Feasibility Study of a 6.6 kv, 1 MW Transformerless BTB-Based Loop Controller. System Design and Zero-Sequence-Current Reduction



Σχετικά έγγραφα
VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

65W PWM Output LED Driver. IDPV-65 series. File Name:IDPV-65-SPEC

Capacitors - Capacitance, Charge and Potential Difference

TRC ELECTRONICS, INC LED Driver Constant Voltage 45W MEAN WELL IDLV-45 Series

IDPV-45 series. 45W PWM Output LED Driver. File Name:IDPV-45-SPEC S&E

RSDW08 & RDDW08 series

15W DIN Rail Type DC-DC Converter. DDR-15 s e r i e s. File Name:DDR-15-SPEC

15W DIN Rail Type DC-DC Converter. DDR-15 series. File Name:DDR-15-SPEC

FP series Anti-Bend (Soft termination) capacitor series

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

Metal Oxide Varistors (MOV) Data Sheet

IDPV-25 series. 25W PWM Output LED Driver. File Name:IDPV-25-SPEC S&E

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Computation Method to Improve Three-phase Voltage Imbalance by Exchange of Single-phase Load Connection

Προβλήματα Ποιότητας Ισχύος. Αρμονικές Αρμονική Ποιότητα Ισχύος Αρμονική παραμόρφωση ημιτονοειδών κυματομορφών

Aerovox Corp. Type H High Voltage AC & DC Capacitors. Film Capacitors for Power Electronics Applications. RoHS Compliant. Highlights.

SMD Transient Voltage Suppressors

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

555 TIMER APPLICATIONS AND VOLTAGE REGULATORS

Specification. code ±1.0 ±1.0 ±1.0 ±1.0 ±0.5 approx (g)

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

SYLLABUS. osmania university POWER SEMICONDUCTOR DIODES AND TRANSISTORS POWER TRANSISTOR AND RECTIFIERS CONTROLLED RECTIFIERS AND CONVERTERS

Aluminum Electrolytic Capacitors (Large Can Type)

Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam

Creative TEchnology Provider

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

OWA-60E series IP67. 60W Single Output Moistureproof Adaptor. moistureproof. File Name:OWA-60E-SPEC

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

SPBW06 & DPBW06 series

Aluminum Electrolytic Capacitors

AC Servo Motor Based Position Sensorless Control System Making Use of Springs

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

the total number of electrons passing through the lamp.

MULTILAYER CHIP VARISTOR JMV S & E Series: (SMD Surge Protection)

LPFH-60 series. 60W Constant Voltage + Constant Current LED Driver IP67. File Name:LPFH-60-SPEC

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

2013 REV 01 ELECTRONICS CAPACITORS. DC Applications Metallized Polypropylene Film Self Healing

DRA-60 series LPS. 60W Single Output Switching Power Supply. File Name:DRA-60-SPEC Sicherheit ID

DRA-40 series LPS. 40W Single Output Switching Power Supply. File Name:DRA-40-SPEC Sicherheit ID

INDEX HOESUNG COIL PARTS

EE101: Resonance in RLC circuits

Buck Solution_9W LED Driver for Bulb LD9852_9W_R00_TEST. Size 34.2mm(L)ⅹ26mm(W)ⅹ18mm(H) Key Features

TODA-ISU Corporation. SMD Power Inductor. SPI series. SMD Team

Simplex Crossover for Real-coded Genetic Algolithms

ΑΚΑΓΗΜΙΑ ΔΜΠΟΡΙΚΟΤ ΝΑΤΣΙΚΟΤ ΜΑΚΔΓΟΝΙΑ ΥΟΛΗ ΜΗΥΑΝΙΚΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

YJM-L Series Chip Varistor

Harmonics Control for Cascaded Multilevel Inverter Applying Waveform Resultant Theory

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

RC series Thick Film Chip Resistor

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

SMD Power Inductor-VLH

ELG-150-C series. 150W Single Output LED Power Supply IP67 IP65. File Name:ELG-150-C-SPEC

