Crowdsourcing and Machine Learning

Σχετικά έγγραφα
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,

Anomaly Detection with Neighborhood Preservation Principle


Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες


ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

{takasu, Conditional Random Field

: Active Learning 2017/11/12

Buried Markov Model Pairwise

ER-Tree (Extended R*-Tree)

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

User Behavior Analysis for a Large2scale Search Engine

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

Stabilization of stock price prediction by cross entropy optimization

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

Kenta OKU and Fumio HATTORI

Quick algorithm f or computing core attribute

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: , ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα

Faruqui [7] WordNet [15] FrameNet [2] PPDB [8]

2017 IEEE 31st International Conference on Advanced Information Networking and Applications

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Simplex Crossover for Real-coded Genetic Algolithms

CONFIOUS: The Conference Nous Σύστημα Διαχείρισης Επιστημονικών & Ακαδημαϊκών Συνεδρίων. (

th International Conference on Machine Learning and Applications. E d. h. U h h b w k. b b f d h b f. h w k by v y

Probabilistic Approach to Robust Optimization

Area Location and Recognition of Video Text Based on Depth Learning Method

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Security in the Cloud Era

ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ, ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ, ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ, ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. 1.3.Ξένες γλώσσες Αγγλικά πολύ καλά 1.4.Τεχνικές γνώσεις

Research on model of early2warning of enterprise crisis based on entropy

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ ΓΙΑ ΤΟ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Εισηγητής: Νίκος Πλόσκας Επίκουρος Καθηγητής ΤΜΠΤ

A Survey of Recent Clustering Methods for Data Mining (part 1)

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Κβαντική Επεξεργασία Πληροφορίας

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Online Social Networks: Posts that can save lives. Sotiria Giannitsari April 2016

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Automatic extraction of bibliography with machine learning

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Applying Markov Decision Processes to Role-playing Game

Compound Reinforcement Learning: Framework and Application

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Η διδασκαλία της θεωρίας της εξέλιξης στη δευτεροβάθμια εκπαίδευση

Πρόσκληση. DOSSIER-Cloud DevOpS-based Software engineering for the cloud

DECO DECoration Ontology

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Semantic Drift in Espresso-style Bootstrapping: Graph-theoretic Analysis and Evaluation in Word Sense Disambiguation

From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) Jiang [6] (word lattice reranking)

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

ΜΑΡΙΝΑ Ε. ΜΠΙΣΑΚΗ. Τκήκα Δθαξκνζκέλωλ Μαζεκαηηθώλ Παλεπηζηήκην Κξήηεο Τ.Θ , Ηξάθιεην, Κξήηε

ΟΙ Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΤΗΝ ΛΕΚΑΝΗ ΠΟΤΑΜΙΑΣ ΚΑΙ Η ΑΛΛΗΛΟΕΠΙ ΡΑΣΗ ΤΟΥ Υ ΑΤΙΚΟΥ ΚΑΘΕΣΤΩΤΟΣ ΜΕ ΤΗ ΜΕΛΛΟΝΤΙΚΗ ΛΙΓΝΙΤΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΣΤΗΝ ΕΛΑΣΣΟΝΑ

Μ. Κορφιατη - Π. Γεωργίου ΒΙΒΛΙΟΘΗΚΗ & ΥΠΗΡΕΣΙΑ ΠΛΗΡΟΦΟΡΗΣΗΣ ΠΑΝ. ΠΑΤΡΩΝ

Ενεργητική Μάθηση Με Χρήση Μηχανών ιανυσµάτων Υποστήριξης. Ανδρέας Βλάχος Πανεπιστήµιο του Εδιµβούργου

Secure Cyberspace: New Defense Capabilities

ELIXIR-GR / BiP! Finder

Online Social Networks: Posts that can save lives. Dimitris Gritzalis, Sotiria Giannitsari, Dimitris Tsagkarakis, Despina Mentzelioti April 2016


Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)

Text Mining using Linguistic Information

Χρήση οντολογιών στη χαρτογράφηση γνώσης: Μελέτη περίπτωσης σε μία ακαδημαϊκή βιβλιοθήκη

Why We All Need an AIDS Vaccine? : Overcome the Challenges of Developing an AIDS Vaccine in Japan

ΜΑΘΗΜΑ: Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ. 1 η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

ΑΝΑΛΥΤΙΚΟ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. 2. ΑΚΑΔΗΜΑΪΚΕΣ ΣΠΟΥΔΕΣ Ιδρυμα: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Ημ/νία: 2003 Τίτλος: ΔΙΠΛΩΜΑ ΜΗΧΑΝΙΚΟΥ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Παναγιώτης Μερκούρης ΕΚΠΑΙΔΕΥΣΗ

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Εμπειρική Μελέτη της Εφαρμογής Gamification στο Μάθημα Εφαρμογές πληροφορικής

Collaborative Filtering

(Statistical Machine Translation: SMT [1])

Web DEIM Forum 2009 A7-1. Web. Web. Web. Web. 4 Wikipedia. Wikipedia. Web.

Topic Structure Mining based on Wikipedia and Web Search


Εργαστήριο Ιατρικής Φυσικής

Transcript:

1 Crowdsourcing and Machine Learning Hisashi Kashima Hiroshi Kajino Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo {kashima, hiroshi kajino}@mist.i.u-tokyo.ac.jp keywords: crowdsourcing, machine learning, natural language processing, computer vision, human computation 1. 2 3 4 5 2. 21 1 [Howe 06] Wired P&G Wikipedia InnoCentive 2005 Amazon Amazon Mechanical Turk 2 AMTAMT AMT Turker 3 1 cloud crowd 2 https://www.mturk.com/mturk/welcome 3 Ipeirotis AMT 8 AMT 10

2 27 4 2012 Web AMT US 4 22 Snow AMT [Snow 08] NAACL-HLT 100 5 [Callison- Burch 10] Sorokin Forsyth [Sorokin 08] [Law 11] [Ipeirotis 10a] 4 http://www.lancers.jp/ 5 Web http://sites.google.com/ site/amtworkshop2010/data-1 23 CrowdFlower 6 & 3. 31 23 1 6 http://crowdflower.com/docs/gold

3 1 1 1970 Dawid Skene [Dawid 79] Dawid Skene 1995 Smyth [Smyth 95] Dawid Skene 2 Dawid Skene N y i {0,1} i = 1,2,...,N J i J i {1,2,...,J} i = 1,2,...,N {y j i } j J i,i {1,2,...,N} {y i } i {1,2,...,N} Dawid Skene j 1 1 α j 0 0 β j α j = β j = 1 j p 1 1 p 0 α j β j {α j } j {1,2,...,J} {β j } j {1,2,...,J} p i y i {y j i } j J i Pr[y i = 1 {y j i } j J i ] Pr[y j i y i = 1]Pr[y i = 1] + Pr[y j i y i = 0]Pr[y i = 0] j J i = (α j ) y j i (1 α j ) 1 yj i p j J i + (1 β j ) yj i (β j ) 1 yj i (1 p) {y i } N i=1 p j {y j i } {i j J i } α j β j Dawid Skene EM 32 Dawid Skene [Dawid 79] Whitehill [Whitehill 09] j ω j i η i ( 0) j i Pr(y j i = y i) = 1 1 + exp( ω j η i ) exp 1 0 ω j = + j ω j = ω j = 0 1/2 η i Whitehill Welinder [Welinder 10] D x i R D

4 27 4 2012 7 D w j R D τ j R j i w j x i > τ j 1 0 Welinder Whitehill D 33 23 [Dawid 79] Dekel Shamir [Dekel 09] 2 Ipeirotis 2 [Ipeirotis 10b] j i 1 y j i = 1 1 (y i = 1) Pr[y i = 1 y j i = 1] = Pr[yj i = 1 y i = 1]Pr[y i = 1] Pr[y j i = 1] = α j p α j p + (1 β j )(1 p) 7 x i y j i = 0 Raykar Yu [Raykar 11] 1 0 0 1 1 0 Pr[y j i = 1 y i = 1] = Pr[y j i = 1 y i = 0] α j = 1 β j α j + β j = 1 α j + β j 1 8 4. 41 : 3 3 x i R D D y i {0,1} N f : R D {0,1} i y i i J i {1,2,...,J} J i {y j i } j J i 8

