18 6 2006 6 PROGRESS IN CHEMISTRY Vol. 18 No. 6 June, 2006 3 3 3 ( 100083),, :O642, Q591,Q731 : A : 10052281X(2006) 0620841208 Thermodynamic Analysis of Mitochondria Working State Liu Sha, Liu Huixue, Yang Xiaogai, Yang Xiaoda 3 3 (Department of Chemical Biology &Laboratories of Preventive Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Sciences Center, Bejing 100083, China) Abstract Mitochondria, the plant of energy in cells, has recently received great attention for its roles in metabolic diseases, e. g. diabetes and neural degenerative diseases. In this review, we briefly summarize the major recent progress in the biochemical and relevant studies of mitochondria and discuss comprehensively the working mechanisms and regulations of mitochondria, i. e. the chemiosmosis theory. A novel hypothesis of thermodynamic regulation of mitochondria function is proposed based on the reported results. Key words mitochondria ; chemiosmotic theory ; proton motive force ; ion channels ; thermodynamic analysis [1 ] [1 4 ], ROS (adenosine ROS triphosphate, ATP) ATP [3 6 ],, [7, 8, ] [9 ] Parkinson ( reactive oxygen [10, 11 ] [12 ] species,ros), ROS 95 % [13 ] : 2006 3, : 2006 4 3 (No. 20331020) 985 (No. 9852220062113) 3 3 email : xyang @bjmu. edu. cn
842 18 2001 Mitochondrion ; 2006 Biochim Biophys. Acta : Mitochondria in Diseases and Therapeutics (Vol. 1762, Issue 2), [15 ] 4 1, 1. 1 NADH, 3 : (NADH2 Q ) ( Q2 c ) ( c ) ATP, (matrix), H +,, ( ) ( ph) 70 %,Taylor [14 ] 615, 498, 9 % 1 [15 ] 2 [14,15 ] 1 Fig. 1 Illustration of structure and some important proteins of [14,15 ] mitochondria 112 ( 2) Fig. 2 Illustration of respiration chain of mitochondria and the standard electric potential for each redox step [15 ] 113 [16, 17 ] ( 1),,, 11311 ATP K + ( K ATP ), 1991 [18, 19 ] ATP
6 843 : (1), 3 1nmol H + Πmg protein 200mV ( ) ph dependent anion channel, VDAC) [20 0105 ] [1 ] 150 170mV ph 015 110 H + : [2 ], Π, ( 10-7 molπl), Ca 2 + Ca 2 + (011molΠL) 10 6 (2) Na + ΠCa 2 + Na + Na + Π H + [1, 3, 4, 16 ] (3) Ca 2 +, ; 11312 1 (uncoupling protein 1, UCP1) [21, 22 ] 2 3 (UCP2, UCP3) [23, 24 ],UCP1 UCP2Π3 UCP UCP ATP,UCPs (voltage Ca 2 + 3 [1 4,16 ] Fig. 3 The pathways of Ca 2 + influx and efflux and possible 2 + [1 roles of mitochondrial Ca 4,16 ] 20 % 50 % [25 ] 2 UCP1 [15, 27 ] ; UCP ROS ATP, UCP3 211 UCP2 ATP, ATP ATPΠADP K ATP G Ca 2 +,UCP2 [26 0 2 ] G > 0 UCP1 G > 0, G < 0 G < 11313 ( mitochondrial Ca 2 + 0 uniporter, MCU)
844 18 (coupling), G = - F p = - 21303RT[pH - ph ] - F G < 0 ATP : p = + 01059 ph G > 0 ; G < 0 3 : (1) ATP ATP ATP (2) ADP2ATP, A ATP NADH( reduced form ADP ATP 4 - ADP 3 - of nicotinamide2adenine dinucleotide) (3) ATP, ATP [15, 27 ] [29 ], NADH,( 4 ), [6, 30 ] O 2 (mitochandrial criticality),, ATP :ATP ; ATP, (uncoupling) ATP, (UCP) ATP, 4 ( ) [29 ] Π Fig. 4 The correlation of health state of individual with energy ( 2,4 - DNP ) charge described by arsterial ketone body ratio, AKBR [29 ], 213 ATP ROS 212 ATP [1 ROS ] H + [ Ca 2 + ] m, : (ANT) ATP, ATP ( ) ; ROS, ph ( ph) Ca 2 + (NOS) NO ( p) [28 ],, ROS ROS :
6 845 PTP, ATP, c, ATP ( ) ( ROS ) 3 ATP ( ) : 411 (1) = 170mV ph = 015 H + : = ( RTΠzF)Ln [M z+ ] i Π[M z+ ] o : M z + 10 218z 0 CoQ NADH E 1 = ; K + Na + Ca 2 + 0137V,NADH Q 95 molπl ( K + ) 3 molπl, (Na + ) 0104 molπl (Ca 2 + ) : 0, - G 1 = n e F E 1 = n H+ F + RTLn ( a i Πa m ) n e, n H?, F Faraday, a i a m (2) ( ),,, 1nmol H + Πmg protein 200mV ( ), ( G < 0), [20 ph 0105 ] ( 3 mv : ATP ) ( ) ;ATP NADH : a2 0 n e F E 1 = n H+ F + RTLn ( a i Πa m ) n H+ F, ( ) 0 ( n e Πn + H ) E1 4 n e 2, n H 4 I 190mV?? : c (3) CoQHE 0 2 = 0120V (gatekeepers of life and death) [31 ] 4 2? CoQH 2,?, 2, 4 200mV : O 2, c, E 0 3 = 0157V 2,
846 18 0157V 3 H + 4 4 ; 190mV 5 ATP P ATP ph,3 Fig. 5 The calculated dependency of ATP synthesis power 190 ( P ATP ) on mitochondrial ph gradient ( ph) 200mV,, ATP,3 ( 44 kjπmol), ATP 150mV 3 412 ATP ph 3 1 ATP, ph ph ATP 5 190 200mV ph 413 ph, ATP ATP,H + ATP ph 015 110 ATP ph ATP, 200 mv 0105 ph H +, : ph K +,H + ATP K + ( K ATP ), ATP ph K ATP ; ph K + ATP,ATP ph H + ( P) ATP,H + H + : P = U I = i (H + ) = b [ H + ] ( b ) p = + 01059 ph, : P = b (10 - ph outer - 10 - ph inter ) ( p - 01059 ph) ph = 7120 ATP P ATP ph 5 UCPs K + ΠH + ph UCPs, UCP1 UCP2Π3, UCP1 ;UCP1 ph 414,ATP, ph = 018, 168 mv ph 0175, ( 6) : ATP ATP ; ph
6 847 c, 6, Fig. 6 The proposed mechanism of regulation of mitochondrial ph function by cross membrane proton gradient, K ATP ATP ph : ATP, ATP K ATP [13, 33 ] 3, ph ATP, 3 Ca 2 +,, ph ( ) Alzheimer K ATP, ATP, [13 K ATP ] ( ) 415,, ATP 3 Ca 2 + [34 ] [ Ca 2 + ] m ATP :,Ca 2 +,[ Ca 2 + ] m,cu + ΠCu 2 + Ca 2 +,Ca 2 +, [ Ca 2 + ] m (2) Ca 2 + : Ln 3 + Sr 2 + VO 2 + Ca 2 + ROS (3) K + : Cs + Li + K + ROS Ca 2 + PTP ROS Ca 2 + PTP Ca 2 + ATP ATP [32 ] : ph ; ATP, (1) H + : (Cu + ΠCu 2 + ) 3 - (4) PO 4 : K ATP, ATP,
848 18 3-3 - AsO 4 VO 4 PO 4 3 - [ 1 ] Brookes P S, Yoon Y, Robotham J L, et al. Am. J. Physiol. Cell Physiol., 2004, 287 : 817 833 [2] Gunter T, Buntinas L, Sparagna G C, et al. Biochim. Biophys. Acta, 1998, 5 15 [3] Duchen M R. J. Physiol., 2000, 529 : 57 58 [4] Carafoli E. J. Cardiovasc. Pharmacol., 1988, S77 84 [5] Balaban R S. J. Mol. Cell Cardiol., 2002, 1259 1271 [6] Aon M, Cortassa S, Akar F G, et al. Biochim. Biophys. Acta, 2006, 1762 : 232 240 [7] Morino K, Petersen K F, Dufour S, et al. J. Clin. Invest., 2005, 3587 3593 [8] Lowell B, Shulman G. Science, 2005, 384 387 [9] Ghosh S, Swerdlow R, Miller S W, et al. Ann. NYAcad. Sci., 1999, 176 191 [10] Uitti R, Calne D. Eur. Neurol., 1993, 6 23 [11] Parker W, Boyson S, Parks J K. Ann. Neurol., 1989, 719 723 [12] Balaban R S, Nemoto S, Finkel T. Cell, 2005, 120 : 483 495 [13] Szewczyk A, Wojtczak L. Pharmacol. Rev., 2002, 101 127 [14] Taylor S, Fahy E, Zhang B. Nature Biotechnology, 2003, 21 : 281 286 [15] Stryer L. Biochemistry. New York : WH Freeman & Company, 1995 [16] Bernardi P. Physiol. Rev., 1999, 79 : 1127 1155 [17] Debska G, Kicinska A, Skalska J, et al. Acta Biochim., 2001, 48 : 137 144 [18] Inoue I, Nagase H, Kishi K, et al. Nature, 1991, 244 247 [19] Miki T, Nagashima K, Seino S. J. Mol. Endocrinol., 1999, 22 : 113 123 [20] Czyz A, Szewczyk A, Nalecz M J. Biochem. Biophys. Res. Commun., 1995, 210 : 98 104 [21] Nicholls D, Rial E. J. Bioenerg. Biomembr., 1999, 31 : 399 406 [22] Klingenberg M, Huang S. Biochim. Biophys. Acta, 1999, 271 296 [23] Fleury C, Neverova M, Collins S. Nat. Genet., 1997, 269 272 [24] Vidal- Puig A, Solanes G, Grujic D. Biochem. Biophys. Res. Commun., 1997, 79 82 [25] Brand M, Brindle K, Buckingham J A, et al. Int. J. Obes. Relat. Metab. Disord., 1999, S4 11 [26] Chan C, de Leo D, Joseph J W, et al. Diabetes, 2001, 1302 1310 [27] Mitchell P. Biol. Rev. Camb. Philos. Soc., 1966, 445 502 [28] Azzone G, Pietrobon D, Zoratti M, Curr. Top. Bioenerg., 1984, 1 77 [29] Ozawa K. Liver Surgery Approached Through the Mitochondria : the Redox Theory in Evolution. New York : Medical Tribune, 1992 [30] Aon M A, Cortassa S, O Rourke B. PNAS, 2004, 101 : 4447 4452 [31] O Rourke B, Cortassa S, Aon M A. Physiology, 2005, 20 : 303 315 [32] Zamaraeva M, Sabirov R, Maeno E, et al. Cell Death and Differentiation, 2005, 12 : 1390 1397 [33] Mitochondria in Diseases and Therapeutics ( Molecular Basis of Disease Section). Biophys. Acta, 2006 ( eds. Sheu S S, Lemasters J ) in Biochim. [34] Wang K. S. Afr. J. Chem., 1997, 50 : 232 239