arxiv:1203.4830v1 [math.gm] 20 Mar 2012



Σχετικά έγγραφα
Smarandache Curves According to Bishop Frame in Euclidean 3-Space

Smarandache Curves and Applications According to Type-2 Bishop Frame in Euclidean 3-Space

Areas and Lengths in Polar Coordinates

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ

Areas and Lengths in Polar Coordinates

The k-α-exponential Function

2 Composition. Invertible Mappings

Homework 8 Model Solution Section

ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ

Smarandache Curves of a Spacelike Curve According to the Bishop Frame of Type-2

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Parametrized Surfaces

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homomorphism in Intuitionistic Fuzzy Automata

Homework 3 Solutions

Section 8.3 Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Second Order Partial Differential Equations

ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ

Τεύχος 3ο Δεκέμβριος Περιοδική έκδοση των μαθητών του 6ου Δημοτικού Σχολείου Π. Φαλήρου

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΕΚΛΟΓΙΚΑ ΤΜΗΜΑΤΑ ΚΑΙ ΚΑΤΑΣΤΗΜΑΤΑ ΨΗΦΟΦΟΡΙΑΣ ΒΟΥΛΕΥΤΙΚΩΝ ΕΚΛΟΓΩΝ ΤΗΣ 6 ης ΜΑΪΟΥ 2012

Σχηματισμός Υποτακτικής Παρακειμένου Ενεργητικής Φωνής. Ο Παρακείμενος σχηματίζει την Υποτακτική έγκλιση με δύο τρόπους:

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Υδρολογική και Βιογεωχημική Παρακολούθηση

Section 8.2 Graphs of Polar Equations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Strain gauge and rosettes

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π.Δ.Δ. ΑΘΗΝΑ ΕΤΟΣ ΙΔΡΥΣΗΣ 1884

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Ἡ Ἁγία μεγαλομάρτυς Μαρίνα

Π Ι Ν Α Κ Α Σ Κ Α Τ Α Τ Α Ξ Η Σ Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Μ Ε Ρ Ι Κ Η Σ Α Π Α Σ Χ Ο Λ Η Σ Η Σ (Α.Π. ΑΝΑΚΟΙΝΩΣΗΣ 21809/ )

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π.Δ.Δ. ΑΘΗΝΑ ΕΤΟΣ ΙΔΡΥΣΗΣ 1884

Inverse trigonometric functions & General Solution of Trigonometric Equations

Π Ι Ν Α Κ Α Σ Α Μ Ο Ι Β Ω Ν Ε Π Ι Δ Ο Σ Ε Ω Ν

Matrices and Determinants

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

ΥΠOΥΡΓΕΙO ΠΑΙΔΕΙΑΣ KAI ΘΡΗΣΚΕΥΜΑΤΩΝ

Αξιολόγηση των Επιδράσεων του Σχεδίου Τοποθέτησης Άνεργων Νέων Αποφοίτων Γυμνασίων, Λυκείων, Τεχνικών Σχολών και Μεταλυκειακής Εκπαίδευσης μέχρι και

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Συνεργασία Μουσείου και Σχολείου. Ο ρόλος των Μουσειοπαιδαγωγών ΕΠΙΣΤΗΜΟΝΙΚΗ ΑΝΑΚΟΙΝΩΣΗ 1

ΑΓΙΑ ΖΩΝΗ. Τό φ οβ ερ ό Μυ σ τ ήρ ι ο

Reminders: linear functions

Συµβουλεύοµαι το κρυπτογραφικό αλφάβητο της Φιλικής Εταιρείας και. Ελευθερία ή Θάνατος. γ35343 ωβη3οω3η

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

( y) Partial Differential Equations

ΠΡΟΣΛΗΨΕΙΣ ΑΝΑΠΛΗΡΩΤΩΝ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ( )

Αθήνα, 4 Φεβρουαρίου 2013 Αριθ. πρωτ.: 130

EE512: Error Control Coding

King James Bible Greek New Testament Word List

ΕΥΡΩΠΑΙΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΙΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ

ΝΕΟ ΛΥΚΕΙΟ 2014 ΕΦΑΡΜΟΓΗ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Α ΤΑΞΗΣ ΛΥΚΕΙΟΥ (ΣΧΟΛΙΚΟ ΈΤΟΣ: )

! # %& #( #) #! # +, # # #./00

Kοντά στόν Xριστό Δ I M H N I A I O Φ Y Λ Λ A Δ I O Π A I Δ I K Ω N E N O P I A K Ω N Σ Y N A Ξ E Ω N

15PROC

Section 9.2 Polar Equations and Graphs

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΕΥΒΟΙΑΣ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΜΟΝΑΔΩΝ Α ΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΡΓΑΣΙΑ:

ΠΕΡΙ ΑΠΕΙΛΟΥΜΕΝΩΝ ΖΩΩΝ...ΑΝΘΡΩΠΩΝ ΕΡΓΑ.

