάκι. Καλούμε το άθροισμα των αριθμών που βρίσκονται στα άσπρα τετράγωνα και S το άθροισμα των αριθμών που βρίσκονται στα μαύρα τετράγωνα. Να βρεθούν όλοι οι αριθμοί n που είναι τέτοιοι, ώστε να είναι δυνατή μία τοποθέτηση, για την οποία ισχύει: S1 39 S Η δεδομένη σχέση είναι ισοδύναμη με την S1 S1 S. Παρατηρούμε ότι : 103 n n 1 S1 S 1n Επειδή ο είναι φυσικός αριθμός, από τις παραπάνω θα έχουμε ότι S 1 n n Όμως ο 103 είναι πρώτος της μορφής 4κ+3, οπότε ο 103 δεν διαιρεί τον n 1. Επομένως πρέπει να διαιρεί τον n και αφού είναι πρώτος, πρέπει 103 n. Αφού επιπλέον ο n είναι άρτιος, θα έχουμε ότι είναι πολλαπλάσιο του 06, δηλαδή πρέπει: n06 k, k *. Θα αποδείξουμε τώρα ότι για κάθε πολλαπλάσιο του 06 είναι δυνατή μια τέτοια τοποθέτηση. Η ελάχιστη δυνατή τιμή του είναι: n n 1 n 1 A, ενώ η μέγιστη τιμή είναι: n n 1 1n B. S 1 S 1
9 4 Εύκολα ελέγχουμε την ανισότητα, 39 A S1 S1S B 103 Τώρα θα πάρουμε το ζητούμενο δείχνοντας ότι το S 1 μπορεί να πάρει κάθε δυνατή τιμή ανάμεσα στα A, B Πράγματι, ο αριθμός A 1 μπορεί να επιτευχθεί επιλέγοντας n n στα άσπρα τετράγωνα τους αριθμούς 1,,..., 1, 1. O αριθμός A μπορεί να n n επιτευχθεί επιλέγοντας στα άσπρα τετράγωνα τους αριθμούς 1,,..., 1,, και ούτω καθεξής. Όταν φτάσουμε στο βήμα όπου χρειάζεται η τοποθέτηση των αριθμών n 1,,..., 1, n, για να πάρουμε τον επόμενο αριθμό ως άθροισμα, θα επιλέξουμε n n στα άσπρα τετράγωνα τους αριθμούς1,,...,,,n, και στον επόμενο τους n n 1,,...,, 1, n, και ούτω καθεξής. Αυξάνοντας λοιπόν με την παραπάνω διαδικασία το άθροισμα κατά 1, ξεκινώντας από το Α, μπορούμε να κατασκευάσουμε όλους τους αριθμούς μέχρι το Β. Πρόβλημα 4 Δίνεται κύκλος c( O,R ) (με κέντρο το σημείο O και ακτίνα R ) και δύο σημεία του A, B τέτοια, ώστε R AB R. Ο κύκλος c1( A,r ) (με κέντρο το σημείο A και ακτίνα r, 0 r R), τέμνει τον κύκλο c( O,R ), στα σημεία C και D (το σημείο C ανήκει στο μικρό τόξο AB ). Από το σημείο B, θεωρούμε τις εφαπτόμενες BE και BF στον κύκλο c 1 ( A,r ), έτσι ώστε από τα σημεία επαφής E, F, το σημείο E βρίσκεται εκτός του κύκλου c( O,R ). Οι ευθείες EC και DF τέμνονται στο σημείο M. Να αποδείξετε ότι το τετράπλευρο είναι εγγράψιμο. BCFM (1 ος τρόπος) Το τετράπλευρο AEBF είναι εγγράψιμο (διότι οι BE και BF είναι εφαπτόμενες, o οπότε: AÊB AFˆB 90 ) και έστω c ο περιγεγραμμένος κύκλος του. Το τμήμα CD είναι η κοινή χορδή των κύκλων c και ( c 1 ). Το τμήμα AB είναι η κοινή χορδή των κύκλων c και ( c ). Το τμήμα EF είναι η κοινή χορδή των κύκλων ( c 1 ) και ( c ). Άρα οι τρεις παραπάνω χορδές θα συντρέχουν στο ριζικό κέντρο, έστω L, των τριών κύκλων. Η AB είναι διχοτόμος της γωνίας EBF ˆ (διότι BE και BF είναι εφαπτόμενες του κύκλου c 1 ( A,r )). Η AB είναι επίσης διχοτόμος της γωνίας C Bˆ D, γιατί οι γωνίες A BˆC και ABD ˆ είναι εγγεγραμμένες στο κύκλο co, R και βαίνουν στα ίσα τόξα AC και AD. Άρα οι γωνίες E Bˆ C και FBD ˆ είναι ίσες.