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

5V/9V/12V Output QC2.0+USB Auto Detect+USB-PD Type-C Application Report ACT4529

Suitable for DC-DC Converters, Voltage Regulators, Decoupling Applications for Computer Motherboards, etc. Performance Characteristics

[1] P Q. Fig. 3.1

NPF-90D series. 90W Single Output Switching Power Supply IP67. File Name:NPF-90D-SPEC

THICK FILM LEAD FREE CHIP RESISTORS

Thermistor (NTC /PTC)

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight

Buck Solution_10W LED Driver for Bulb LD7835_10W_R01_TEST. Size 55mm(L)ⅹ28mm(W)ⅹ18mm(H) Key Features

Coordinated control of a doubly fed induction generator wind turbine with series grid-side converter under unbalanced grid voltage conditions

ALUMINUM ELECTROLYTIC CAPACITORS LKG

ODLV-65 series. 65W PWM Output LED Driver IP67. IS 15885(Part 2/Sec13) File Name:ODLV-65-SPEC

ODLV-45 series. 45W PWM Output LED Driver IP67. IS 15885(Part 2/Sec13) File Name:ODLV-45-SPEC

SMD Power Inductor-VLH

C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS

Buck Solution_20W LED Driver for T8 LD7835_T8_20W_R00_TEST. Key Features

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

PRODUCT IDENTIFICATION SWPA 3012 S 1R0 N T

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Εξοικονόμηση Ενέργειας σε Εγκαταστάσεις Δρόμων, με Ρύθμιση (Dimming) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Multilayer Ceramic Chip Capacitors

Digital motor protection relays

MTBF TEST REPORT CUSTOMER: GTM MODEL NO.: CUSTOMER NO.: Switching Power Supply DESCRIPTION: PASS RESULT: 2008/6/2 DATE:

; +302 ; +313; +320,.

ιπλωµατική εργασία του φοιτητή του Τµήµατος Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστηµίου Πατρών

RF series Ultra High Q & Low ESR capacitor series

Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W

Buck Solution_10W LED Driver for Bulb LD7835_10W_R00_TEST (74V/125mA) Size 55mm(L)ⅹ28mm(W)ⅹ18mm(H) Key Features

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

NPN Silicon RF Transistor BFQ 74

Analysis of the Low-Frequency Ferrite Antenna. Kazuaki Abe (CASIO COMPUTER CO., LTD.), Jun-ichi Takada (Tokyo Institute of Technology)

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Sunlord Specifications subject to change without notice. Please check our website for latest information. Revised 2018/04/15

Bulletin 1489 UL489 Circuit Breakers

Matrices and Determinants

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Transient Voltage Suppressor

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

3 Pole Block Contactors

Transcript:

6.6 kv 1MW BTB Feasibility Study of a 6.6 kv, 1 MW Transformerless BTB-Based Loop Controller System Design and Zero-Sequence-Current Reduction Shinsuke Yonetani, Student Member, Hideaki Fujita, Member, Hirofumi Akagi,Member, Naotaka Okada,Member This paper achieves a feasibility study of a 6.6 kv, 1 MW loop controller that consists of a transformerless backto-back configuration using two 5-level diode-clamped converters. However, the loop controller requires reducing the zero-sequence current circulating between the two distribution lines below than 0.2 A in rms, in order to avoid malfunction of line-to-ground fault protection relays. Moreover, all the dc voltages across four capacitors in the dc link have to be controlled equally. This paper presents a solution to these problems. Two common-mode chokes are installed at the ac side of each converter to suppress high-frequency zero-sequence currents, while feedback control is applied to eliminate low-frequency zero-sequence currents. Two bidirectional buck-boost dc-dc converters are employed to keep the four capacitor voltages equal. Simulation results verify viability and effectiveness of the loop controller, along with the developed theoretical analysis. 5 BTB Keywords: 5-level diode-clamped converter, common-mode current, dc capacitor voltage, Back-To-Back 1. (1) (2) 152-8552 2-12-1 Dept. of Electrical and Electronic Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku, Tokyo 152 8552 201-8511 2-11-1 Central Research Institute of Electrical Power Industry 2-11-1, Iwado Kita, Komae 201 8511 5 PWM BTB Back-To-Back 6.6 kv 1MW 6kVIGBT/ 5 EMTDC/PSCAD 2. 6.6 kv B 124 11 2004 1349