ΑΠΟΦΑΣΙΖΕΙ: Υποψηφιότητα για τη θέση του Προέδρου μπορούν να υποβάλουν Καθηγητές Πρώτης Βαθμίδας ή Αναπληρωτές Καθηγητές.

Τμήμα Ψηφιακών Συστημάτων. Διπλωματική Εργασία

ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Αρχιτεκτόνων Μηχανικών Κρήτης

15PROC

C.S. 430 Assignment 6, Sample Solutions

ΑΡΙΘΜΟΣ 0769/ ΣΥΜΒΑΣΗ ΧΡΗΜΑΤΟΔΟΤΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΣΧΟΛΕΙΩΝ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΠΑΤΡΕΩΝ

Άρρενες Ομάδες ηλικιών

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Η ΕΞΥΠΝΗ ΕΦΗΜΕΡΙΔΟΥΛΑ

25η Μαρτίου. ιπλoγιορτή για την Ελλάδα. Πηνελόπη Μωραΐτου Μαρία Μωραΐτου. Με αυτοκόλλητα. Πέγκυ Φούρκα. Εικονογράφηση:

ΤΣΑΤΕΡΛΙ Ο ΕΡΑΣΤΗΣ ΤΗΣ ΛΑΙ ΗΣ ΝΤ. Χ. ΛΟΡΕΝΣ. ... γ ι α τ ί ο έ ρ ω τ α ς κ ρ ύ β ε τ α ι σ τ ι ς λ έ ξ ε ι ς. Μ ε τ ά φ ρ α σ η. : Γ ι ώ ρ γος Τζήµας

ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ Εκλογικών

Other Test Constructions: Likelihood Ratio & Bayes Tests

Ν έ α ς κ ρ ή ν η ς κ α ι Καλαμαριάς ο Αρχιμανδρίτης Ι ο υ σ τ ί ν ο ς Μ π α ρ δ ά κ α ς. σελ.3

Λεσ οργανισατευρσ χηοισισσεντ παρµι χεττε λιστε, λεσ πρευϖεσ δε λευρ χοµπ τιτιον.

ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΝΑΥΤΙΛΙΑΣ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ Α Π Ο Φ Α Σ Η

Αντιλήψεις εκπαιδευτικών για τα περιβαλλοντικά ζητήµατα και σχολικά βιβλία: Η περίπτωση του φαινοµένου του θερµοκηπίου και του στρώµατος του όζοντος

ΑΡΙΘΜΟΣ 0501/ ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΣΚΟΠΕΛΟΥ

Example Sheet 3 Solutions

On Weingarten tube surfaces with null curve in Minkowski 3-space

ΟΙ ΕΜΦΥΛΙΕΣ ΔΙΑΜΑΧΕΣ ΚΑΙ ΣΥΓΚΡΟΥΣΕΙΣ

On a four-dimensional hyperbolic manifold with finite volume

3.4 Αζηίεξ ημζκςκζηήξ ακζζυηδηαξ ζημ ζπμθείμ Πανάβμκηεξ πνμέθεοζδξ ηδξ ημζκςκζηήξ ακζζυηδηαξ οιαμθή ηςκ εηπαζδεοηζηχκ ζηδκ

Σημαντική. Υπάρχουν πολλοί που πιστεύουν ότι το πρόβλημα του Τσίπρα. παρέμβαση των βουλευτών Κ. Σέλτσα και Γ. Σηφάκη για τη.


Η συμπαραστάτης του Πολίτη Τάσα Σιώμου στον Δήμο Αμυνταίου σελ.3. Τα παράπονα στον Δήμαρχο από μαθητές του 1ου Δημοτικού Σχολείου Αμυνταίου

ιακήρυξη Ανοικτού διεθνούς διαγωνισµού για την ανάθεση υλοποίησης του έργου:

Κρυπτογραφία ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΩΣ ΣΗΜΕΡΑ ΝΙΚΟΣ ΚΥΡΛΟΓΛΟΥ ( NIKOKY@GMAIL.COM)

