n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)



Σχετικά έγγραφα
1. For each of the following power series, find the interval of convergence and the radius of convergence:

Presentation of complex number in Cartesian and polar coordinate system

α β

The Heisenberg Uncertainty Principle

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Bessel function for complex variable

Degenerate Perturbation Theory

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Solve the difference equation

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

IIT JEE (2013) (Trigonomtery 1) Solutions

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework for 1/27 Due 2/5

Solutions to Exercise Sheet 5


Inverse trigonometric functions & General Solution of Trigonometric Equations

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

CRASH COURSE IN PRECALCULUS

Math221: HW# 1 solutions

C.S. 430 Assignment 6, Sample Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Finite Field Problems: Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Ψηφιακή Επεξεργασία Εικόνας

Approximation of distance between locations on earth given by latitude and longitude

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Homework 3 Solutions

Example Sheet 3 Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

On Generating Relations of Some Triple. Hypergeometric Functions

Matrices and Determinants

Areas and Lengths in Polar Coordinates

Homework 4.1 Solutions Math 5110/6830

Areas and Lengths in Polar Coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

2 Composition. Invertible Mappings

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 8.3 Trigonometric Equations

Second Order RLC Filters

4.6 Autoregressive Moving Average Model ARMA(1,1)

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notes on the Open Economy

Homework 8 Model Solution Section

Srednicki Chapter 55

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Tridiagonal matrices. Gérard MEURANT. October, 2008

Statistical Inference I Locally most powerful tests

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Section 7.6 Double and Half Angle Formulas

The Simply Typed Lambda Calculus

A Note on Intuitionistic Fuzzy. Equivalence Relation

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

A study on generalized absolute summability factors for a triangular matrix

The Neutrix Product of the Distributions r. x λ

B.A. (PROGRAMME) 1 YEAR

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Differential equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Lecture 34 Bootstrap confidence intervals

Every set of first-order formulas is equivalent to an independent set

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Derivation of Optical-Bloch Equations

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Fractional Colorings and Zykov Products of graphs

Right Rear Door. Let's now finish the door hinge saga with the right rear door

On Inclusion Relation of Absolute Summability

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

LAD Estimation for Time Series Models With Finite and Infinite Variance

p n r

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

ST5224: Advanced Statistical Theory II

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

D Alembert s Solution to the Wave Equation

Uniform Convergence of Fourier Series Michael Taylor

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Problem Set 3: Solutions

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Αναερόβια Φυσική Κατάσταση

Gauss Radau formulae for Jacobi and Laguerre weight functions

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Distances in Sierpiński Triangle Graphs

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Partial Trace and Partial Transpose

1. Matrix Algebra and Linear Economic Models

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

CYLINDRICAL & SPHERICAL COORDINATES

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Transcript:

8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r Theorem 6.. (.) i 6.. was as follows. a f <> 0 g 0 d m - a - m - - s0 - + r s - f ( -r ) g r (.) r f < + r> g r f < -r+ s> a g s -r + (-) m - r- r- s0ts Ct s C r (-) m - + (,m) k0 Should be oted here is the et two. a -r a a-r+ d r m+--r+ t m- f m+ -r+s a g ( m+ s) -r a -r aa r+ -C m+k k a f < m+ k > g ( m+ k) d a i Whe of the rd lie does ot eist, whe 0 of the d lie does ot eist also. ii Whe the biomial coefficiet of the th lie is geeralized, the upper limit - of ca be replaced by. Sice >0 - at the time 0,,,, if the ide of the itegratio operator is substituted for - i cosideratio of these, it becomes as follows. a f <> 0 g 0 d - m - a (-) m + ( -,m) k0 r m+k f < -+ r> g r - - k a Sice m may be arbitrary iteger, whe m +, it is as follows. a f <> 0 g 0 d - a f < -+ r> g r r (-) + - - + ( -,+) k0 ++k k a f < > a m+ k g ( m+ k) d - ++ k g ( ++ k) d - a f < > However, sice ( -,+) for 0,,,, the d lie disappears. That is, a f g d - f < -+ r> g r 0,,, a r The, replacig the itegratio operators d -,<- + r > with the differetiatio operators,( -r) respectivly, we obtai the desired epressio. d r - -

