PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN.

Σχετικά έγγραφα
SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

GENIKEUMENA OLOKLHRWMATA

Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata

11 OktwbrÐou S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN. Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN

JEMATA EXETASEWN Pragmatik Anˆlush I

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic

Ανάλυση ις. συστήματα

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA

Mègisth ro - elˆqisth tom

Eisagwg sthn KosmologÐa

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002

Ανάλυση ασκήσεις. συστήματα


Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR

Ask seic me ton Metasqhmatismì Laplace

1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c.

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB

Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata 2

Shmei seic sto mˆjhma Analutik GewmetrÐa

στο Αριστοτέλειο υλικού.

Θεωρία Πιθανοτήτων και Στατιστική

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Στατιστική για Χημικούς Μηχανικούς

SofÐa ZafeirÐdou: GewmetrÐec

APEIROSTIKOS LOGISMOS I

ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA

Κλασσική Ηλεκτροδυναμική II

Shmei seic Sunarthsiak c Anˆlushc

2+sin^2(x+2)+cos^2(x+2) Δ ν =[1 1 2 ν 1, ν ) ( ( π (x α) ημ β α π ) ) +1 + a 2

Στατιστική για Χημικούς Μηχανικούς

f(x) =x x 2 = x x 2 x =0 x(x 1) = 0,

Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart sewn

Shmei seic sto mˆjhma Analutik GewmetrÐa

Ανάλυση ΙΙ Σεπτέµβριος 2012 (Λύσεις)

ΜΑΘΗΜΑΤΙΚΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

HU215 - Frontist rio : Seirèc Fourier

N.Σ. Μαυρογιάννης 2010

Φυλλο 3, 9 Απριλιου Ροδόλφος Μπόρης

Farkas. αx+(1 α)y C. λx+(1 λ)y i I A i. λ 1,...,λ m 0 me λ 1 + +λ m = m. i=1 λ i = 1. i=1 λ ia i A. j=1 λ ja j A. An µ := λ λ k = 0 a λ k

Ergasthriak 'Askhsh 2

ΜΕΤΑΒΟΛΙΚΕΣ ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΕΥΘΕΡΩΝ ΣΥΝΟΡΩΝ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΝΙΠΥΡΑΚΗ ΜΑΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

2

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

1, 3, 5, 7, 9,... 2, 4, 6, 8, 10,... 1, 4, 7, 10, 13,... 2, 5, 8, 11, 14,... 3, 6, 9, 12, 15,...

Anaz thsh eustaj n troqi n se triplˆ sust mata swmˆtwn

στο Αριστοτέλειο υλικού.

thlèfwno: , H YHFIAKH TAXH A' GumnasÐou Miqˆlhc TzoÔmac Sq. Sumb. kl.

Eukleideiec Gewmetriec

SUNOLA BIRKHOFF JAMES ϵ ORJOGWNIOTHTAS KAI ARIJMHTIKA PEDIA

Ανάλυση. σήματα και συστήματα

Σχόλια για το Μάθημα. Λουκάς Βλάχος

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Ergasthriak 'Askhsh 3

KBANTOMHQANIKH II (Tm ma A. Laqanˆ) 28 AugoÔstou m Upìdeixh: Na qrhsimopoihjeð to je rhma virial 2 T = r V.

Θεωρία Πιθανοτήτων και Στατιστική


GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c

MELETH TWN RIZWN TWN ASSOCIATED ORJOGWNIWN

Upologistikˆ Zht mata se Sumbibastikèc YhfoforÐec

spin triplet S =1,M S =0 = ( + ) 2 S =1,M S = 1 = spin singlet S =0,M S =0 = ( )

Upologistik Fusik Exetastik PerÐodoc IanouarÐou 2013

2 PerÐlhyh Se aut n thn ergasða, parousi zoume tic basikìterec klassikèc proseggðseic epðlushc Polu-antikeimenik n Problhm twn BeltistopoÐhshs(PPB) ka

Sunarthsiakèc anisìthtec kai sugkèntrwsh tou mètrou. Prìqeirec Shmei seic

Apeirostikìc Logismìc. Pragmatikèc Sunart seic Miac Pragmatik c Metablht c

Σήματα Συστήματα Ανάλυση Fourier για σήματα και συστήματα συνεχούς χρόνου Περιοδικά Σήματα (Σειρά Fourier)

Å Ó Ó ÐÅÉÑÁÌÁÔÉÊÏ ËÕÊÅÉÏ. ÁóêÞóåéò. ôçò ÅÕÁÃÃÅËÉÊÇÓ Ó ÏËÇÓ ÓÌÕÑÍÇÓ Å ÅÔÏÓ É ÉÄÑÕÓÇÓ

Apeirostikìc Logismìc. Mia Pragmatik Metablht

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA

majhmatikoð upologismoð. To biblðo mporeð na qwristeð jematikĺ se treic enìthtec. Thn prÿth enìthta apoteloôn

t t j=1 span(x) = { 1-1

G. A. Cohen ** stìqo thn kubernhtik nomojesða kai politik, den upˆrqei tðpota to qarakthristikì sth morf thc.)

+#!, - ),,) " ) (!! + Henri Poincar e./ ', / $, 050.

MÐa SÔntomh Eisagwgă stic SÔgqronec JewrÐec Isìthtac

9.2 Μελετώντας τρισδιάστατα γραφικά στο επίπεδο Oi sunartήseiv Contour Plot kai DensityPlot

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

YWMIADH BASILEIOU fifianalush PROSARMOGHS ELASTOPLASTIKWN METALLIKWN KATASKEUWN UPO TO TRISDIASTATO KRITHRIO DIARROHS TRESCA ME TEQNIKES TOU HMIJETIKO

EUSTAJEIA DUNAMIKWN SUSTHMATWN 1 Eisagwg O skop c tou par ntoc kefala ou e nai na parousi sei th basik jewr a gia th mel th thc eust jeiac en c mh gra

Σχήμα 1.1: Διάφορες ισόχρονες καμπύλες με διαφορετικές μεταλλικότητες Ζ, και περιεκτικότητα σε ήλιο Υ.

Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας


Transcript:

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN h Seirˆ Ask sewn Akrìtata pragmatik n sunart sewn 1. Na brejoôn ta topikˆ akrìtata twn sunart sewn: (a) f(x, y) = 1 x 4xy + 9y + 3x 14y + 1. 1

(b) g(x, y) = x 3 + y 3 1(x + y).. Na deiqjeð ìti h sunˆrthsh f(x, y) = x 4 + 16y 4 (x y) èqei trða kritikˆ shmeða kai na brejeð h fôsh touc. Eidikˆ gia to (0, 0) na deiqjeð ìti den eðnai shmeðo topikoô akrotˆtou. 3. Na brejoôn ta topikˆ akrìtata thc sunˆrthshc f : R R, me f(x, y) = 1 x y + e x + e y. 4. Na brejoôn ta topikˆ akrìtata thc sunˆrthshc f : R R, me f(x, y) = x y 4 x 4 y, x 0, y 0. 5. Na brejeð sto xy-epðpedo èna shmeðo M(x, y) tètoio ste to ˆjroisma twn tetrag nwn twn apostˆsewn tou apì tic eujeðec x = 0, y = 0, x y + 1 = 0 na eðnai to elˆqisto dunatì.

6. Na prosdiorðsete ta topikˆ akrìtata thc sunˆrthshc f : R R pou orðzetai me ton tôpo f(x, y) = sin x + sin y + sin(x + y), an 0 < x < π kai 0 < y < π. 7. Na prosdiorðsete èna shmeðo P (x 0, y 0 ) tou kartesianoô epipèdou (Π) to opoðo èqei thn idiìthta ìti to ˆjroisma twn tetrag nwn twn apostˆsewn tou apì ta tèssera dosmèna shmeða na eðnai to elˆqisto. A(x 1, y 1 ), B(x, y ), Γ(x 3, y 3 ) kai (x 4, y 4 ) tou (Π) 8. Na brejeð h apìstash tou shmeðou P (1, 0, ) apì to epðpedo (Π) me exðswsh x + y + z = 4. 9. Na prosdioristoôn treic jetikoð pragmatikoð arijmoð x, y, z twn opoðwn to ˆjroisma eðnai 1 kai to ginìmenì touc lambˆnei mègisth tim. 10. H jermokrasða T sta shmeða enìc q rou eðnai T (x, y, z) = 400xyz. BreÐte th mègisth kai thn elˆqisth jermokrasða pˆnw sth sfaðra x + y + z = 1. 3

11. Na brejeð h elˆqisth apìstash thc kwnik c epifˆneiac apì thn arq twn axìnwn O(0, 0, 0). z = (x 1) + (y 1) 1. 'Ena sqoinð m kouc 1 cm dipl netai ètsi ste na sqhmatisteð èna trapèzio qwrðc ˆnw bˆsh, ìpwc sto sq ma. Na brejeð to mègisto embadì. y x 1 x x ϑ y u O x 13. Na upologisjoôn oi diastˆseic enìc kibwtðou epifˆneiac 500 cm mègisthc qwrhtikìthtac. 4

14. Na breðte thn elˆqisth apìstash thc arq c twn axìnwn O(0, 0, 0) apì thn epifˆneia z = xy + 4. 15. Na breðte thn elˆqisth apìstash thc arq c twn axìnwn O(0, 0, 0) apì to epðpedo x + 3y z = 1. 16. Qreiˆzetai na kataskeuˆsoume anoiktì kib tio me ìgko 1000 cm 3. Na brejoôn oi diastˆseic ste to ulikì pou ja qreiasteð na eðnai elˆqisto. 5

17. Na prosdiorðsete ta topikˆ akrìtata thc sunˆrthshc f : R R pou orðzetai me ton tôpo f(x, y) = e y 8x +x 4. Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc 6

. Lumènec Ask seic 7

Jèma 1 : Na brejoôn ta topikˆ akrìtata twn sunart sewn: (a) (b) f(x, y) = 1 x 4xy + 9y + 3x 14y + 1. g(x, y) = x 3 + y 3 1(x + y). LÔsh (a) H sunˆrthsh f(x, y) eðnai dôo forèc suneq c paragwgðsimh (akèraio polu numo). B ma 1 o = BrÐskoume ta stˆsima shmeða. Ta stˆsima shmeða (upoy fièc jèseic akrotˆtwn) eðnai lôseic tou sust matoc twn exis sewn x (x, y) = 0 f x (x, y) = 0 'Omwc y (x, y) = 0 f y (x, y) = 0 f x = x 4y + 3 (1) f y = 4x + 18y 14 () To sôsthma twn exis sewn grˆfetai: f x (x, y) = 0 f y (x, y) = 0 x 4y + 3 = 0 (3) 4x + 18y 14 = 0 (4) Apì th lôsh tou sust matoc twn exis sewn (3), (4) prokôptei wc stˆsimo shmeðo to x = 1, y = 1 dhlad to (1, 1). B ma o = BrÐskoume ta topikˆ akrìtata. Apì parag gish twn (1), () prokôptoun: f xx = 1, f xy = f yx = 4, f yy = 18. pou eðnai stajerèc. 'Ara sth jèsh (1, 1) èqw: = f xx f xy f yx 'Ara sth jèsh (1, 1) èqw topikì akrìtato. f yy = 1 4 4 18 = > 0. 8

B ma 3 o = ProsdiorÐsoume to eðdoc akrotˆtou (topikì mègisto topikì elˆqisto). Epeid èqw topikì elˆqisto sto (1, 1). f xx = 1 > 0, B ma 4 o = ProsdiorÐsoume thn tim f(x 0, y 0 ). H tim tou eðnai f min = f(1, 1) = 1 1 4 1 1 + 9 1 + 3 1 14 1 + 1 = 5. (b) B ma 1 o = BrÐskoume ta stˆsima shmeða. Ta stˆsima shmeða (upoy fièc jèseic akrotˆtwn) eðnai lôseic tou sust matoc twn exis sewn 'Omwc g x (x, y) = 0 g y (x, y) = 0 g x (x, y) = 0 g y (x, y) = 0 g x = 0 3x 1 = 0 (5) g y = 0 3y 1 = 0 (6) To sôsthma twn exis sewn grˆfetai: g x (x, y) = 0 g y (x, y) = 0 3x 1 = 0 3y 1 = 0 Apì th lôsh tou sust matoc prokôptei ìti ta stˆsima shmeða eðnai: (, ), (, ), (, ), (, ). 9

B ma o = BrÐskoume ta topikˆ akrìtata. Epiplèon brðskoume: kai h orðzousa: = g xx g xx = 6x, g xy = 0 = g yx, g yy = 6y. g yx g xy g yy = 6x 0 0 6y = 36xy = (x, y). Sto shmeðo (, ) èqw (, ) = 36 = 144 > 0. 'Ara upˆrqei topikì akrìtato sth jèsh (, ). Sto shmeðo (, ) èqw (, ) = 36 ( ) < 0. 'Ara ed den upˆrqei topikì akrìtato. Sto shmeðo (, ) èqw (, ) = 36 ( ) < 0, ˆra oôte sto shmeðo autì upˆrqei topikì akrìtato. Sto shmeðo (, ) èqw 'Ara sth jèsh (, ) upˆrqei topikì akrìtato. (, ) = 36 ( ) ( ) = 144 > 0. B ma 3 o = ProsdiorÐsoume to eðdoc akrotˆtou (topikì mègisto topikì elˆqisto). Epeid èqw topikì elˆqisto sto (, ). Epeid èqw topikì mègisto sto (, ). g xx (, ) = 6 = 1 > 0 g xx (, ) = 6 ( ) < 0, B ma 4 o = ProsdiorÐsoume thn tim g(x 0, y 0 ). g(, ) = 3 + 3 1( + ) = 3. g(, ) = ( ) 3 + ( ) 3 1( ) = 3. 10

Jèma : Na deiqjeð ìti h sunˆrthsh f(x, y) = x 4 + 16y 4 (x y) èqei trða kritikˆ shmeða kai na brejeð h fôsh touc. Eidikˆ gia to (0, 0) na deiqjeð ìti den eðnai shmeðo topikoô akrotˆtou. LUSH x = 4x3 4(x y) = 0 y = 64y3 4(x y)( ) = 0 Prosjètoume thn pr th exðswsh sthn deôterh kai prokôptei x 3 x + y = 0 x 3 + 8y 3 = 0 x 3 + 8y 3 = 0 x3 x + y = 0 x3 x + y = 0 8y 3 + x y = 0 x 3 x + y = 0 x 3 + (y) 3 = 0 x 3 x + y = 0 (x + y) (x xy + 4y ) = 0 x 3 x + y = 0 x = y x 3 x = 0 x = y x = 0 x = x = x = y 'Ara èqoume ta ex c stˆsima shmeða: ( ),, ( ),, (0, 0). 11

f x = 4x 3 4(x y) = 4x 3 4x + 8y f xx = 1x 4 f x = 4x 3 4x + 8y f xy = 8 f y = 64y 3 4(x y)( ) = 64y 3 + 8x 16y f yy = 19y 16 = 8 ( 4y ) f y = 64y 3 + 8x 16y f yx = 8. = f xx f yx f xy f yy = 1x 4 8 8 8 ( 4y ) 'Ara = 64 ( 3x 1 ) ( 1y 1 ) 64. = 64 ( 3x 1 ) ( 1y 1 ) 64 kai f xx = 1x 4. 'Elegqoi : i. Gia to ( ), èqoume ( ), = 64 4 > 0 kai f xx = 1 4 > 0 ˆra sth jèsh ( ), èqoume topikì elˆqisto. ii. Gia to (, ) èqoume = 64 4 > 0 kai f xx ( ), = 1 4 > 0 ˆra sth jèsh (, ) (, ) èqoume topikì elˆqisto. 1

iii. Gia to (0, 0) èqoume opìte pˆme ston orismì: = 64 64 = 0 Orismìc : 'Estw h sunˆrthsh f(x, y) orismènh se ènan tìpo τ. Lème ìti èqoume topikì mègisto (antðstoiqa topikì elˆqisto) sth jèsh (x 0, y 0 ) tou tìpou τ, ìtan upˆrqei perioq B ((x 0, y 0 ), δ) ètsi ste (x, y) B ((x 0, y 0 ), δ), na isqôei h sqèsh f(x, y) f(x 0, y 0 ) 0 (antðstoiqa f(x, y) f(x 0, y 0 ) 0) efarmìzoume to Mejodologikì sqìlio. Mejodologikì sqìlio : JewroÔme th diaforˆ A = f(x, y) f(x 0, y 0 ) thc opoðac exetˆzoume to prìshmo gôro apì to (x 0, y 0 ). Sun jwc gia (x 0, y 0 ) èqoume to (0, 0). i. An mèsw tautot twn (p.q. tetrˆgwna) deðxoume ìti se perioq gôrw apì to (x 0, y 0 ) isqôei A 0 A 0, tìte èqoume akrìtato. ii. Epilègoume kampôlec pou pernˆne apì to (0, 0), (p.q. y = λx, y = λx ). (a) Gia y = x èqoume f(x, y) = f(x, x), opìte ja eðnai A = f(x, x) f(0, 0) kai exetˆzoume to prìshmo gôrw apì to 0 wc proc x. (b) Gia y = λx èqoume f(x, y) = f(x, λx) me katˆllhlo λ, opìte A = f(x, λx) f(0, 0) kai exetˆzoume to prìshmo gôrw apì to 0 wc proc x. An sto α) β) h diaforˆ A paðrnei jetikèc kai arnhtikèc timèc, tìte den èqoume akrìtato. 13

A = f(x, y) f(0, 0) = x 4 + 16y 4 (x y). Gia x = y A = 16y 4 + 16y 4 = 3y 4, ˆra ìtan to y paðrnei timèc sthn perioq tou mhdenìc kai epð thc eujeðac x = y, èqoume A > 0. (1) Gia x = y A = 16y 4 + 16y 4 3y = 3y ( y 1 ). -1 0 1 + - - + 'Ara ìtan to y paðrnei timèc sthn perioq tou mhdenìc kai epð thc eujeðac x = y, èqoume A < 0. () Apì tic sqèseic (1) kai () sumperaðnoume ìti den upˆrqei akrìtato sth jèsh (0, 0). 14

Jèma 5 : Na brejeð sto xy-epðpedo èna shmeðo M(x, y) tètoio ste to ˆjroisma twn tetrag nwn twn apostˆsewn tou apì tic eujeðec na eðnai to elˆqisto dunatì. x = 0, y = 0, x y + 1 = 0 LUSH y x y + 1 = 0 1 d 3 M(x, y) d 1 d O x Gia to shmeðo M(x, y) tou XOY epipèdou, to ˆjroisma twn tetrag nwn apì tic eujeðec eðnai: Epomènwc zhtˆme to elˆqisto thc sunˆrthshc Upologismìc twn pijan n akrotˆtwn: x = 0 d 1 = x y = 0 d = y ( ) x y + 1 x y + 1 = 0 d 3 = = 1 1 + 1 (x y + 1). f(x, y) = y + x + 1 (x y + 1). EpÐshc x = 0 y = 0 = f xx f yx f xy f yy 3x y = 1 x + 3y = 1 x 0 = 1 4 y 0 = 1 4 = 3 1 1 3 = 8 > 0 kai f xx = 3 > 0. 'Ara sto shmeðo ( 1 4, 1 4) èqoume elˆqisto. 15

Jèma 6 : Na prosdiorðsete ta topikˆ akrìtata thc sunˆrthshc f : R R pou orðzetai me ton tôpo f(x, y) = sin x + sin y + sin(x + y), an 0 < x < π kai 0 < y < π. LUSH H sunˆrthsh f(x, y) eðnai dôo forèc suneq c paragwgðsimh sto R. Ta stˆsima shmeða (upoy fièc jèseic akrotˆtwn) eðnai lôseic tou sust matoc twn exis sewn x = 0 f x = 0 cos x + cos(x + y) = 0 y = 0 f y = 0 cos y + cos(x + y) = 0 cos x = cos y. (1) Apì thn (1) kai ton periorismì 0 < x < π kai 0 < y < π sunepˆgetai ìti 'Etsi apì to sôsthma sunepˆgetai h exðswsh x = y. cos x + cos x = 0. () H trigwnometrik exðswsh () grˆfetai sth morf cos x + cos x 1 = 0, dhl. cos x + cos x 1 = 0. (3) H lôseic thc deuterobˆjmiac exðswshc (3) wc proc cos x eðnai cos x = 1, cos x = 1. Allˆ 0 < x < π, epomènwc h tim cos x = 1 aporrðptetai. Sunep c h monadik epitrept tim tou cos x sto diˆsthma (0, π) eðnai 1. H lôsh thc exðswshc eðnai 'Omwc x = y, sunep c cos x = 1 sto (0, π) x = π 3. x = π 3 kai y = π 3. 'Ara h pijan jèsh akrotˆtou thc f eðnai to shmeðo ( π 3, π 3 ). 16

= f xx f yx ( π f xx = sin x sin(x + y) f xx 3, π ) = sin π 3 3 sin π 3 3 3 = = 3. ( π f yy = sin y sin(x + y) f yy 3, π ) = sin π 3 3 sin π 3 3 3 = = 3. ( π f xy = sin(x + y) = f yx f xy 3, π ) = sin π 3 ( π 3 3 = = f yx 3, π ). 3 = f xx f xy f yx f yy = 3 3 3 3 = 3 3 4 = 9 4 > 0. 'Ara sth jèsh ( π 3, π 3 ) èqw topikì akrìtato. f xy f yy. Epeid ( π f xx 3, π ) = 3 < 0, 3 h sunˆrthsh f parousiˆzei topikì mègisto sto shmeðo ( π 3, π 3 ). H mègisth tim thc f sto orjog nio pou orðzetai me 0 < x < π kai 0 < y < π eðnai ( π f 3, π ) 3 = sin π 3 + sin π 3 + sin π 3 = 3 sin π 3 = 3 3. 17