ΕΠΙΛΥΣΗ ΕΝΟΣ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΤΑΣΚΕΥΗΣ ΜΕ ΧΡΗΣΗ ΘΕΩΡΙΑΣ ΚΑΜΠΥΛΩΝ

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Θέμα Υγιεινή & Ασφάλεια στην Εργασία - φ Α^ρισ/

ΦΥΛΛΑΔΙΟ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ Ο ρ ι σ μ ό ς

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ÄÉÊÔÕÏ ÐÅÑÉÂÁËËÏÍÔÉÊÇÓ ÅÊÐÁÉÄÅÕÓÇÓ. To άσος

Δ Ι Μ Η Ν Ι Α Ι Α Ε Κ Δ Ο Σ Η Ι Ε Ρ Α Σ Μ Η Τ Ρ Ο Π Ο Λ Ε Ω Σ Ι Ε Ρ Α Π Υ Τ Ν Η Σ Κ Α Ι Σ Η Τ Ε Ι Α Σ

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository

ΕΡΓΟ: «ΕΦΑΡΜΟΓΕΣ ΕΙΚΟΝΙΚΗΣ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ ΣΤΗ ΒΟΙΩΤΙΑ: ΜΑΝΤΕΙΟ ΤΡΟΦΩΝΙΟΥ ΚΑΙ ΜΥΚΗΝΑΪΚΗ ΘΗΒΑ»

þÿ Á Ä Ãµ¹Â º±¹ ÃÇ ¹±»ÍÃ Â Ä þÿšåàá¹±º Í ( ) : ¹

«Πωλήσεις Φυσικού Αερίου και Τιμολόγησή του»

ΠΑΡΑΡΤΗΜΑ Β ΔΙΑΚΗΡΥΞΗ ΑΝΟΙΧΤΗΣ ΔΙΑΔΙΚΑΣΙΑΣ. (Τύπος Β) Για έργα που δεν εμπίπτουν στο πεδίο εφαρμογής των Οδηγιών 2004/18/ΕΚ και 2004/17/ΕΚ

Transcript:

arxiv:10.480v1 [math.gm] 0 Mar 01 Special Smarache Curves According To Darboux Frame In E ÖZCAN BEKTAŞ Abstract SALİM YÜCE In this study, we determine some special Smarache curves according to Darboux frame in E. We give some characterizations consequences of Smarache curves. Keywords: Smarache curves, Darboux Frame, Normal curvature, Geodesic Curvature, Geodesic torsion. 000 AMS Subject Classification: 5A04 1 Introduction In differential geometry, there are many important consequences properties of curves. Researchers follow labours about the curves. In the light of the existing studies, authors always introduce new curves. Special Smarache curves are one of them. This curve is defined as, a regular curve in Minkowski spacetime, whose position vector is composed by Frenet frame vectors on another regular curve, is called a Smarache Curve [6]. Special Smarache curves have been studied by some authors [1,, 6]. M. Turgut S. Yilmaz have defined a special case of such curves call it Smarache TB Curves in the space E1 4 [6]. They have dealed with a special Smarache curves which is defined by the tangent second binormal vector fields. Besides, they have computed formulas of this kind curves by the method expressed in [6]. A. T. Ali has introduced some special Smarache curves in the Euclidean space [1]. SpecialSmarachecurvessuchasSmarachecurvesTN 1, TN, N 1 N TN 1 N according to Bishop frame in Euclidean -space have been investigated by Çetin et al []. Furthermore, they studied differential geometric properties of these special curves they calculated first second curvature natural curvatures of these curves. Also they found the centers of the curvature spheres osculating spheres of Smarache curves. YILDIZ TECHNICAL UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DE- PARTMENT OF MATHEMATICS, 410, ESENLER, İSTANBUL, TURKEY, ozcanbektas1986@hotmail.com, sayuce@yildiz.edu.tr. 1