5 Sheng [Sheng 08] 3 Raykar Dawid Skene [Raykar 09, Raykar 10] w Pr[y i = 1 x i ] = 1 1 + exp( w x i ) (1) α j β j Dawid Skene Raykar EM Yan [Yan 10] α j β j x i α j 1 (x i ) = 1 + exp( w j x i ) (2) x i Welinder [Welinder 10] x i w j EM Kajino (1) [Kajino 12a] w v j w j w j = w + v j [Evgeniou 04] Evgeniou Pontil w v j Kajino 42 : Donmez [Donmez 09] Zheng [Zheng 10] Donmez [Donmez 10] Yan 4 [Yan 11] (2)

6 27 4 2012 23 Tang Dawid Skene [Tang 11] Kajino [Kajino 12b] 5. AMT API [Law 11] von Ahn ESP [Von Ahn 06]ESP GWAP; Game With A Purpose ESP ESP AMT API Little TurKit AMT [Little 10]TurKit AMT 2 AMT TurKontrol [Dai 10, Dai 11] TurKontrol TurKontrol Turkomatic [Kulkarni 11] 6. 32 Welinder [Welinder 10] Gomes [Gomes 11] 2 2 x i

7 x k W j x i W j x k > τ j τ j [BakIr 07] [Ambati 11] 5 9 [Ambati 11] Ambati, V., Vogel, S., and Carbonell, J.: Towards Task Recommendation in Micro-Task Markets, in Proceedings of the 3rd Human Computation Workshop (HCOMP) (2011) 9 Human Computation Workshop (HCOMP) 5 2013 [BakIr 07] BakIr, G., Hofmann, T., Schölkopf, B., Smola, A., and Taskar, B.: Predicting structured data, The MIT Press (2007) [Callison-Burch 10] Callison-Burch, C. and Dredze, M.: Creating Speech and Language Data With Amazon s Mechanical Turk, in Proceedings of Workshop of Creating Speech and Language Data with Amazon s Mechanical Turk at NAACL HLT 2010 (2010) [Dai 10] Dai, P., Mausam,, and Weld, D. S.: Decisiontheoretic Control of Crowd-sourced Workflows, in Proceedings of the 24th Conference on Artificial Intelligence (AAAI) (2010) [Dai 11] Dai, P., Mausam,, and Weld, D. S.: Artificial Intelligence for Artificial Artificial Intelligence, in Proceedings of the 25th Conference on Artificial Intelligence (AAAI) (2011) [Dawid 79] Dawid, A. P. and Skene, A. M.: Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm, Journal of the Royal Statistical Society. Series C (Applied Statics), Vol. 28, No. 1, pp. 20 28 (1979) [Dekel 09] Dekel, O. and Shamir, O.: Vox Populi: Collecting High-Quality Labels from a Crowd, in Proceedings of the 22nd Annual Conference on Learning Theory (COLT) (2009) [Donmez 09] Donmez, P., Carbonell, J. G., and Schneider, J.: Efficiently Learning the Accuracy of Labeling Sources for Selective Sampling, in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2009) [Donmez 10] Donmez, P., Carbonell, J., and Schneider, J.: A Probabilistic Framework to Learn from Multiple Annotators with Time-Varying Accuracy, in Proceedings of the SIAM International Conference on Data Mining (SDM) (2010) [Evgeniou 04] Evgeniou, T. and Pontil, M.: Regularized multi task learning, in Proc. of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data mining (KDD) (2004) [Gomes 11] Gomes, R., Welinder, P., Krause, A., and Perona, P.: Crowdclustering, in Advances in Neural Information Processing 24 (2011) [Howe 06] Howe, J.: The Rise of Crowdsourcing, Wired Magazine (2006) [Ipeirotis 10a] Ipeirotis, P. G.: Demographics of Mechanical Turk, Technical Report CeDER-10-01, NYU Center for Digital Economy Research Working Paper (2010) [Ipeirotis 10b] Ipeirotis, P. G., Provost, F., and Wang, J.: Quality Management on Amazon Mechanical Turk, in Proceedings of the ACM SIGKDD Workshop on Human Computation (HCOMP) (2010) [Kajino 12a] Kajino, H., Tsuboi, Y., and Kashima, H.: A Convex Formulation for Learning from Crowds, in Proceedings of the 26th Conference on Artificial Intelligence (AAAI) (2012) [Kajino 12b] Kajino, H., Tsuboi, Y., Sato, I., and Kashima, H.: Learning from Crowds and Experts, in Proceedings of the 4th Human Computation Workshop (HCOMP) (2012) [Kulkarni 11] Kulkarni, A., Can, M., and Hartmann, B.: Turkomatic: Automatic Recursive Task and Workflow Design for Mechanical Turk, in Proceedings of the 25th Conference on Artificial Intelligence (AAAI) (2011) [Law 11] Law, E. and Von Ahn, L.: Human Compuation, Morgan & Claypool Publishers (2011) [Little 10] Little, G., Chilton, L., Goldman, M., and Miller, R.: Turkit: human computation algorithms on mechanical turk, in Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology (UIST) (2010) [Raykar 09] Raykar, V. C., Yu, S., Zhao, L. H., Jerebko, A., Florin, C., Valadez, G. H., Bogoni, L., and Moy, L.: Supervised Learning from Multiple Experts: Whom to Trust