10 5 Σχήμα Με τη βοήθεια της ισότητας EBˆ C FBD ˆ, θα αποδείξουμε ότι τα τρίγωνα BCE και BFD είναι όμοια. Αρκεί λοιπόν να αποδείξουμε ότι: BC BF a y xy a, BE BD x a όπου θέσαμε (χάριν συντομίας): BE BF a, BC x και BD y. Από την ομοιότητα των τριγώνων LCB και LAD έχουμε: LC CB LC x (1). LA AD LA r Από την ομοιότητα των τριγώνων LCA και LBD, έχουμε: LB BD LB y (). LC CA LC r έχουμε: Πολλαπλασιάζοντας τις σχέσεις 1 και LB xy (A). LA r Στο ορθογώνιο τρίγωνο ABE, το τμήμα AL είναι το ύψος προς την υποτείνουσα, άρα: LB EB a (B). LA EA r Από τις σχέσεις A και B έχουμε: xy a. Άρα τα τρίγωνα BCE και BFD είναι όμοια, οπότε θα έχουν τις γωνίες τους ίσες (μία προς μία). Από τις ισότητες των γωνιών των τριγώνων BCE και BFD, προκύπτει η ισότητα: Cˆ Fˆ. Άρα το τετράπλευρο BCFM είναι εγγράψιμο. ος τρόπος. Σημειώνουμε με Q το σημείο τομής των EF, CD Από το θεώρημα Pascal στο εκφυλισμένο εξάγωνο EEDFFC παίρνουμε ότι, αν T είναι το σημείο τομής των
11 6 ED, CF, τότε τα σημεία T, B, M είναι συνευθειακά. Επιπλέον, στο εγγεγραμμένο ECFD, τα σημεία T, M είναι τα σημεία τομής των απέναντι πλευρών και το Q είναι το σημείο τομής των διαγωνίων του. Επομένως η ευθεία TM είναι η πολική του Q, οπότε η AQ είναι κάθετη στην πολική (αφού Α κέντρο του κύκλου), οπότε έχουμε ότι ABT ˆ 90. Έτσι, έπεται ότι EF TM αφού AB EF, οπότε έχουμε ότι BMC ˆ MEF ˆ CFˆB, όπου η τελευταία ισότητα προκύπτει από τις γωνίες χορδής και εφαπτομένης. Σχήμα 3 Παρατήρηση Από τις ισότητες των γωνιών των τριγώνων BCE και BFD, προκύπτει επίσης ότι και το τετράπλευρο BEDM είναι εγγράψιμο.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street
( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - Fax: 605 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : ifo@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Paepistimiou (Εleftheriou Veielou) Street
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ. 665-677 - Fax: 605 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street
: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-677 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 6 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 3645 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Paepistimiou (Εleftheriou Veizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 036653 367784 Fax: 036405 e mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Paneistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μεγάλων τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-al : fo@hs.gr, www.hs.gr GREEK MATHEMATICAL SOCIETY 4, Paepstou (Εleftherou Vezelou) Street
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-ail : ifo@hs.gr, www.hs.gr GREEK MATHEMATICAL SOCIETY 4, Paepistiiou (Εleftheriou Veizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 3 06 79 ΑΘΗΝΑ Τηλ. 36653-36778 - Fax: 3605 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 3, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 66-67784 - Fax: 640 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : ifo@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
Θέματα μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης"
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 10 6165-10617784 - Fax: 10 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.
Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79
: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 10 361653-103617784 - Fax: 10 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β
Ευκλείδης Ά Λυκείου 1994-1995 1. Έχουμε στο επίπεδο 4 διαφορετικές ευθείες. Είναι γνωστό ότι κάθε άλλη ευθεία του ίδιου επιπέδου τέμνει ή ή 4 από τις ευθείες. Να βρείτε πόσες από τις ευθείες είναι παράλληλες..
Πολλαπλασιάζοντας και τα δύο μέλη της σχέσης (1) επί 2, λαμβάνουμε = k+ ), (2) οπότε με αφαίρεση της (1) από τη (2) κατά μέλη, λαμβάνουμε:
6 Θέματα μεγάλων τάξεων ΠΡΟΒΛΗΜ Δίνεται η ακολουθία πραγματικών αριθμών ( a ), =,,, με + a = και a = ( a+ a + + a ), Να προσδιορίσετε τον όρο a 0 Λύση ( ος τρόπος) Παρατηρούμε ότι: 4 4 a =, a = a =, a
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fa: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ Να λύσετε στους ακέραιους την εξίσωση 4 xy y x = xy 6.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 02/12/2017 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 66-067784 - Fax: 0 640 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 28 η Ελληνική Μαθηματική Ολυμπιάδα. "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 6 ΦΕΒΡΟΥΑΡΙΟΥ 011 Ενδεικτικές Λύσεις θεμάτων μικρών τάξεων ΠΡΟΒΛΗΜΑ 1 Έστω τρίγωνο ΑΒΓ με ˆ ΒΑΓ = 10. Αν Δ είναι το μέσον της
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 6 ΦΕΒΡΟΥΑΡΙΟΥ 011 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ 1 Να λύσετε στους ακέραιους την εξίσωση 4 xy y x =
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 9 ΑΘΗΝΑ Τηλ 36653-3684 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
x , οπότε : Α = = 2.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Πρόβλημα Αν ισχύει ότι Γ τάξη Γυμνασίου a+ b=, να βρείτε την τιμή της παράστασης Α= ( 6a+
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου ενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 6405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Β τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές του πραγματικού αριθμού a για τις οποίες το σύστημα x + 4y = 4a ax y = a έχει μία μόνο λύση. Για τις τιμές του a που θα βρείτε να λύσετε το σύστημα. Το
Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.
Αρχιμήδης Μεγάλοι 1996-1997 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν = 1 4 για κάθε ν φυσικό διαφορετικό του 0. ii) α n 1 α n Να αποδείξετε: α ν 1 =1 για κάθε n - ν 1 α ν α) ότι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός 2012 7 Απριλίου 2012
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός 0 7 Απριλίου 0 ΠΡΟΒΛΗΜΑ Να προσδιορίσετε όλες τις τριάδες p n όπου p πρώτος και αρνητικοί ακέραιοι που είναι λύσεις της εξίσωσης: p n Λύση Η δεδομένη εξίσωση
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79
2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.
Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι
Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση όπου mακέραιοι, και, m
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-361774 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις σας. 2.
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010
Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 Τηλ. 6165-617784 - Fax: 64105 4, Panepistimiou (Εleftheriou Venizelou) Street Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,
Θαλής Α' Λυκείου 1995-1996
Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο
Να αποδείξετε ότι αυτή η τοποθέτηση των ακεραίων είναι δυνατή αν και μόνο αν οι ευθείες δεν είναι όλες παράλληλες.