In this study, we investigate special Smarache curves such as Smarache Tg, Tn, gn Tgn according to Darboux frame in Euclidean -space. Furthermore, we find some properties of these special curves we calculate normal curvature, geodesic curvature geodesic torsion of these curves. Preliminaries In this section, we give an information about special Smarache curves Darboux frame. Let M be an oriented surface let consider a curve αs on the surface M. Since the curve αs is also in space, there exists Frenet frame {T,N,B} at each points of the curve T is unit tangent vector, N is principal normal vector B is binormal vector, respectively. The Frenet equations of the curve αs is given by T κn N κt+τb B τn κ τ are curvature torsion of the curve αs, respectively. Here in the following, we use dot to denote the derivative with respect to the arc length parameter of a curve. Since the curve αs lies on the surface M there exists another frame of the curve αs which is called Darboux frame denoted by {T,g,n}. In this frame T is the unit tangent of the curve, n is the unit normal of the surface M g is a unit vector given by g n T. Since the unit tangent T is common in both Frenet frame Darboux frame, the vectors N,B,g, n lie on the same plane. So that the relations between these frames can be given as follows T g n 1 0 0 0 cosϕ sinϕ 0 sinϕ cosϕ T N B.1 ϕ is the angle between the vectors g n. The derivative formulae of the Darboux frame is T g n 0 k g k n k g 0 τ g k n τ g 0 T g n., k g is the geodesic curvature, k n is the normal curvature τ g is the geodesic torsion of αs. The relations between geodesic curvature, normal curvature, geodesic torsion κ, τ are given as follows k g κcosϕ, k n κsinϕ, τ g τ + dϕ ds..

In the differential geometry of surfaces, for a curve αs lying on a surface M the followings are well-known i αs is a geodesic curve k g 0, ii αs is an asymptotic line k n 0, iii αs is a principal line τ g 0, [7]. Let α αs β βs be a unit speed regular curves in E {T,N,B} be moving Serret-Frenet frame of αs. Smarache curves TN are defined by βs 1 T+N, Smarache curves NB are defined by βs 1 N+B Smarache curves TNB are defined by βs 1 T+N+B. Special Smarache Curves According To Darboux Frame In E In this section, we investigate special Smarache curves according to Darboux frame in E. Let α αs β βs be a unit speed regular curves in E defined by {T,g,n} {T,g,n } be Darboux frame of these curves, respectively..1 Tg Smarache Curves Definition: Let M be an oriented surface in E let consider the arc - length parameter curve α αs lying fully on M. Denote the Darboux frame of αs {T,g,n}. Tg- Smarache curve can be defined by βs 1 T+g..1 Now, we can investigate Darboux invariants of Tg Smarache curve according to α αs. Differentiating.1 with respect to s, we get β dβ ds ds ds 1 k g T k g g k n +τ g n,. T ds ds 1 k g T k g g k n +τ g n ds ds kg +k n +τ g.. The tangent vector of curve β can be written as follow, T 1 k g +k n +τ g k gt k g g k n +τ g n..4

Differentiating.4 with respect to s, we obtain dt ds ds ds 1 kg +k n +τ g Γ 1 T+Γ g+γ n.5 [ Γ 1 k n +τ g {k g k n +τ g k n k g τ g k g k gk n +τ g k n kg +k n +τ g ]} kg 4 [ { k g k n +τ g +k nk g +τ g k g +k g k n +τ g τ g Γ k n +τ g Γ k g k n +τ g [ ] k g k n +τ g k n +τ g +kg k g τ g +k n +τ g. k g +k n +τ g ]} k 4 g Substituting. in.5, we get T k g +k n +τ g Γ 1T+Γ g+γ n. Then, the curvature principal normal vector field of curve β are respectively, κ Γ T 1 +Γ +Γ k g +k n +τ g N 1 Γ Γ 1 +Γ 1 T+Γ g+γ n. +Γ On the other h, we express B T N 1 kg +k n +τ g Γ 1 +Γ +Γ So, the binormal vector of curve β is T g n k g k g k n +τ g Γ 1 Γ Γ B 1 kg +k n +τ g µ 1 T+µ g+µ n Γ 1 +Γ +Γ µ 1 k g Γ k n +τ g Γ µ k n +τ g Γ 1 +k g Γ µ k g Γ k g Γ 1. We differentiate. with respect to s in order to calculate the torsion β 1 } {k g +kg +k n k n +τ g T+ k g +kg +τ g k n +τ g g+ k n k g k g τ g k g +τ g n,. 4

similarly β 1 η 1 T+η g+η n, η 1 k g +k n k n +τ g +k g k g τ g k n k g +k n k n +τ g η k g +τ g k n +τ g +k g k g +τ g +kn +kg +τ gk n +τ g η k g τ g +k g k n τ g +k n +τ g τ g +k n +k g +k g k n τ g. The torsion of curve β is ] τ 1 η 1 +η [k g k n +τ g k gk n +τ g + kg +k n +τ g [τ g η 1 k n η +k g η ] [ k g +kg 4 +k n +τ g k n +τ g ] kn +τ g +kn k g +k g +τ g k g k g + [ ] k n +τ g k n +τ g k g k n τ g +kg k n τ g. The unit normal vector of surface M unit vector g of β are as follow. Then, from.1 we obtain g 1 ςε { ς cosϕ Γ 1 +sinϕ µ 1 T+ ςcosϕ Γ +sinϕ µ g+ ς cosϕ Γ +sinϕ µ n}, n 1 ςε {µ 1 cosϕ ς sinϕ Γ 1 T+µ cosϕ ςsinϕ Γ g+µ cosϕ ςsinϕ Γ n}. ε Γ 1 +Γ +Γ, ς k g +k n +τ g ϕ is the angle between the vectors g n.now, we can calculate geodesic curvature, normal curvature, geodesic torsion of curve, so from. we get Γ kg 1 +Γ +Γ k g +k n +τ g cosϕ, k n Γ 1 +Γ +Γ k g +k n +τ g sinϕ, ] τ g 1 1 η 1 +η [k g k n +τ g k g k n +τ g + kg +k n +τ g [τ g η 1 k n η +k g η ] [ k g +kg 4 +k n +τ g k n +τ g ] kn +τ g +kn k g +kg +τ g k g kg + [ ] k n +τ g k n +τ g k gk n τ g +kg k n τ g + dϕ ds. 5

Corollary 1 Consider that αs is a geodesic curve, then the following equation holds, Consider that αs is a geodesic curve, then the following equation holds, i κ kn +τ g k n+τ g, ii τ 1 k n+τ g +k n+τ g k n τg knτ g k n+τ g k n +τ g+k n +τ g, kn +τ g iii kg cosϕ, kn+τg iv kn kn +τ g k n+τ g sinϕ, v τ g 1 k n+τ g +k n+τ g k n τg knτ g ds. k n+τ g k n +τ g+k n +τ g + dϕ. Tn Smarache Curves Definition: Let M be an oriented surface in E let consider the arc - length parameter curve α αs lying fully on M. Denote the Darboux frame of αs {T,g,n}. Tn- Smarache curve can be defined by βs 1 T+n..6 Now, we can investigate Darboux invariants of Tn Smarache curve according to α αs. Differentiating.6 with respect to s, we get β dβ ds ds ds 1 k n T+τ g k g g k n n,.7 T ds ds 1 k n T+τ g k g g k n n ds ds kn +τ g k g..8 The tangent vector of curve β can be written as follow, T 1 k n +τ g k g k nt+τ g k g g k n n..9 Differentiating.9 with respect to s, we obtain dt ds ds ds 1 kn +τ g k g γ 1 T+γ g+γ n.10 6

[ ] γ 1 τ g k g {k n k } g +τ g +k n k g τ g k n k nτ g k g +k g k n +τ g k g kn 4 [ γ k n τ g k g k n +τ ] g k g τ g knk n k g +τ g k g k nτ g [ ] γ τ g k g { k n k } g +τ g k n k g +τ g k n +k nτ g k g τ g k n +τ g k g kn. 4 Substituting.8 in.10, we get T k n +τ g k g γ 1T+γ g+γ n. Then, the curvature principal normal vector field of curve β are respectively, κ γ T 1 +γ +γ k n +τ g k g N 1 γ γ 1 +γ 1 T+γ g+γ n. +γ On the other h, we express B T N 1 kn +τ g k g γ 1 +γ +γ So, the binormal vector of curve β is T g n k n k g τ g k n γ 1 γ γ. B 1 kn +τ g k g ν 1 T+ν g+ν n γ 1 +γ +γ ν 1 k g τ g γ k n γ ν k n γ 1 +k n γ ν k n γ +τ g k g γ 1. We differentiate.7 with respect to s in order to calculate the torsion β 1 } {k g +k n k gτ g k g T+ k n k g + τ g k g +k n τ g g+ kn +τ g k g τ g k n n, similarly β 1 ω 1 T+ω g+ω n, 7

ω 1 k n k g ω k g τ τ g k g +k n k n τ g k n k g +k g k g τ g g +k n k g +τ g +k g τ g τ g +kn +kg +τg k n kn +k g k n +k n k n +τ g +τ g k g +τ g +k g τ g k n k g τ g ω k n +τ g τ g k g The torsion of curve β is. τ 1 ] ω 1 +ω [k n τ g k g k nτ g k g +knτ g +k g +τ g k g τ g ω 1 +k g ω + k n τ g k g [k n ω 1 ω +ω k g τ g ] k n k n +k n [ ] k n +kn 4 +τ g k g kn k n kn k n k g +τ g k g 1+kg + [ ] τ g k g τ g k g +k n k g +k n τ g +kn k g +τ g ω. The unit normal vector of surface M unit vector g of β are as follow. Then, from.1 we obtain 1 { } g ψcosϕ γ ψπ 1 +sinϕ ν 1 T+ ψcosϕ γ +sinϕ ν g+ ψcosϕ γ +sinϕ ν n, N 1 ψπ { ν 1 cosϕ ψsinϕ γ 1 t + ν cosϕ ψsinϕ γ g + ν cosϕ ψsinϕ γ N }. π γ 1 +γ +γ, ψ k n+τ g k g ϕ is the angle between the vectors g n.now, we can calculate geodesic curvature, normal curvature, geodesic torsion of curve, so from. we get γ kg 1 +γ +γ k n +τ g k g cosϕ, k n γ 1 +γ +γ k n +τ g k g sinϕ, τ g 1 ] ω 1 +ω [k n τ g k g k n τ g k g +kn τ g+k g +τ g k g τ g ω 1 +k g ω + k n τ g k g [k n ω 1 ω +ω k g τ g ] k n k n +kn ω [ ] k n +kn 4 +τ g k g kn k n kn k n k g +τ g k g 1+kg + [ ] τ g k g τ g k g +k n k g +k n τ g +knk g +τ g + dϕ ds. 8

Corollary Consider that αs is a geodesic curve, then the following equation holds, Consider that αs is an asymptotic line, then the following equation holds, i κ kg +τ g, τ g k g k g τ g k g τg kgτ g ii τ 1, 1+kgτ g k gτ g k gτ g k g iii k g iv k n kg +τ g τ g k g cosϕ, kg +τ g τ g k g sinϕ, k g τ g k g τg kgτ g v τ g 1 + dϕ 1+kgτ g k gτ g k gτ g k g. gn Smarache Curves Definition:LetM be an orientedsurface in E let considerthe arc-length parameter curve α αs lying fully on M. Denote the Darboux frame of αs {T,g,n}. gn - Smarache curve can be defined by ds. βs 1 g+n..11 Now, we can investigate Darboux invariants of gn Smarache curve according to α αs. Differentiating.11 with respect to s, we get β dβ ds ds ds 1 k n +k g T+τ g g τ g n,.1 T ds ds 1 k n +k g T+τ g g τ g n ds ds τ g +k n +k g..1 The tangent vector of curve β can be written as follow, T 1 τ g +k n +k g k n +k g T+τ g g τ g n..14 Differentiating.14 with respect to s, we obtain dt ds ds ds 1 τ g +k n +k g λ 1 T+λ g+λ n.15 9

λ 1 τ g τ gk n +k g τ g k n +k g +τ g k g k n τ g +k n +k g [ ] λ τ 4 g +τ gk n +k g k n +k g τ g k g k n +k g k n +k g k g +τ g +τ g [ ] λ τ 4 g+τ g k n +k g k n +k g τ g k n +k n +k g k n +k g k n +τ g τ g Substituting.1 in.15, we get T τ g +k n +k g λ 1T+λ g+λ n. Then, the curvature principal normal vector field of curve β are respectively, κ λ T 1 +λ +λ τ g +k n +k g B T N N 1 λ 1 T+λ g+λ n. λ 1+λ +λ On the other h, we express 1 k n +τ g k g λ 1 +λ +λ T g n k n +k g τ g τ g λ 1 λ λ. So, the binormal vector of curve β is B 1 ρ 1 T+ρ g+ρ n τ g +k n +k g λ 1 +λ +λ ρ 1 τ g λ τ g λ ρ τ g λ 1 +k n +k g λ ρ k n +k g λ +τ g λ 1. We differentiate.7 with respect to s in order to calculate the torsion β 1 } {k g +k n +τ g k n k g T+ k g k n +k g +τ g+τ g g+ k n k n +k g τ g+τ g n, similarly β 1 χ 1 T+χ g+χ n, 10