2 1 5 6.6 kv 10 kv 6 6kVIGBT/ 1 3 4 1 6 8 IGBT 2 3 5 (3) 1 8 6kVIGBT 5 1 5 2 2 5 5 (4) (7) 6kVIGBT 1kHz 5 2 3 6.6 kv 0.2 A 1 2 1 1 6.6kV,1MW Table 1. The number of power devices, and their voltage and current ratings in the 6.6 kv, 1 MW transformerless loop controller. Device Number Retad value Main power circuit IGBT 48 6 kv, 200 A Clamping circuit Diode 72 6kV,200A Buck-boost dc-dc converters IGBT 8 6kV, 50A Overvoltage protection IGBT 4 6kV,200A 2 PWM 3. 1 6.6 kv 1MW 2 2 5 BTB BTB A (8) B EMI electromagnetic interference L EMI L f C f R f 2 L CM1 L CM2 BTB EMI 1350 IEEJ Trans. PE, Vol.124, No.11, 2004

1 5 BTB Fig. 1. The transformerless BTB-based loop controller using two 5-level diode-clamped converters. 2 Fig. 2. Dc capacitor voltages and dc link voltage. 2 1 Table 2. Ratings and circuit parameters in Fig. 1. Power rating 1MW Rated voltage 6.6 kv AC link inductor L 14 mh(10% ) Winding resistance of AC inductor R 0.4 Ω(1% ) Common-mode choke 1 L CM1 200 mh Common-mode choke 2 L CM2 100 mh Line inductor L S 7mH(5%) Line resistor R S 1.5 Ω(4% ) DC capacitor voltage V dc 3kV DC capacitor C dc 1000 µf DC link voltage 4 V dc 12 kv Unit capacitance constant H 18 ms Inductor in voltage controller L C 150 mh High-pass-filter capacitor C f 10 µf High-pass-filter resistor R f 20 Ω High-pass-filter inductor L f 6.4 mh High-pass-filter loss 80 W Carrier frequency 900 Hz on a three-phase, 50-Hz, 6.6-kV, 1-MVA base 4. A BTB B B A 4 1 1 A v Au e Au ( v Av e Av = R + L d ) i Au i Av dt (1) v Aw e Aw i Aw d q R + L d dt ωl ωl R+ L d dt i Ad i Aq = v Ad e Ad v Aq e Aq (2) e Ad e Aq 1 A d q i Ad i Aq A d q v Ad v Aq A d q d q v q p q p = v Ad i Ad (3) q = v Ad i Aq (4) i Ad i Aq p q A d e Ad q e Aq (1) i Ad i Aq B 124 11 2004 1351

e Ad e Aq = v Ad 0 R ωl ωl R i Ad i Aq K I T i Ad i Ad i Aq i dt Aq (5) K I i Ad i Ad i Aq i Aq i Ad i Aq d q PI K I 15Ω T 7.5 ms (5) 1 2 3 4 2 BTB v P2 N2 A i Ad = p v Ad + K dc (4 V dc v P2 N2) (6) p A B K dc 0.1 S 4 3 v A0 i Au i Av i Aw i A0 = i Au + i Av + i Aw = i B0 (7) Fig. 3. 3 A block diagram of current controller. i A0 i B0 v A0 K 0 = 700 Ω v A0 = K 0i A0 (8) v A0 e A v A0 3 A 4 A 4 e A IGBT 5. v P2 N2 v P2 M v M N2 v P2 P1 v P1 M v M N1 v N1 N2 5 1 5 A e A D D P1 D M A i A P1 M D P1 D M e A 0 ( 2 V dc e A < 0) D P1 = e A /V dc (0 e A < V dc) (9) 2 e A /V dc (V dc e A 2 V dc) 0 ( 2 V dc e A < V dc) 1 + e A D M = /V dc ( V dc e A < 0) 1 e A /V dc (0 e A < V dc) 0 (V dc e A 2 V dc) (10) 5 2 v P2 M v M N2 (8) 3 2 v P2 M v M N2 i A 2 4 5 Fig. 4. A reference and four carrier waves. 4 V dc v P2 N2 5 e A D Fig. 5. Output voltage e A and duty factor D. v v 1 20 ms 1352 IEEJ Trans. PE, Vol.124, No.11, 2004

v P2 M v M N2 A 1 1 M v P2 N2 4 V dc e A i A v P2 M v M N2 2 V dc A 6 i A 50 Hz M D M i A (a) e A i A (b) i A 90 M D M i A 1 0 v P2 M v M N2 i A 100 Hz (11) e A v P2 M v M N2 2 (12) EA (a) Unity power factor (b) Zero power factor 6 i A 50 Hz M Fig. 6. Current flowing into node M, when i A is a 50-Hz sinusoidal waveform. e A = 2EA sin ωt (11) e A2 = 4 2( v P2 M v M N2 ) EA cos 2ωt (12) 3πV P2 N2 (12) 2 2 2 M 2 7 v M N2 v P2 M M 7(a) M D M i A 0 v P2 M v M N2 7(b) M D M i A 0 v P2 M v M N2 v P2 M v M N2 v P2 M v M N2 2 v P2 M v M N2 K I 15 Ω =40% v P2 M v M N2 2 2 2 = K I [Ω] v P2 M v M N2 K I 2 v P2 M v M N2 v P2 M v M N2 e A2 2 1:1 L = 10% 4 K I (a) Inductive (b) Resistive 7 M 2 Fig. 7. Current flowing into node M, when i A is a 100- Hz sinusoidal waveform. 100 Hz R S 2ω(L S + L) v P2 M v M N2 K I = 2ω(L S + L) (13) 1 1/2ω 5 3 v P2 P1 v P1 M v P2 M v M N2 e A i A A v P2 P1 v P1 M V dc 8 P1 8(a) e A i A P1 D P1 i A 0 v P2 P1 v P1 M 8(b) i A 90 P1 1 0 v P2 P1 v P1 M 180 v P1 M B 124 11 2004 1353

i A = 2I A sin(ωt + φ) = 2I Ad sin ωt 2I Aq cos ωt (15) (9) D P1 A P1 1 T = 20 ms ī AP (a) Unity power factor (b) Zero power factor 8 P1 Fig. 8. Current flowing into node P1. ī AP = 3 T T 0 D P1 i A dt = 6 T T 4 0 D P1 i A dt (16) e A = V dc T Vdc T Vdc = 1 ω sin 1 ( Vdc 2EA ) (17) 9 Fig. 9. Block diagram of buck-boost converters. v P2 P1 BTB A B A B (18) E A = E B A B v P2 P1 v P1 M A B v P2 P1 v P1 M 5 4 v P2 P1 v P1 M P N 9 P v P2 P1 v P1 M ic P ic P L C i CP vc P K V = 1S K C = 0.1 Ω 1:1 L C v P2 P1 v P1 M K V ic P 5 5 L C ī CP A e A i A e A = 2E A sin ωt (14) 2E A V dc ī AP ī AP = 6 { TVdc T ( e A 4 i A dt + 2 e ) A i A dt T 0 V dc T Vdc V dc = 6 [ EA I Ad { 4ωTVdc 2sin(2ωT Vdc ) π } ωt 2 V dc + 2 ] 2I Ad cos(ωt Vdc ) (18) (18) I Aq SVG or STATCOM I Ad = 0 I Aq 0 P1 0 v P2 P1 v P1 M L C A B ī CP = ī AP + ī BP (19) I Ad = I Bd E A = E B ī CP = 0 v P2 P1 = v P1 M 6. 10 2 11 13 A B R L 1MW A B V A V B 6.4 kv 6.9 kv u v 20%, w 20% 11 i SAu THD 6km A B A B 1354 IEEJ Trans. PE, Vol.124, No.11, 2004

10 Fig. 10. Simulated system. Single-line diagram Fig. 12. 12 Effect of zero-sequence-current control. 13 Fig. 13. Effect of dc capacitor voltage controller. 11 Fig. 11. Simulated waveforms in steady state. Total Harmonic Distortion 3.5% L C 20 A 12 i A0 1.5 A 0.2 A EMI EMI 13 v P2 P1 v P1 M 14 v P2 M v M N2 14 2 v P2 M v M N2 Fig. 14. Effect of a 100-Hz sinusoidal current on dc capacitor voltages v P2 M and v M N2. v P2 M v M N2 0.02 s 0.05 s 1 M N2 0MW i Au 100 Hz 0.05 s v P2 M v M N2 15 V B L C ī CP 1MW B 124 11 2004 1355

15 V B ī CP Fig. 15. Relation between voltage V B and dc reactor current ī CP. 7 F.Z. Peng, Z. Pan, K. Corzine, V. Stefanovic, and M. Leuthen: Voltage Balancing Control of Diode-Clamped Multilevel Rectifier/Inverter Systems, IEEE IAS Annual Meeting, Vol.1, pp.182 189 (2003 10) 8 M. Hagiwara, H. Fujita, and H. Akagi: Performance of a Self-Commutated BTB HVDC Link System under a Single-Line-to-Ground Fault Condition, IEEE Trans. Power Electron., Vol.18, No.1, pp.278 285 (2003-1) 9 M. Matsui: Neutral Point Voltage Stabilization Control Based on Harmonic Power Flow for Tree-Level PWM Inverter Type SVG, 1995 National Convention Record IEE Japan Industry Applications Society, No.144, pp.607 610 (1995-8) (in Japanese) 3 PWM SVG, 6, No.144, pp.607 610 (1995-8) BTB V A 6.4 kv 10 R L 10Ω 3.5 MW 0MW 10% (18) (14) (19) 7. 6.6kV,1MW BTB 5 5 v P2 M v M N2 16 1 28 16 7 8 1980 10 24 2003 3 4 BTB 1965 9 10 1990 3 4 1991 4 2002 4 1990 1995 1998 2003 IEEE IAS Committee Prize Paper Award 1 N. Okada: Control of Loop Distribution Network and Result, The Papers of Technical Meeting on PSE, IEE Japan, PSE-00-2 (2000-1) (in Japanese),, PSE-00-2 (2000-1) 2 F. Yoshii and H. Akagi: Configuration and Control of a Transformerless BTB-Based Loop Controller for Installation on Distribution Power Systems, The Papaers of Technical Meeting on SPC, IEE Japan, SPC-02-22 (2002-2) (in Japanese) BTB,, SPC-02-22, (2002-2) 3 A. Nabae, I. Takahashi, and H. Akagi: A New Neutral-Point-Clamped PWM Inverter, IEEE Trans. IAS, Vol.17, No.5, pp.518 523 (1981) 4 S. Ogasawara, T. Sawada, and H. Akagi: Analysis of the Neutral Point Potential Variation of Neutral-Point-Clamped Voltage Source PWM Inverters, T. IEE Japan, Vol.113-D, No.1, pp.41 48 (1993-1) (in Japanese) PWM, D, 113, 1, pp.41 48 (1993-1) 5 3, 5, Vol.5, No.516, pp.61 62 (1993-3) 6 Y. Chen, B. Mwinyiwiwa, Z. Wolanski, and B. T. Ooi: Unified Power Flow Controller (UPFC) Based on Chopper Stabilized Diode-Clamped Multilevel Converters, IEEE Trans. PELS, Vol.15, No.2, pp.258 267 (2000-3) 1951 8 19 1979 3 2000 1 3 IEEE 12 1996 IEEE Fellow 1998 IEEE IAS/PELS Distinguished Lecturer 2001 IEEE William E. Newell Power Electronics Award 2004 IEEE IAS Outstanding Achievement Award 1967 1 5 1990 3 1992 3 4 1356 IEEJ Trans. PE, Vol.124, No.11, 2004