8 27 4 2012 When Everyone Lies a Bit, in Proceedings of the 26th Annual International Conference on Machine Learning (ICML), ACM (2009) [Raykar 10] Raykar, V. C., Yu, S., Zhao, L. H., Florin, C., Bogoni, L., and Moy, L.: Learning From Crowds, Journal of Machine Learning Research, Vol. 11, pp. 1297 1322 (2010) [Raykar 11] Raykar, V. C. and Yu, S.: Ranking annotators for crowdsourced labeling tasks, in Advances in Neural Information Processing 24 (2011) [Sheng 08] Sheng, V. S., Provost, F., and Ipeirotis, P. G.: Get Another Label? Improving Data Quality and Data Mining Using Multiple, Noisy Labelers, in Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2008) [Smyth 95] Smyth, P., Fayyad, U., Burl, M., Perona, P., and Baldi, P.: Inferring Ground Truth from Subjective Labelling of Venus Images, in Advances in Neural Information Processing Systems 7 (1995) [Snow 08] Snow, R., O Connor, B., Jurafsky, D., and Ng, A. Y.: Cheap and Fast But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks, in Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) (2008) [Sorokin 08] Sorokin, A. and Forsyth, D.: Utility data annotation with Amazon Mechanical Turk, in Proceedings of the 1st IEEE Workshop on Internet Vision at CVPR 2008 (2008) [Tang 11] Tang, W. and Lease, M.: Semi-Supervised Consensus Labeling for Crowdsourcing, in ACM SIGIR Workshop on Crowdsourcing for Information Retrieval (CIR) (2011) [Von Ahn 06] Von Ahn, L.: Games with a Purpose, Computer, Vol. 39, No. 6, pp. 92 94 (2006) [Welinder 10] Welinder, P., Branson, S., Belongie, S., and Perona, P.: The Multidimensional Wisdom of Crowds, in Advances in Neural Information Processing Systems 23 (2010) [Whitehill 09] Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., and Movellan, J.: Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise, in Advances in Neural Information Processing Systems 22 (2009) [Yan 10] Yan, Y., Rosales, R., Fung, G., Schmidt, M., Hermosillo, G., Bogoni, L., Moy, L., Dy, J., and Malvern, P.: Modeling Annotator Expertise: Learning When Everybody Knows a Bit of Something, in Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS) (2010) [Yan 11] Yan, Y., Rosales, R., Fung, G., and Dy, J. G.: Active Learning from Crowds, in Proceedings of the 28th International Conference on Machine Learning (ICML) (2011) [Zheng 10] Zheng, Y., Scott, S., and Deng, K.: Active Learning from Multiple Noisy Labelers with Varied Costs, in Proceedings of the 10th IEEE International Conference on Data Mining (ICDM) (2010) 1999 2007 1999 2009 IBM 2009 2011 19YY MM DD