χ 1 k n +k χ τ g +k g χ τ g +k n τ g k n k g +τ g k n k g k n +k g τ g +kn +kg k n +k g +τ g τ g +k n +k g k g τ gk n +k g τ g k n k g τ g k n +k g +τ g τ g +k n +k g k g +τ gk g +k n τ g k n k g +τ g. g The torsion of curve β is k n +k g [ τ g g +τ +kg k n +k g χ τ g g τ kn k n +k g χ + [ ] τ g k n +k g χ τ 1 1 ] τ g χ +χ k n +k g +τ g k n k g k n +k g ]. kn +kg +kn +k g [k g τ g +τ g +k n τ g τ g + [ ] τ g +τ 4 g + k n +k g +τ g k n k g The unit normal vector of surface M unit vector g of β are as follow. Then, from.1 we obtain g 1 Ω { cosϕ λ 1 +sinϕ ρ 1 T+ } cosϕ λ +sinϕ ρ g+ cosϕ λ +sinϕ ρ n, n 1 { ρ 1 cosϕ sinϕ λ 1 T+ ρ cosϕ sinϕ λ g+ ρ cosϕ } sinϕ λ n. Ω Ω λ 1 +λ +λ, τ g +k n +k g ϕ is the anglebetween the vectors g n. Now, we can calculate geodesic curvature, normal curvature, geodesic torsion of curve, so from. we get λ kg 1 +λ +λ τ g +k n +k g cosϕ, kn λ 1+λ +λ τ g +k n +k g sinϕ, τ 1 k n +k g [ τ g +τ g +kg k n +k g χ τ g τ g kn k n +k g χ + [ ] τ g k n +k g χ 1 ] τ g χ +χ k n +k g +τ g k n k g dϕ k n +k g ] kn +kg +kn +k g [k g τ g +τ g +k + n τ g τ g + ds [ ] τ g +τ 4 g + k n +k g +τ g k n k g 11

Corollary Consider that αs is a geodesic curve, then the following equation holds, Consider that αs is a principal line, then the following equation holds, i κ kn +τ g k n+τ g, ii τ 1 k n+τ g + k gk n knk g kn +k g+k n +τ g k, n+k g kn +τ g iii kg cosϕ, kn+τg iv kn kn +τ g k n+τ g sinϕ, v τ g 1 k n+τ g + k gk n knk g dϕ + kn +k g+k n +τ g k n+k g ds..4 Tgn Smarache Curves Definition 1 Let M be an oriented surface in E let consider the arc - length parameter curve α αs lying fully on M. Denote the Darboux frame of αs {T,g,n}. Let M be an oriented surface in E let consider the arc - length parameter curve α αs lying fully on M. Denote the Darboux frame of αs {T,g,n}. Tgn- Smarache curve can be defined by βs 1 T+g+n..16 Now, we can investigate Darboux invariants of Tgn Smarache curve according to α αs. Differentiating.16 with respect to s, we get β dβ ds ds ds 1 k n +k g T+τ g k g g τ g +k n n,.17 T ds ds 1 k n +k g T+τ g k g g τ g +k n n ds ds k n +k g +τ g k g +τ g +k n..18 The tangent vector of curve β can be written as follow, T 1 k n +k g +τ g k g +τ g +k n k n +k g T+τ g k g g τ g +k n n..19 1

Differentiating.19 with respect to s, we obtain dt ds ds ds 1 k n +k g +τ g k g +τ g +k n δ 1 T+δ g+δ n.0 [ ] δ 1 k n +k g [k g τ g k g k n τ g +k n ]+k n +k g τ g k g τ g k g +τ g +k g τ g+k n + τ g k g +τ g +k n [ ] k g τ g k g k g +k n k n τ g +k n [ δ τ g k g [ k g k n +k g τ g τ g +k n ]+τ g k g k g +k n +τ g +k n [ k g k g +k n + k g τ g [ δ τ g +k n [τ g k g τ g k n k g +k n ]+τ g +k n k g +k n +τ g k g [ τ g k g τ g + τ g +k n k g +k n k g +k n ] τ g τ g +k n k g +k n ] k n k g +k n Substituting.18 in.0, we get T k n +k g +τ g k g +τ g +k n δ 1T+δ g+δ n. ] +τ g +k n τ g +k n + ] k g +k n τ g k g τ g k g + Then, the curvature principal normal vector field of curve β are respectively, κ δ T 1 +δ +δ k n +k g +τ g k g +τ g +k n N 1 δ 1+δ +δ δ 1T+δ g+δ n. On the other h, we express B T N 1 k n +k g +τ g k g +τ g +k n δ 1 +δ +δ So, the binormal vector of curve β is T g n k n +k g k g τ g τ g +k n δ 1 δ δ. B 1 σ 1 T+σ g+σ n k n +k g +τ g k g +τ g +k n λ 1+λ +λ 1

