2007 4 4 :100026788 (2007) 0420160205 1, 1, 2 (11, 116026 ;21, 116024) : 2 (SVM),, SVM. 5., 4,. : ; ;SVM : U121 : A Bus Arrival Time Prediction Using Support Vector Machines YU Bin 1, YANG Zhong2zhen 1, LIN Jian2yi 2 (11Transportation College, Dalian Maritime University, Dalian 116026, China ;21Civil Engineering Dept, Dalian University of Technology, Dalian 116024, China) Abstract: Effective prediction of bus arrival time is central to many advanced traveler information system. This paper presents support vector machines ( SVM), a new neural network algorithm, to predict bus arrival time. The objective of this paper is to examine the feasibility and applicability of SVM in vehicle travel time forecasting area. Time2of2day, weather, segment, the travel time of current segment and the latest travel time of next segment are taken as five input features. Bus arrival time predicted by the SVM is assessed with the data of transit route number 4 in Dalian economic and technological development zone in China and some conclusions are drawn. Key words : prediction ;bus arrival time ;support vector machine 1 APTS ATIS,.,,, ( [1 ],, ), ;,, (, ),. (, ),,,, : Kalman. [2,3 ],, [4 ].. Kalman, [2,5 7 ]. Kalman ( ) ( Kalman ),,,, [8 ]. 2,, :2005212212 : (20050151007) : (1977 - ),,,,,E2mail :minlfish @yahoo. com. cn ; (1964 - ),,,,,,E2mail :yangzhongzhen @263. net.
4 161.,., [9 11 ].,, [12 15 ]., 2 (SVM) [16 18 ], ( ),,. SVM,,,SVM.,,., SVM,,,,,.,.,., GPS,, 24 2,.,. 2,,,, SVM ( ) (, ). SVM,.,SVM,,. 211 l ( x 1, y 1 ), ( x 2, y 2 ),, ( x l, y l ) ( x i X Α R n, y i Y Α R),SVM, x H,,., : f ( x) = <( x) + b. (1), : 1 2 2 + C 1 l l 1 L ( y i,f ( x i ) ), (2) (2),, ;,, C > 0. 2 ( 1) L ( y i,f ( x i ) ) = max( y i - f ( x i ) -,0). (3) L ( y i,f ( x i ) ), f ( x i ) y i, 0 ;,, i, 3 i min 1 2 2 + C 1 l l, (2) : ( i + 3 i ), (4) s. t. y i - <( x i ) - b + i, (5) <( x i ) + b - y i + 3 i,,, l, (6)
162 2007 4 3 i 0. (7) (4),, :, - l ( a i - a 3 i ) x i = 0, (8) l f ( x) = ( a i - a 3 i ) <( x i ) <( x) + b. (9) K( x i, x j ) (9) : l f ( x) = ( a i - a 3 i ) K( x i, x) + b, (10) K( x i, x j ) x i x j <( x i ) <( x j ), K( x i, x j ) = <( x i ) <( x j ),. SVM, SVM. [19 21 ]. 212 SVM SVM 2. 5 : ( x 1 ), ( x 2 ), ( x 3 k k + 1, k k + 1 ), ( x 4 k k + 1, k k + 1 ) ( x 5 k - 1 k, k - 1 k ). SVM 5 k k + 1 y k k + 1, x 5 k - 1 k k + 1 t k + 1. x 1 x 2, ; x 3 k k + 1 x 4 k k + 1 x 5 k - 1 k,,., x 4 k k + 1 x 5 k - 1 k,,,. SVM,, ( SVM ) ; SVM.,,., x 1 x 2 x 3 k k + 1 SVM.,. m k 2, ( x 1 x 2 x 3 k k + 1 x 4 k k + 1 x 5 k - 1 k ) m k + 1, k - 1 k, : x 4 k - 1 k = x 5 k - 1 k.,,. 3, 4. 4, 1311, 17, 42. 10,, 10. 3. :1) ;2) C,.,, Sigmoid,,. ( C,, ),. ( C, ),
4 163 3 4,,, NP2 hard., [19,22 ],, ( ), ( C), MS E i ;,, ( C), ( ), MS E i + 1,.,, : (2-2,2-5,012)., ( ) ( ) : (SP ) (SO ) (RP ) (RO ). 10, 2005 9. (6 :3027 :30) (10 :00211 :00), 270 (270, 10 ),, (SP ) 160, (SO ) 70 (RP ) 22 (RO ) 18. SVM,,, 2,430., 238 SVM (146 SP 60 SO 18 RP 14 RO ),.,. SVM, SVM, SVM23, SVM SVM25.,, 4. 4,,,SVM25 SVM23,.,,, ( ), SVM23,,,,. SVM25,.,,. 4. SVM,, SVM,,
164 2007 4 4 SVM25 SVM23 SVM. 2 ( ) 3 ( ), 5., SVM.,,. : [ 1 ] Ben2Akiva M, Lerman S R. Discrete Choice Analysis : Theory and Application to Travel Demand[M]. MIT Press, Cambridge, Mass, 1985. [ 2 ] Stephanedes YJ, Kwon E, Michalopoulos P. On2Line Diversion Prediction for Dynamic Control and Vehicle Guidance in Freeway Corridors[M]. Transp Res Rec, 1990,1287, 11-19. [ 3 ] DeLurgio S A. Forecasting principles and applications, McGraw2Hill, New York,1998. [ 4 ] Smith B L, Demetsky MJ. Short2Term Traffic Flow Prediction :Neural Network Approach[M]. Transp Res Rec, 1995,1453, 98-104. [ 5 ] Okutani I, Stephanedes YJ. Dynamic prediction of traffic volume through kalman filtering theory[j ]. Transp Res, 1984,18B(1) : 1-11. [ 6 ] Dailey D, Maclean S, Cathey F,et al. Transit vehicle arrival prediction : Algorithm and large2scale implementation[j ]. Journal of the Transportation Research Board, 2001,1771, 46-51. [ 7 ] Shalaby A,Farhan A. Bus Travel Time Prediction Model for