Jèma 7 : Na prosdiorðsete èna shmeðo P (x 0, y 0 ) tou kartesianoô epipèdou (Π) to opoðo èqei thn idiìthta ìti to ˆjroisma twn tetrag nwn twn apostˆsewn tou apì ta tèssera dosmèna shmeða na eðnai to elˆqisto. A(x 1, y 1 ), B(x, y ), Γ(x 3, y 3 ) kai (x 4, y 4 ) tou (Π) LUSH To ˆjroisma twn tetrag nwn twn apostˆsewn enìc shmeðou P (x, y) tou (Π) apì ta shmeða A(x 1, y 1 ), B(x, y ), Γ(x 3, y 3 ) kai (x 4, y 4 ) eðnai [ (x x1 ) + (y y 1 ) ] + [ (x x ) + (y y ) ] + [ (x x 3 ) + (y y 3 ) ] + [ (x x 4 ) + (y y 4 ) ]. Sunep c eðnai fanerì ìti prèpei na prosdiorðsoume to elˆqisto thc sunˆrthshc pou orðzetai me ton tôpo f : R R f(x, y) = (x x 1 ) + (y y 1 ) + (x x ) + (y y ) + (x x 3 ) + (y y 3 ) + (x x 4 ) + (y y 4 ). H sunˆrthsh f(x, y) eðnai dôo forèc suneq c paragwgðsimh sto R wc poluwnumik sunˆrthsh me pedðo orismoô R. Ta stˆsima shmeða (upoy fièc jèseic akrotˆtwn) eðnai lôseic tou sust matoc twn exis sewn x = 0 f x = 0 (x x 1 ) + (x x ) + (x x 3 ) + (x x 4 ) = 0 y = 0 f y = 0 (y y 1 ) + (y y ) + (y y 3 ) + (y y 4 ) = 0 4x = x 1 + x + x 3 + x 4 x 0 = x1+x+x3+x4 4 4y = y 1 + y + y 3 + y 4 y 0 = y 1+y +y 3 +y 4 4 Gia ton prosdiorismì tou eðdouc tou krðsimou shmeðou thc f ja upologðsoume tic deôterec merikèc parag gouc thc f sto shmeðo (x 0, y 0 ). EÐnai = f xx f xy f yx f yy = 8 0 0 8 = 64 > 0 (x 0, y 0 ) = 64 > 0. 'Ara sth jèsh (x 0, y 0 ) èqw topikì akrìtato. Epeid f xx (x 0, y 0 ) = 8 > 0 h sunˆrthsh f parousiˆzei topikì elˆqisto sto shmeðo (x 0, y 0 ). Sunep c to zhtoômeno shmeðo eðnai to ( x1 + x + x 3 + x 4 P 4, ) y 1 + y + y 3 + y 4 4. 18

Jèma 8 : Na brejeð h apìstash tou shmeðou P (1, 0, ) apì to epðpedo (Π) me exðswsh x + y + z = 4. LUSH H apìstash enìc tuqìntoc shmeðou A(x, y, z) tou R 3 apì to shmeðo P (1, 0, ) dðnetai me ton tôpo d = d(a, P ) = (x 1) + (y 0) + (z + ). (1) 'Omwc to shmeðo A(x, y, z) an kei sto epðpedo (Π), sunep c z = 4 x y. Epomènwc h (1) grˆfetai d = (x 1) + y + (6 x y). () JewroÔme th sunˆrthsh pou orðzetai me ton tôpo To prìblhma elaqistopoðhshc thc sunˆrthshc () eðnai isodônamo me to prìblhma elaqistopoðhshc thc sunˆrthshc (3). f(x, y) = (x 1) + y + (6 x y). (3) H sunˆrthsh f(x, y) eðnai dôo forèc suneq c paragwgðsimh sto R wc poluwnumik sunˆrthsh me pedðo orismoô R. Ta stˆsima shmeða (upoy fièc jèseic akrotˆtwn) eðnai lôseic tou sust matoc twn exis sewn x = 0 y = 0 f x = 0 f y = 0 (x 1) (6 x y) = 0 y + (6 x y)( ) = 0 to opoðo èqei monadik lôsh 4x + 4y 14 = 0 4x + 10y 4 = 0 x + y 7 = 0 x + 5y 1 = 0 (x, y) = ( ) 11 6, 5. 3 x + y = 7 x + 5y = 1 19

Gia ton prosdiorismì tou eðdouc tou krðsimou shmeðou thc f ja upologðsoume tic deôterec merikèc parag gouc thc f sto shmeðo (x 0, y 0 ). EÐnai = f ( ) xx f xy f yx f yy = 4 4 11 4 10 = 4 > 0 6, 5 = 4 > 0. 3 'Ara sth jèsh ( 11 6, 5 3) èqw topikì akrìtato. Epeid ( ) 11 f xx 6, 5 = 4 > 0 3 h sunˆrthsh f parousiˆzei topikì elˆqisto sto shmeðo ( 11 6, 5 3). 'Etsi h elˆqisth apìstash tou shmeðou P (1, 0, ) apì to epðpedo (Π) eðnai d = = (11 ) 6 1 + (5 ) + = 5 6 6 6. ( ) 5 + 3 ( ) ( 5 + 6 11 3 6 10 ) = 3 ( ) 5 = 6 0