σ 1 k g τ g δ τ g +k n δ σ τ g +k n δ 1 +k n +k g δ σ k n +k g δ k g τ g δ 1. We differentiate.17 with respect to s in order to calculate the torsion β 1 k g +k n +k gk g τ g +k n τ g +k n k n k n +k g +τ g τ g k g τ g +k n n T+ k g k n +k g + τ g k g +τ g τ g +k n g+, similarly β 1 ξ 1 T+ξ g+ξ n, ξ 1 k n +k k n k n +τ g g k g k g τ g k n +k g kn g +k +kg τ g k g +k nτ g + +k n +τ g k n k g τ g ξ τ g k g +τ g k n +τ g +k g k n +k g +k n +k g k g k n τ g + τ g +k n k n k g +τ g +k g τ g kg +τ g ξ τ τ g τ g k g g +k n The torsion of curve β is +k n k n +k g +τ g k g τ g k nk g +k n +k g k n +k gτ g + +k n +τ g k n +τ g. τ 1 k n +k g k g τ g τ g ξ k n ξ 1 +kg τ g τ g ξ 1 +k g ξ + k n +τ g [k g τ g ξ 1 +k n +k g ξ ] ] k n +k g [k n +τ g ξ 1 +k g τ g ξ k n +τ g ξ + k n +τ g τ g ξ 1 k n ξ + k n +τ g k n +k g τ g ξ +k g ξ 1 +kn +τ g k g ξ k n ξ + k g τ g k n +τ g k n ξ k g ξ +k n +k g τ g k g k g τ g kg +τ g + k n +k g [k g k g τ g +k n k n +τ g ]+ k n +τ g ] kn g +τ +kn +τ g [τ g τ g k g +k g k n +τ g + k n +k g ] kn +τg +kn +k g [k g τ g k g k n τ g +k g + + k n τ g τ g k g + k n g + k +k n +τ g + τ g k g + τ g n k τ g τ g k g τ g +k n.. 14

The unit normal vector of surface M unit vector g of β are as follow. Then, from.1 we obtain g 1 { } Λcosϕ δ 1 +sinϕ σ 1 T+ Λcosϕ δ +sinϕ σ g+ Λcosϕ δ +sinϕ σ n, ΦΛ n 1 { σ 1 cosϕ Λsinϕ δ 1 T+ σ cosϕ Λsinϕ δ g+ σ cosϕ } Λsinϕ δ n. ΦΛ Φ δ 1+δ +δ, Λ k n +k g +τ g k g +τ g +k n ϕ is the angle between the vectors g n. Now, we can calculate geodesic curvature, normal curvature, geodesic torsion of curve, so from. we get δ kg 1 +δ +δ k n +k g +τ g k g +τ g +k n cosϕ, k n δ 1+δ +δ k n +k g +τ g k g +τ g +k n sinϕ, τ g 1 k n +k g k g τ g τ g ξ k n ξ 1 +kg τ g τ g ξ 1 +k g ξ + k n +τ g [k g τ g ξ 1 +k n +k g ξ ] ] k n +k g [k n +τ g ξ 1 +k g τ g ξ k n +τ g ξ + k n +τ g τ g ξ 1 k n ξ + k n +τ g k n +k g τ g ξ +k g ξ 1 +kn +τ g k g ξ k n ξ + k g τ g k n +τ g k n ξ k g ξ +k n +k g τ g k g k g τ g kg +τ g + k n +k g [k g k g τ g +k n k n +τ g ]+ k n +τ g ] kn g +τ +kn +τ g [τ g τ g k g +k g k n +τ g + k n +k g ] kn +τg +kn +k g [k g τ g k g k n τ g +k g + + k n τ g τ g k g + k n g + k +k n +τ g + τ g k g + τ g n k τ g τ g k g τ g +k n. + dϕ ds. References [1] Ali, A. T., Special Smarache Curves in the Euclidean Space, International Journal of Mathematical Combinatorics, Vol., pp.0-6, 010. 15

[] B. O Neill, Semi-Riemannian Geometry, Academic Press, New York, 198. [] Çetin, M., Tunçer Y.Karacan, M. K., Smarache Curves According to Bishop Frame in Euclidean - Space. arxiv: 1106. 0v1 [math. DG], 16 Jun 011. [4] Do Carmo, M.P., Differential Geometry of Curves Surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976. [5] S. Yilmaz M. Turgut, On the Differential Geometry of the curves in Minkowski spacetime I, Int. J. Contemp. Math. Sci. 7, 14-149, 008. [6] Turgut, M. Yilmaz, S., Smarache Curves in Minkowski Spacetime, International Journal of Mathematical Combinatorics, Vol., pp.51-55, 008. [7] O Neill, B., Elemantery Differential Geometry Academic Press Inc. New York, 1966. 16