Dynamic Operations Control and Passenger Information Systems, CD2 ROM, The 82nd Annual Meeting of the Transportation Research Board, Washington, DC. 2003. [ 8 ] Park D,Rilett L R. Forecasting freeway link travel times with a multilayer feedforward neural network[j ]. Computer2Aided Civil and Infrastructure Engineering, 1999,14(5) :357-367. [ 9 ] Ding Y, Chien S. The Prediction of Bus Arrival Times with Link2Based Artificial Neural Networks [ C ]ΠΠProceedings of the International Conference on Computational Intelligence & Neurosciences (CI&N) 2Intelligent Transportation Systems, Atlantic City, New Jersey, 2000,730-3. [10 ] Chien I2Jy, Ding Y,Wei C. Dynamic bus arrival time prediction with artificial neural networks [J ]. Journal of Transportation Engineering, ASCE, 2002,128(5) : 429-38. [11 ] Chen M, Liu X B, Xia J X,et al. A dynamic bus2arrival time prediction model based on APC data[j ]. Computer2Aided Civil and Infrastructure Engineering, 2004,19 :364-376. ( 176 )
176 2007 4 [2 ]. [M]. :,2002. Gu Junsi. Computer Supported Cooperative Work[M]. Beijing :Tsinghua University Publish, 2002. [3 ],. [J ].,2000,20(5) :24-29. Yang Canjun, Chen Ying. Study on humachined cooperation decision2making[j ]. Systems Engineering - Theory & Practice,2000, 20 (5) :24-29. [4 ] Corkill D D. Cooperative Distributed Problem Solving[M]. AI handbook IV,1990. [5 ] H.. 2 [M]. :,1988. H. Haken. Synergetics - the Arcanum of Natural Structure[M]. Shanghai :Shanghai Science Popularization Publish, 1988. [6 ],. [J ].,2000. 9 :460-469. Bai Hua, Han Wenxiu. General theories about complex systems and their coordination [ J ]. System Science and Engineering Research, 2000,9 :460-469. [7 ],,. [J ].,2006,32(20) :235-239. Meng Xiuli1, Cao Jie, Han Xiangdong. Research on collaborative design support environment for machine tool [ J ]. Computer Engineering,2006,32(20 :235-239. [8 ],,,. [J ].,2004,5(5) :1-7. Lei Sheping, Xie Jiancang, Huang Mingcong,et al. Coordination degree analysis of regional industry water use system[j ]. Shuili Xuebao,2004,5(5) :1-7. [9 ],,,. Web [J ]. ( ),2000,19 (5) :16-19. Li Minbo, Tang Dong, Cheng Ye,et al. Web2based co2decision2making approach and application for manufacturing process[j ]. Journal of Tsinghua University,2000,19(5) :16-19. ( 164 ) [12 ] Lawrence S, Giles C L, Tsoi A 2C. Lessons in Neural Network Training : Overfitting May Be Harder Than Expected [ C ]ΠΠ Proceedings of the Fourteenth National Conference on Artificial Intelligence, Mento Park, CA : AAAl Press. 1997,AAAl297, 540-545. [13 ] Moody J E. The effective number of parameters : An analysis of generalization and regularization in nonlinear learning systems[j ]. NIPS, 1992,4 :847-854. [14 ] Sarle W S. Stopped Training and Other Remedies for Overfitting[ C]ΠΠProceedings of the Twenty2seventh Symposium on the Interface of Computing Science and Statistics,1995,352-360. [15 ] Weigend A. On Overfitting and the Effective Number of Hidden Units[ C]ΠΠProceedings of the 1993 Connectionist Models Summer School,1994,335-342. [16 ] Vapnik V N. The Nature of Statistical Learning Theory[M]. Springer,1995. [17 ] Vapnik V N. An overview of statistical learning theory[j ]. IEEE Transactions on Neural Networks,1999,10(5) :988-999. [18 ] Vapnik V N. The Nature of Statistical Learning Theory[M]. Springer, New York. (2000). [19 ] Dong B, Cao C, Lee S E. Applying support vector machines to predict building energy consumption in tropical region[j ]. Energy and Buildings, 2005,37 :545-553. [20 ] Cao L J, Francis E H. Support vector machine with adaptive parameters in financial time series forecasting[j ]. IEEE Transactions on Neural Networks, 2003,14(6). [21 ],,,. [J ].,2003,18(1) :89-91. Wang D C, Fang T J, Gao L F,et al. Support vector machines regressing on2line modeling and its application[j ]. Control and Decision, 2003,18(1) :89-91. [22 ] Hsu C W, Chang C C, Lin C J. A Practical Guide to Support Vector Classification[ R ]. Department of Computer Science and Information Engineering, National Taiwan University,2003.