Jèma 9 : Na prosdioristoôn treic jetikoð pragmatikoð arijmoð x, y, z twn opoðwn to ˆjroisma eðnai 1 kai to ginìmenì touc lambˆnei mègisth tim. LUSH Upojètoume ìti x, y, z eðnai oi zhtoômenh jetikoð pragmatikoð arijmoð gia touc opoðouc x + y + z = 1. (1) 'Estw h sunˆrthsh f : R R pou orðzetai me ton tôpo Apì thn (1) lambˆnoume f(x, y, z) = xyz. () z = 1 x y. (3) Apì tic sqèseic () kai (3) orðzoume thn sunˆrthsh g : R R me ton tôpo dhl. f(x, y) = xy(1 x y) f(x, y) = 1xy x y xy. (4) H sunˆrthsh f(x, y) eðnai dôo forèc suneq c paragwgðsimh sto R wc poluwnumik sunˆrthsh me pedðo orismoô R. Ta stˆsima shmeða (upoy fièc jèseic akrotˆtwn) eðnai lôseic tou sust matoc twn exis sewn x = 0 f x = 0 1xy xy y = 0 y = 0 f y = 0 1x x xy = 0 To sôsthma èqei tic lôseic (x, y) = (0, 0) kai (x, y) = (4, 4). To shmeðo (0, 0) profan c aporrðptetai. Epomènwc ja exetˆsoume an sto shmeðo (4, 4) h sunˆrthsh f parousiˆzei akrìtato. Gia ton prosdiorismì tou eðdouc tou krðsimou shmeðou thc f ja upologðsoume tic deôterec merikèc parag gouc thc f sto shmeðo (x 0, y 0 ). EÐnai 'Ara f xx = y f xx (4, 4) = 8 f xy = 1 x y f xy (4, 4) = 4 f yx = 1 x y f yx (4, 4) = 4 f yy = x f xx (4, 4) = 8 = f xx f yx f xy f yy = 8 4 4 8 = 48 > 0. 'Ara sth jèsh (4, 4) èqw topikì akrìtato. 1

Epeid f xx (4, 4) = 8 < 0 h sunˆrthsh f parousiˆzei topikì mègisto sto shmeðo (4, 4). Apì thn (3) prokôptei z = 1 4 4 = 4. Epomènwc oi zhtoômenoi jetikoð pragmatikoð arijmoð eðnai x = 4, y = 4, z = 4.

Jèma 11 : Na brejeð h elˆqisth apìstash thc kwnik c epifˆneiac apì thn arq twn axìnwn O(0, 0, 0). z = (x 1) + (y 1) LUSH H apìstash enìc tuqìntoc shmeðou A(x, y, z) thc dosmènhc epifˆneiac apì thn arq twn axìnwn O(0, 0, 0) dðnetai me ton tôpo d = d(o, A) = x + y + z. (1) 'Omwc to shmeðo A(x, y, z) an kei sthn epifˆneia, sunep c z = (x 1) + (y 1). Epomènwc h (1) grˆfetai d = x + y + (x 1) + (y 1). () JewroÔme th sunˆrthsh pou orðzetai me ton tôpo To prìblhma elaqistopoðhshc thc sunˆrthshc () eðnai isodônamo me to prìblhma elaqistopoðhshc thc sunˆrthshc (3). f(x, y) = x + y + (x 1) + (y 1). (3) H sunˆrthsh f(x, y) eðnai dôo forèc suneq c paragwgðsimh sto R wc poluwnumik sunˆrthsh me pedðo orismoô R. Ta stˆsima shmeða (upoy fièc jèseic akrotˆtwn) eðnai lôseic tou sust matoc twn exis sewn x = 0 y = 0 f x = 0 f y = 0 x + (x 1) = 0 y + (y 1) = 0 x + x = 0 y + y = 0 4x = 4y = x = 1 y = 1 to opoðo èqei monadik lôsh (x, y) = ( ) 1, 1. 3

Gia ton prosdiorismì tou eðdouc tou krðsimou shmeðou thc f ja upologðsoume tic deôterec merikèc parag gouc thc f sto shmeðo (x 0, y 0 ). EÐnai = f xx f xy = 4 0 0 4 = 16 > 0. f yx 'Ara sth jèsh ( 1, 1 ) èqw topikì akrìtato. Epeid f yy ( ) 1 f xx, 1 = 4 > 0 h sunˆrthsh f parousiˆzei topikì elˆqisto sto shmeðo ( 1, 1 ). 'Etsi h elˆqisth apìstash thc kwnik c epifˆneiac apì thn arq twn axìnwn O(0, 0, 0) eðnai: d = x + y + (x 1) + (y 1) = (1 ) ( ) ( ) ( ) 1 1 1 = + + 1 + 1 = (1 ) ( ) ( 1 = + + 1 ( + ) 1 = ) ( ) 1 = 4 = = 1 = = 1. 4

