Introduction to Time Series Analysis. Lecture 16.



Σχετικά έγγραφα
4.6 Autoregressive Moving Average Model ARMA(1,1)

ST5224: Advanced Statistical Theory II

Numerical Analysis FMN011

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Example Sheet 3 Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 8.3 Trigonometric Equations

2. ARMA 1. 1 This part is based on H and BD.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Areas and Lengths in Polar Coordinates

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Sampling Basics (1B) Young Won Lim 9/21/13

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Solution Series 9. i=1 x i and i=1 x i.

Finite Field Problems: Solutions

Durbin-Levinson recursive method

Trigonometric Formula Sheet

Areas and Lengths in Polar Coordinates

Inverse trigonometric functions & General Solution of Trigonometric Equations

Introduction to the ML Estimation of ARMA processes

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Spherical Coordinates

EE512: Error Control Coding

derivation of the Laplacian from rectangular to spherical coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

The ε-pseudospectrum of a Matrix

Homework 3 Solutions

D Alembert s Solution to the Wave Equation

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Module 5. February 14, h 0min

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Section 9.2 Polar Equations and Graphs

PARTIAL NOTES for 6.1 Trigonometric Identities

Matrices and Determinants

CRASH COURSE IN PRECALCULUS

Fractional Colorings and Zykov Products of graphs

Probability and Random Processes (Part II)

F19MC2 Solutions 9 Complex Analysis

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Section 8.2 Graphs of Polar Equations

Local Approximation with Kernels

TMA4115 Matematikk 3

Parametrized Surfaces

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Second Order Partial Differential Equations

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Section 7.6 Double and Half Angle Formulas

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

2 Composition. Invertible Mappings

Homework 8 Model Solution Section

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Uniform Convergence of Fourier Series Michael Taylor

ECE 468: Digital Image Processing. Lecture 8

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Stationary ARMA Processes

Ψηφιακή Επεξεργασία Φωνής

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

KEPKYPA Â Î Û Â È KEPKYPA

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

1. For each of the following power series, find the interval of convergence and the radius of convergence:

6.3 Forecasting ARMA processes

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 26: Circular domains

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

An Inventory of Continuous Distributions

ΤΟ ΠΕΡΙΟΔΙΚΟ. Αφιέρωμα στην επέτειο της 28ης Οκτωβρίου 1940

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Statistical Inference I Locally most powerful tests

Reminders: linear functions

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

What happens when two or more waves overlap in a certain region of space at the same time?

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Stationary ARMA Processes

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Jordan Form of a Square Matrix

Solution to Review Problems for Midterm III

Solutions to Exercise Sheet 5

Σήματα και Συστήματα στο Πεδίο της Συχνότητας

Tridiagonal matrices. Gérard MEURANT. October, 2008

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

The Simply Typed Lambda Calculus

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Μία path-based προσέγγιση στατιστικής ανάλυσης καθυστέρησης ψηφιακών κυκλωμάτων

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Lecture 6 Mohr s Circle for Plane Stress

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Transcript:

Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1

Review: Spectral density If a time series {X t } has autocovariance γ satisfying h= γ(h) <, then we define its spectral density as f(ν) = h= γ(h)e 2πiνh for < ν <. 2

Review: Spectral density 1. f(ν) is real. 2. f(ν) 0. 3. f is periodic, with period 1. So we restrict the domain off to 1/2 ν 1/2. 4. f is even (that is,f(ν) = f( ν)). 5. γ(h) = 1/2 1/2 e 2πiνh f(ν)dν. 3

Examples White noise: {W t },γ(0) = σ 2 w and γ(h) = 0 for h 0. f(ν) = γ(0) = σ 2 w. AR(1): X t = φ 1 X t 1 +W t,γ(h) = σwφ 2 h 1 /(1 φ2 1). f(ν) = σ 2 w 1 2φ 1. cos(2πν)+φ 2 1 If φ 1 > 0 (positive autocorrelation), spectrum is dominated by low frequency components smooth in the time domain. If φ 1 < 0 (negative autocorrelation), spectrum is dominated by high frequency components rough in the time domain. 4

Example: AR(1) 100 Spectral density of AR(1): X t = +0.9 X t 1 + W t 90 80 70 60 f(ν) 50 40 30 20 10 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ν 5

Example: AR(1) 100 Spectral density of AR(1): X t = 0.9 X t 1 + W t 90 80 70 60 f(ν) 50 40 30 20 10 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ν 6

Example: MA(1) X t = W t +θ 1 W t 1. σw(1+θ 2 1) 2 ifh = 0, γ(h) = σwθ 2 1 if h = 1, 0 otherwise. 1 f(ν) = h= 1 γ(h)e 2πiνh = γ(0)+2γ(1)cos(2πν) ( = σw 2 1+θ 2 1 +2θ 1 cos(2πν) ). 7