8. Higher Derivative of ^a f Formula 8..0 Whe z deotes the gamma fuctio ad f is times differetiable cotiuous fuctio, the followig epressios hold for a atural umber. f ( + ) r ( + -r) - r f ( - r ) (0.) Where, if -,-,-,, it shall read as follows. ( +) (-) -r ( - +r) + -r ( -) Especially, whe m 0,,, m m f ( +m ) m- r f ( - r ) (0.') r ( +m-r) Whe -,-,-, & - -,-,-, f ( +) -+ r f r (0.) r ( + - +r) Whe g( ) i Theorem 8.., sice r ( + ) - r ( + -r) we obtai the followig epressio immediately. f ( + ) r ( + -r) Especially, whe m 0,,,, (0.) is as follows. m f m ( +m ) r ( +m-r) ( +m ) r ( +m-r) We adopt the coveiet latter for mathematical software. - r f ( - r ) (0.) m- r f ( - r ) m- r f ( - r ) ( +m ) 0 for m<r ( +m-r) Whe -,-,-,, from..5 ( Properties of the Gamma Fuctio ) (5.5), ( -z) (-) - ( +z+) ( is a o-egative iteger ) ( -z-) ( +z) The substitutig -z +, r for this, we obtai the proviso. Last, replacig r with -r i (0.), we obtai (0.). r 0 for <r m Below, substitutig various fuctios f for Formula 8..0, we obtai various formulas. Although there are ad i Formula 8..0, sice is almost meaigless i the case of higher differetiatio, we adopt i priciple. - -

8.. Higher Derivative of ( a+b) p ( c+d) q Formula 8.. The followig epressios hold for p >0 ad,,,. ( a+b) p ( c+d) q ( /a) -+ r ( +p) ( +q) r ( /c) r ( +p - +r) ( +q -r) Especially, whe m 0,,, ( a+b) p ( c+d) m m ( /a) -+ r ( +p) ( +m) r ( /c) r ( +p - +r) ( +m-r) Let f( ) ( a+b) p, g( ) ( c+d) q, the - r ( a+b) p f r ( c+d) q g -r r c a -+r ( +p) ( +p - +r) -r ( +q) ( +q -r) Substitutig these for Theorem 8.., we obtai (.). ( c+d) q-r Ad especially, whe q m 0,,,, from (.) ( a+b) p ( c+d) m ( /a) -+ r ( +p) ( +m) r ( /c) r ( +p - +r) ( +m-r) m ( /a) -+ r ( +p) ( +m) r ( /c) r ( +p - +r) ( +m-r) We adopt the latter epressio as (.'). ( a+b) p-+r ( c+d) r-q (.) ( a+b) p-+ r ( c+d) r-m ( a+b) p-+r (.') q,,, ( a+b) p-+r ( c+d) r-m ( a+b) p-+r ( c+d) r-m Eample The d order derivative of - + Substitutig a, b-, p/, c, d, q/, for (.), - + r - r- r ( /) ( /) - r ( +) ( r-/) ( /-r) ( -) - + ( - )( +) ( +) - - + Eample' The rd order derivative of - ( +) Substitutig a, b-, p/, c, d, m, for (.'), - -

- ( +) r -( +) r ( /) ( -/+r) ( -r) 8( -) ( -) - 5 + r ( +) r- - + ( + )( -) + ( -) Eample The rd order derivative of - / ( +) Whe q -,-,-,, (.) ca be read as follows. ( a+b) p ( c+d) q ( /a) -+ r ( +p) ( -q +r) r (-/c) r ( +p - +r) ( -q) Substitutig a, b-, p/, c, d, q-, for this, ( a+b) p-+ r ( c+d) r-q - + - + r (-) r ( /) ( +r) ( -/+r) 8( -) 9 + ( -) ( +) ( -) - 5 + r ( +) r+ 7 + ( -)( +) 6 - ( +) 8.. Higher Derivative of log Formula 8.. log - - (-) -r ( -r) ( +) r - ( +) + - log ( + -r) ( + -) Especially, whe m 0,,, m log - - (-) -r ( -r) ( +m) r m- ( +m) + m- log ( +m-r) ( +m-) Where, there shall be o d term of the right side at the time of m<. (.) (.') Let f( ) log. The ( log ) -(-) ( -r) -+r r 0,,,- log r Substitutig these for (0.) i Theorem 8..0, we obtai (.). Whe m 0,,,, applyig (0.'), we obtai the followig. m log - - (-) -r ( -r) ( +m) r m- ( +m) + m- log ( +m-r) ( +m-) m + ( +m) m- ( log ) ( -r) r ( +m-r) r + Where, sice r does ot reach at the time of m<, the d term does ot eist. - -

Eample The rd order derivaive of Substitutig /, for (.), log - (-) -r log 5 5 ( -r) ( /) - ( /) - + log r ( /-r) ( -/) 0!! 0! - - ( / ) ( /) ( /) + / - / -/ 5 - - - Eample' The d order derivaive of log 5 ( /) - + log ( -/) 5 5 ( /) - - + log ( -/) - + log 8 Substitutig m, for (.'), log - (-) -r ( -r) r + log ( -r) - (-)!! + (-) 0! 0!!!! + log! ( 5 + 6 log ) Eample" The rd order derivaive of log Substitutig m, for (.'), log - (-) -r ( -r) - r ( -r) 0 - -! + -! + - Eample The rd order derivaive of log / -! - - 5 Whe -,-,-,, (.) ca be read as follows. log -(-) - ( -r) ( - +r) - + (-) ( - +) - log r ( -) ( -) Substitutig -, for this, log -(-) - ( -r) ( +r) - + (-) - - log r - 0 ( + ) ( + ) ( - ) 6 log ( - 6log ) - 5 -

8.. Higher Derivatives of si, cos Formula 8.. si {} cos {} r ( +) -r ( + -r) si+ r ( +) -r ( + -r) cos+ ( -r) ( -r) Especially, whe m 0,,, m si {} m ( +m) m-r ( -r) r ( +m-r) si+ m cos {} m ( +m) m-r ( -r) r ( +m-r) cos+ (.s) (.c) (.'s) (.'c) Eample The d order derivative of si Substitutig /, for (.s), si ( /) -rsi r /-r + ( -r) / si + + / - si 0 / / + - si + - cos - 9-5si 5 / - si -/ + Eample' The rd order derivative of si Substitutig m, for (.'s), si {} -r r -r si+ si 0 + - cos - 6 si + 6 cos 8.. Higher Derivatives of sih, cosh ( -r) + + si + 0 si + Formula 8.. sih cosh r ( + ) ( + -r) r ( + ) ( + -r) - r e -(-) -( -r) e - - r e +( -) -( -r) e - (.s) (.c) - 6 -

Especially, whe m 0,,, m sih m m cosh m ( +m ) r ( +m-r) ( +m ) r ( +m-r) m- r e -(-) -( -r) e - m- r e +( -) -( -r) e - (.'s) (.'c) Eample The d order derivaive of sih Substitutig /, for (.s), sih ( /) r /-r -r e -(-) -( -r) e - ( /) sih + ( /) - cosh + 5 ( /) - sih 0 / / -/ sih + - cosh - 9-5sih Eample' The rd order derivative of sih Substitutig m, for (.'s), sih {} r -r 0 cosh + -r e -(-) -( -r) e - cosh + 6 sih + 6 cosh sih + 0 cosh - 7 -

8. Higher Derivative of log f 8.. Higher Derivative of ( log ) Formula 8.. log - - - ( log ) - r -r r r (.) Let f( ) g( ) log. The ( log ) ( - r ) (-) - r- ( -r) - r, ( log ) r (-) r- ( r) r,, Substitutig these for Theorem 8.., log ( log ) ( - r ) ( log ) r r 0 ( log ) ( log ) 0 - + r ( log ) ( - r ) ( log ) r r ( log ) ( - ) ( log ) (-) - log + + (-) - r ( -r) r r - - - log - r -r r Eample The rd order derivative of ( log ) log - - log - r -r r log - ( )- ( log -6) r r 8.. Higher Derivatives of log si, log cos Formula 8.. ( log si ) log si+ r + (-) r r- r si r + ( -r) (.0s) - 8 -

( log cos ) log cos+ r + (-) r r- r cos r + ( -r) (.0c) Eample The rd order derivative of log si ( log si ) log si+ -log cos + + r si + - r- r r si + r -log cos - si - cos + si - + ( -r) si + 0 si + 8.. Higher Derivatives of log sih, log cosh Formula 8.. log sih log log cosh log e -(-) - e - + (-) r r- r e +( -) - e - + (-) r r- r Eample The th order derivative of log cosh ( log cosh ) log e +( -) - e - + r r r r r - r- ( r) r r e -(-) r- e - (.0s) e +( -) r- e - (.0c) e +( -) r- e - log cosh + sih - cosh + sih - cosh 6 8 6 log cos + sih - cosh + sih - cosh - 9 -

8. Higher Derivative of e^ f 8.. Higher Derivative of e Formula 8.. e e ( + ) - r r ( + -r) for -,-,-, (.) e ( - +r) - r r ( -) for -,-,-, (.) - r Especially, whe m 0,,, e m e m ( +m ) r ( +m-r) m- r Substite f( ) e for Theorem 8..0. The sice e ( -r ) e, we obtai the desired epressio immediately. Eample The d order derivative of e e e ( /) r /-r (.') - r e ( /) + ( /) - + ( /) - 0 / / -/ e + - - - e + - Eample The d order derivative of e / e r e ( +r) (-) r - r e - - 0 - + - e - + 8.. Higher Derivative of e log Formula 8.. e log e log + e (-) r r- r Let f( ) e, g( ) log. The r r (.) - 0 -

( log ) r (-) r- r r r,,, Substitutig this for Theorem 8.., e log e ( log ) r r 0 e e log + e (-) r r- r r r log 0 + e r log r Eample The th order derivative of e log e log e log + e (-) r r- r r r e log + e ( ) - + - e log + e 6 8 6 - + - 8.. Higher Derivatives of e si, e cos Formula 8.. e si e cos si - e si + - si e cos+ (.0s) (.0c) " 共 立 数 学 公 式 " p87 was posted as it was. Eample e si e cos si - e si + - si e cos+ e cos -e si + cos Higher Derivatives of e si, e cos ed ow. There is o ecessity for Theorem 8... However, darig use Theorem 8.., we obtai a iterestig result. Trigoometric Polyomial Formula 8..' r r si + si - si + (.s) - -

r Especially, whe 0 r r r cos+ - si cos+ r si si - si r cos si - cos (.c) (.'s) (.'c) Substitutig f( ) e, g( ) si, cos for Theorem 8.., e si e r si r + e cos e r r cos+ Ad comparig these with Formula 8.., we obtai the desired epressios. Whe 5, if both sides of (.s) are illustrated, it is as follows. Both overlap eactly ad blue (left) ca ot be see. Alterative Biomial Polyomial r r Removig si, cos from (.'s), (.'c), we obtai the followig iterestig polyomial. Formula 8.." Whe deotes the floor fuctio, the followig epressios hold. ( -)/ / r+ - r r - r si cos (.s) (.c) - -

Sice the odd-umbered terms of the left side i (.'s) are all 0, r Also, sice si r 0 si 0 + si + si + si + 5 si - + 5 - si/ - / i the right side i (.'s), ( -)/ r+ si - r Net, sice the eve-umbered terms of the left side i (.'c) are all 0, cos cos r Also, sice r 0 cos 0 cos 0 + 0 + 0 - cos + + si ++ si 5 + - si ( -)/ - r+ cos + - / si/ - / i the right side i (.'c), / cos r - r I additio, this formula is kow. (See " 岩 波 数 学 公 式 Ⅱ" p) Note Whe k - Eample ( -)/, k,,, / r+ - r r - r 5-5 + 5 5 5 5-0 + 5 si - 5 0-5 + 5 5-0 + 5 8.. Higher Derivatives of e sih, e cosh Formula 8.. e sih e ++ - - r cos (.s) cos + / cos / 5 cos - / r - r (.c) e - (-) -r e - (.0s) r - -

e cosh e Eample Note e sih 0 e e cosh e 0 e + (-) -r e - (.0c) r 0 e - (-) -r e - e r sih - -r e - r e + e 0 sih + cosh + sih + cosh e ( sih + cosh ) The followig formula is kow for a atural umber. e sih e cosh - e ( sih + cosh ) However, this formula does ot hold for 0. That is, i this formula, the atural umber is ietesible to the real umber p. So, this is isufficiet as a geeral formula. - -

8.5 Higher Derivative of f / e^ 8.5. Higher Derivative of e - Formula 8.5. e - e - - -( -r) (-) - e - Especially, whe m 0,,, e - m e - m - -( -r) ( + ) - r for -,-,-, (.) r ( + -r) ( - +r) - r for -,-,-, (.) r ( -) ( +m ) r ( +m-r) m- r Substite f( ) e - for Theorem 8..0. The sice e - ( -r ) (-) -( -r) e -, we obtai the desired epressio immediately. (.') Eample The rd order derivative of e - / e - (-) - e - 0 ( +r) --r r -e - - + - + - + - e - 6 6 - + + + Eample' The rd order derivative of e - 7 e - 7 e - 7 -r 0 8 - - ( 8 ) r ( 8-r) 7 7- r e - - 8 7 + 8 6 - ( 8) 5 + ( 8) 6 5 e - - + - 6 + 0 8.5. Higher Derivative of e - log Formula 8.5. e - log - - r log - r r r e (.) Let f( ) e -, g( ) log. The - 5 -

e - ( -r ) (-) - +r e - r ( log ) r (-) r- r r,,, Substitutig these for Theorem 8.., e - log (-) - +r e - ( log ) r r 0 (-) - e - ( log ) 0 + r (-) - r e log - r r r Eample The th order derivative of e - log e log - - r log - r e log - e e log e - e 8.5. Higher Derivatives of e - si, e - cos r r (-) - +r e - ( log ) r r + ( ) + ( ) + r 6 8 6 + + + Formula 8.5. e - si e - cos -si - e - si - - -si e - cos- (.0s) (.0c) Replacig with - i Formula 8.., we obtai the desired epressios. Eample e - si e - cos -si - e - si - - -si e - cos- -e - cos -e - si - cos Higher Derivatives of e - sih, e - cosh ed ow. There is o ecessity for Theorem 8... Darig use Theorem 8.., we obtai the followig epressio first. -r e - si e - ( - ) r si r + - 6 -

Ad from this ad (.0s), we obtai -r ( - ) r si r + si - si - A similar epressio is obtaied about e - r r cos too. The removig si, cos from these, we obtai the completely same results as Formula 8..". 8.5. Higher Derivatives of e - sih, e - cosh Formula 8.5. e - sih e - e - cosh e - - -+ r - -+ r e - (-) e - (.0s) r e + (-) e - (.0c) r Substitutig f( ) e -, g( ) sih, cosh for Theorem 8.., we obtai the dsired epressios. Eample Note e - sih 0 e - 0 - -0+ r 0 e - (-) -r e - e - sih r e - cosh e - (-) -+ r e r + (-) -r e - - 0 cosh + sih - cosh + sih e - -e - cosh - sih The followig formula is kow for a atural umber. e - sih e - cosh (-) - e ( cosh -sih ) However, this formula does ot hold for 0. That is, i this formula, the atural umber is ietesible to the real umber p. So, this is isufficiet as a geeral formula. - 7 -

8.6 Higher Derivatives of si f, cos f 8.6. Higher Derivatives of si, cos Formula 8.6. si - cos - + cos cos - + (.0s) (.0c) From Formula 8.6.' metioed et, Here cos Usig this, Ad sice cosa cosb cos r r cos+ cos( A+B ) +cos( A-B) cos -r cos + r r + + cos -r cos +, r - r r 0 + cos ( -) r r substitutig these for the above, we obtai (.0c). (.0s) is also obtaied i a similar way. Eample si - cos - + cos cos - + cos cos - si si 8 si cos Formula 8.6.' si cos r r si+ cos+ -r si + r -r cos + r (.s) (.c) Substitutig f( ) g( ) si for Theorem 8.., we obtai (.s). (.c) is also obtaied i a similar way. - 8 -

Formula 8.6." Whe deotes the floor fuctio, the followig epressios hold. / r ( -)/ - (.e) r+ - (.o) (.s) is trasformed as follows. i.e. si / r ( -)/ + / si+ r r - r si+ ( -)/ + -r si + r r -r si + r+ si ( -r-) ( r+) + si + si+ - r si si+ si ( -r) si ( -r-) r+ si + / r O the other had, (.0s) is trasformed as follows too. cos ( -)/ - cos+ cos si si - + si - cos - + cos From these, the followig epressio follows. si + si / r - - cos + cos I order to hold this equatio for arbitrary, the followigs are ecessary. / r ( -)/ - - 0, r+ - - 0 I additio, this formula is kow. (See " 岩 波 数 学 公 式 Ⅱ" p) ( -)/ r+ r+ - - 8.6. Higher Derivatives of si, cos Formula 8.6. si cos si + cos + - si+ + cos+ (.0s) (.0c) - 9 -

From Formula 8.6.' metioed et, it is obtaied i a similar way i the case of the d degree. However, it is ot so easy as the case of the d degree. ( See 0.. ) Eample si cos si + cos + - + 9 si+ - si + si cos+ 7 si + si Formula 8.6.' si si 0 si+ - r r cos r- + cos cos 0 cos+ + r r cos r- + ( -r) r si + ( -r) r cos + (.s) (.c) Substitutig f( ) si, g( ) si for Theorem 8.., we obtai (.s). (.c) is also obtaied i a similar way. Formula 8.6." / r- ( -)/ r From (.s) r si si r+ - + (-) (.e) 0 si + si 0 si+ ( -)/ - / - r r - (.o) - r r r- cos + r+ cos r + cos r- + ( -r) r si + r+ ( -r-) si + r si + -r - 0 -

Whe, si - - cos si+ ( -)/ ( -r-) + r+ r si si+ - r r - r ( -)/ - / - ( r ) r- ( -r) cos si+ r+ r si cos+ / 0 - cos si+ - r r ( -)/ - r+ si cos+ / - r- cos r si+ si + - si + si + si + si + si + si + si + / r- ( - )/ r Whe, si r - cos si + - - cos cos + si si r- cos si+ 0 - si cos + + si si - ( cos cos - si si ) + si si - cos - ( cos - cos ) - cos - si+ - +( -) r+ - + -(-) + si + - cos si+ - si cos+ 0-0 + 0 - -

/ r- ( - )/ r si + si + si + si + r + 5 cos si + si cos + ( si - si ) + si + 9 si - si+ - 5 + +( -) + r+ - -(-) Hereafter, by iductio, we obtai the desired epressios. If both sides of Formula8.6." are illustrated, it is as follows. The left side is blue lie ad the right side is red poit. - -

8.6. Higher Derivatives of the product of trigoometric ad hyperbolic fuctios Formula 8.6. ( sisih ) ( sicosh ) r r ( cossih ) ( coscosh ) r r si+ si+ cos+ cos+ ( -r) ( -r) ( -r) ( -r) Substitutig f( ) si, g( ) sih for Theorem 8.., we obtai (.). The others are also obtaied i a similar way. Eample ( sicosh ) 0 0 0 r r ( coscosh ) si+ cos+ ( 0-r) ( -r) e -(-) -r e - (.) e +( -) -r e - (.) e -(-) -r e - (.) e +( -) -r e - (.) e +( -) -0 e - sicosh e +( -) -r e - 0 cosh +cos sih +cos cos+ + + cosh -coscosh - si sih + coscosh -si sih - -

8.7 Higher Derivatives of sih f, cosh f 8.7. Higher Derivatives of sih, cosh Formula 8.7. sih cosh e -(-) -+r e - e -(-) -r e - (.s) r e +( -) -+r e - e +( -) -r e - (.c) r Substitutig f( ) g( ) sih for Theorem 8.., we obtai (.s). (.c) is also obtaied i a similar way. Eample sih 0 0 0 e -(-) -0+r e - e -(-) -r e - sih r cosh e +( -) -+r e - e +( -) -r e - r 0 sihcosh + coshsih + sihcosh + coshsih 8sihcosh sih 007.05.06 Alie's Mathematics K. Koo - -