Jèma 1 : 'Ena sqoinð m kouc 1 cm dipl netai ètsi ste na sqhmatisteð èna trapèzio qwrðc ˆnw bˆsh, ìpwc sto sq ma. Na brejeð to mègisto embadì. y x 1 x x ϑ y u O x To embadìn tou trapezðou eðnai Allˆ Epomènwc, E = LUSH (B + β) β = 1 x, y = x cos θ, υ = x sin θ, B = 1 x + x cos θ + x cos θ = 1 x + x cos θ. E = (B + β) υ = = (1 x + x cos θ) + (1 x) x sin ϑ = = 4 4x + x cos θ x sin ϑ = = (1 x + x cos θ) x sin ϑ = = (1 x + x cos θ) x sin θ = υ = 1x sin θ x sin θ + x sin θ cos θ E(x, θ) = 1x sin θ x sin θ + x sin θ cos θ. 5

EÐnai: E(x, θ) = 1x cos θ x cos θ + x cos θ x sin θ θ E(x, θ) = 1 sin θ 4x sin θ + x sin θ cos θ. x Oi anagkaðec sunj kec gia akrìtata dðnoun to sôsthma: x ( 1 cos θ x cos θ + x cos θ x sin θ ) = 0 To sôsthma dðnei tic lôseic sin θ (6 x + x cos θ) = 0. M 1 ( θ = 60 0, x = 4 ), M ( θ = 0 0, x = 0 ). Oi timèc θ = 0 0 kai x = 0 aporrðptontai. Oi timèc eðnai dunatèc kai dðnoun to mègisto embadìn. θ = 60 0 kai x = 4 6

Jèma 16 : Qreiˆzetai na kataskeuˆsoume anoiktì kib tio me ìgko 1000 cm 3. Na brejoôn oi diastˆseic ste to ulikì pou ja qreiasteð na eðnai elˆqisto. LUSH 'Etsw x, y, z oi diastˆseic tou kibwtðou. ElaqistopoÐhsh ulikoô shmaðnei elaqistopoðhsh thc epifˆneiac twn tessˆrwn pleur n kai tou pˆtou, dhlad thc èkfrashc E πιϕ = f(x, y, z) = xy + xz + yz. Epeid o ìgkoc eðnai prokôptei ìti opìte h sunˆrthsh èqei th morf 1000 cm 3 = xyz z = 1000 xy f(x, y) = xy + x 1000 xy, + y 1000 xy f(x, y) = xy + 000 y + 000 x. Aut eðnai h sunˆrthsh pou prèpei na elaqistopoihjeð. H sunˆrthsh f(x, y) eðnai dôo forèc suneq c paragwgðsimh. 7

B ma 1 o = BrÐskoume ta stˆsima shmeða. Ta stˆsima shmeða (upoy fièc jèseic akrotˆtwn) eðnai lôseic tou sust matoc twn exis sewn 'Omwc x (x, y) = 0 y (x, y) = 0 f x (x, y) = 0 f y (x, y) = 0 f x = y 000 x (1) f y = x 000 y () To sôsthma twn exis sewn grˆfetai: f x (x, y) = 0 f y (x, y) = 0 y 000 x = 0 (3) x 000 y = 0 (4) Apì th lôsh tou sust matoc twn exis sewn (3), (4) prokôptei x = 0 y = 0 x = y. Gia to prìblhma oi timèc x = 0 kai y = 0 aporrðptontai, en apì th sqèsh x = y prokôptei x = y = (000) 1 3 3 = 10 'Ara to stˆsimo shmeðo eðnai to (10 3, 10 3 ). B ma o = BrÐskoume ta topikˆ akrìtata. Apì parag gish twn (1), () prokôptoun: f xx = 4000 x 3, f xy = f yx = 1, f yy = 4000 y 3. 'Ara sth jèsh (10 3, 10 3 ) èqw: = f xx f yx f xy f yy 4000 = x 1 3 4000 1 y 3 = 4000 x 3 4000 y 3 1. 'Ara sth jèsh (10 3, 10 3 ) èqw topikì akrìtato. (10 3,10 3 ) > 0. 8

B ma 3 o = ProsdiorÐsoume to eðdoc akrotˆtou (topikì mègisto topikì elˆqisto). Epeid f xx (10 3, 10 3 ) = 4000 (10 3 ) = 4000 3 1000 = > 0, èqw topikì elˆqisto sto ( 10 3, 10 3 ). Ara èqoume topikì elˆqisto ìtan oi diastˆseic tou kibwtðou eðnai: x = 10 3, y = 10 3, z = 1000 xy = 1000 (10 3 )(10 3 ) = 1000 100 3 = 3 10 = 10 3 3 3 = 10 3 = 5 3. 9