Example: MA(1) X t = W t +θ 1 W t 1. f(ν) = σ 2 w ( 1+θ 2 1 +2θ 1 cos(2πν) ). If θ 1 > 0 (positive autocorrelation), spectrum is dominated by low frequency components smooth in the time domain. If θ 1 < 0 (negative autocorrelation), spectrum is dominated by high frequency components rough in the time domain. 8

Example: MA(1) 4 Spectral density of MA(1): X t = W t +0.9 W t 1 3.5 3 2.5 f(ν) 2 1.5 1 0.5 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ν 9

Example: MA(1) 4 Spectral density of MA(1): X t = W t 0.9 W t 1 3.5 3 2.5 f(ν) 2 1.5 1 0.5 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ν 10

Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 5. Rational spectra. Poles and zeros. 11

Recall: A periodic time series k X t = (A j sin(2πν j t)+b j cos(2πν j t)) j=1 k = (A 2 j +Bj) 2 1/2 sin(2πν j t+tan 1 (B j /A j )). j=1 E[X t ] = 0 k γ(h) = σj 2 cos(2πν j h) j=1 γ(h) =. h 12

Discrete spectral distribution function ForX t = Asin(2πλt)+Bcos(2πλt), we have γ(h) = σ 2 cos(2πλh), and we can write γ(h) = 1/2 1/2 e 2πiνh df(ν), where F is the discrete distribution 0 ifν < λ, F(ν) = σ 2 2 if λ ν < λ, σ 2 otherwise. 13

The spectral distribution function For any stationary {X t } with autocovariance γ, we can write γ(h) = 1/2 1/2 e 2πiνh df(ν), where F is the spectral distribution function of {X t }. We can split F into three components: discrete, continuous, and singular. If γ is absolutely summable, F is continuous: df(ν) = f(ν)dν. If γ is a sum of sinusoids,f is discrete. 14

The spectral distribution function ForX t = k j=1 (A j sin(2πν j t)+b j cos(2πν j t)), the spectral distribution function isf(ν) = k j=1 σ2 j F j(ν), where 0 ifν < ν j, F j (ν) = 1 2 if ν j ν < ν j, 1 otherwise. 15

Wold s decomposition Notice that X t = k j=1 (A j sin(2πν j t)+b j cos(2πν j t)) is deterministic (once we ve seen the past, we can predict the future without error). Wold showed that every stationary process can be represented as X t = X (d) t +X (n) t, where X (d) t is purely deterministic andx (n) t is purely nondeterministic. (c.f. the decomposition of a spectral distribution function asf (d) +F (c).) Example: X t = Asin(2πλt)+ θ(b) φ(b) W t. 16

Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 17

Autocovariance generating function and spectral density SupposeX t is a linear process, so it can be written X t = i=0 ψ iw t i = ψ(b)w t. Consider the autocovariance sequence, γ h = Cov(X t,x t+h ) = E ψ i W t i ψ j W t+h j = σ 2 w i=0 ψ i ψ i+h. i=0 j=0 18

Autocovariance generating function and spectral density Define the autocovariance generating function as Then, γ(b) = γ h B h. γ(b) = σw 2 = σw 2 = σw 2 h= h= i=0 ψ i ψ i+h B h i=0 ψ i ψ j B j i j=0 ψ i B i ψ j B j = σwψ(b 2 1 )ψ(b). i=0 j=0 19

Autocovariance generating function and spectral density Notice that γ(b) = f(ν) = h= h= γ h B h. = γ ( e 2πiν) γ h e 2πiνh = σwψ ( 2 e 2πiν) ψ ( e 2πiν) = σw 2 ψ ( e 2πiν) 2. 20

Autocovariance generating function and spectral density For example, for an MA(q), we have ψ(b) = θ(b), so f(ν) = σwθ 2 ( e 2πiν) θ ( e 2πiν) = σw 2 θ ( e 2πiν) 2. For MA(1), f(ν) = σ 2 w 1+θ 1 e 2πiν 2 = σw 1+θ 2 1 cos( 2πν)+iθ 1 sin( 2πν) 2 = σw 2 ( 1+2θ1 cos(2πν)+θ1 2 ). 21

Autocovariance generating function and spectral density For an AR(p), we have ψ(b) = 1/φ(B), so f(ν) = = σ 2 w φ(e 2πiν )φ(e 2πiν ) σ 2 w φ(e 2πiν ) 2. For AR(1), f(ν) = = σ 2 w 1 φ 1 e 2πiν 2 σ 2 w 1 2φ 1 cos(2πν)+φ 2. 1 22

Spectral density of a linear process If X t is a linear process, it can be written X t = i=0 ψ iw t i = ψ(b)w t. Then f(ν) = σw 2 ψ ( e 2πiν) 2. That is, the spectral density f(ν) of a linear process measures the modulus of the ψ (MA( )) polynomial at the point e 2πiν on the unit circle. 23

Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 24