η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ BMO 004 Μάιος 004, Πλέβεν Βουλγαρία Επιμέλεια: Ανδρέας Φιλίππου Ανδρέας Σαββίδης Πρόβλημα. Η ακολουθία πραγματικών αριθμών a0, a, a, ικανοποιεί την σχέση am+ n+ am n m+
B τάξη Γυμνασίου : : και 4 :
Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79
Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α
Ευκλείδης Β' Λυκείου 993-994 ΜΕΡΟΣ Α. Δύο ίσα τετράγωνα ΑΒΓΔ και ΕΖΗΘ πλευράς 0 τοποθετούνται έτσι ώστε η κορυφή Ε να βρίσκεται στο κέντρο του τετραγώνου ΑΒΓΔ. Το εμβαδό του μέρους του επιπέδου που καλύπτεται
GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.
Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 17 Ιανουαρίου 015 Β ΓΥΜΝΑΣΙΟΥ 7 49 3 4 3 6 11 Υπολογίστε την τιμή της παράστασης: Α= + + : 3 9 7 3 5 10 Πρόβλημα Μία οικογένεια αγόρασε
Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. α β. β (β) Το μικρότερο από τα κλάσματα που βρήκαμε στο προηγούμενο ερώτημα είναι το
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 0 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 5 44 39 8 : Α= 5 5 5 6 3+
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου ο Θέμα Εκφωνήσεις - Λύσεις των θεμάτων Έκδοση 1 η (14/11/014) Θέματα ης Ομάδας GI_V_GEO 18975 Δίνεται τρίγωνο ABΓμε AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε
B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 28 ΙΑΝΟΥΑΡΙΟΥ 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ,
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ 20 Ιανουαρίου 2018 Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α
ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς
Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ «Ευκλείδης» Ημερομηνία: 21/01/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις σας. 2.
Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ
ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ
Επιμέλεια: ιώργος Ράπτης ΘΕΤ ΣΤΗΝ ΕΩΕΤΡΙ ΛΥΚΕΙΟΥ ΘΕ 1 ο. Να αποδείξετε ότι το εμβαδό τραπεζίου με βάσεις 1, και ύψος υ δίνεται από τον τύπο: ( 1+ ) υ Ε= ονάδες 1 B. ν φν, λν και αν είναι: η γωνία, η πλευρά
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ος ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ Ημερομηνία: /0/05 Ώρα εξέτασης: 0:00 -:0 ΟΔΗΓΙΕΣ:. Να λύσετε όλα τα θέματα.κάθε θέμα βαθμολογείται με 0 μονάδες.. Να γράφετε με μπλέ ή μαύρο
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. β = =.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 6 79 ΑΘΗΝΑ Τηλ 665-6778 - Fax: 65 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street
: :
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 19 Οκτωβρίου 013 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 16 1 74 3 1 : 4 53 3 4 :. 9 8 9 Πρόβλημα Ένας οικογενειάρχης πήρε
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου
Β ΓΥΜΝΑΣΙΟΥ ,,,,,,,
Τηλ 36653-367784 - Fa: 36405 Tel 36653-367784 - Fa: 36405 Νοεμβρίου 04 Β ΓΥΜΝΑΣΙΟΥ 3 74 3 3 Να υπολογίσετε την τιμή της παράστασης: :8 9 9 37 4 Πρόβλημα Ένας έμπορος συλλεκτικών αντικειμένων αγόρασε δύο
ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1
ΩΜΤΡΙ ΛΥΚΙΟΥ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το μισό
ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΡΧΙΑΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΝΟΕΜΒΡΙΟΣ 2012 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 10/11/2012 Ώρα εξέτασης: 10:00-12:00 ΟΔΗΓΙΕΣ: 1 Να λύσετε όλα τα θέματα Κάθε θέμα βαθμολογείται με 10 μονάδες
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fa: 0 6405 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 9ο ΑΣΚΗΣΕΙΣ 801-900 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει