(Statistical Machine Translation: SMT [1])
|
|
- Ανδρόνικα Κόρακας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1,a) Graham Neubig 1,b) Michael Paul 2,c) 1,d) n-gram 1. (Statistical Machine Translation: SMT [1]) (Active Learning) [2][3][4][5][6][7] [2] 1 Nara Institute of Science and Technology 2 ATR-Trek a) miura.akiba.lr9@is.naist.jp b) neubig@is.naist.jp c) michael.paul@atr-trek.co.jp d) s-nakamura@is.naist.jp (a) n-gram (n =4) (b) (c) 1 n-gram [5] 2 1 (a) c 2015 Information Processing Society of Japan 1
2 ( ) n =4 any one of the () 1(b) ( ) [8] 1(c) () 2. Algorithm 1 1: Init: 2: SrcPool 3: Translated 4: Oracle 5: Loop Until : 6: TM TrainTranslationModel(Translated) 7: NewSrc SelectNextPhrase(SrcPool,Translated,TM) 8: NewTrg GetT ranslation(oracle, NewSrc) 9: Translated Translated { NewSrc,NewTrg } 1 4 SrcPool Translated Translated Oracle Translated 7 SrcPool, Translated, TM 3. n-gram n-gram 3.1 n-gram n-gram n n-gram n-gram Bloodgood n =4 n-gram 80% BLEU [9] [5] n-gram n-gram 3.1 n c 2015 Information Processing Society of Japan 2
3 Bloodgood n-gram BLEU [5] 1 n =4 n = n-gram Okanohara [8] s 1 s 2 α, β : s 1 = αs 2 β occ(s 1 )=occ(s 2 ) (1) s 1,s 2,α,β 0 occ( ) p 1 = one of the preceding, occ(p 1) = 200, 000 p 2 = one of the preceding claims, occ(p 2) = 200, 000 p 3 = any one of the preceding claims, occ(p 3) = 190, 000 p 1 = αp 2 β α = β = claims p 1 p 2 p 2 p 3 p 1 p 2 occ(p 1 )=occ(p 2 ) = 200, p 1 p 2 p 2 p 3 occ(p 2 ) = 200, , 000 = occ(p 3 ) p 2 p 3 1 s 1 s 1 s 2 s 2 s 1 s 1 p 1 p 2 p 1 p 2 p p p 2 p 2 [10] 2 p 1 p 2 p 1 p 2 p 3 p 2 p 3 p 2 p 3 1 s 1 s2 α, β : s 1 = αs 2 β occ(s 1) 2 <occ(s 2 ) (2) n-gram c 2015 Information Processing Society of Japan 3
4 2 (a) are proposed (b) are proposed two methods are proposed are proposed 2(b) are proposed 2 n-gram / En-Ja En-Fr 1 414k () Train En: 6.72M ( ) Train Test Dev Ja: 9.69M 1.87M En: 46.4M Ja: 57.6M M () Train En: 47.6M ( ) Train Test Dev Fr: 49.4M 15.5M En: 393M Fr: 418M ( 3 ) ASPEC *1 WMT2014 *2 Europarl EMEA PatTR Wikipedia KyTea 60 1 [11] GIZA++ inc-giza-pp *3 Moses MMSAPT(Memory-mapped Dynamic Suffix Array Phrase Tables) KenLM [12] n =5 n-gram MERT [13] BLEU [9] 8 *1 *2 *3 c 2015 Information Processing Society of Japan 4
5 3 BLEU ( : 10 : 100: 10: 100 ) (sent-rand): (4gram-rand): 4 4-gram (sent-by-4gram-freq): 4 (3.1 ) 4-gram (4gram-freq): 4 (3.2 ) (maxsubst-freq): (4.1 ) (struct-freq): (4.2 ) (reduced-maxsubst-freq): (4.1 ) (reduced-struct-freq): (4.1, 4.2 ) 1 Ckylark [14] gram-freq c 2015 Information Processing Society of Japan 5
6 1 sent-by-4gram-freq 1.28M 33.6M gram-freq 8.48M 26.0M k 2.13 En-Ja maxsubst-freq 7.29M 25.8M k 2.22 reduced-maxsubst-freq 6.06M 21.7M k 2.10 struct-freq 1.45M 4.85M k 1.51 reduced-struct-freq 1.10M 3.33M k 1.49 sent-by-4gram-freq 10.6M 269M gram-freq 40.1M 134M k 2.76 En-Fr maxsubst-freq 62.4M 331M k 4.17 reduced-maxsubst-freq 45.9M 246M k 3.39 struct-freq 14.1M 94.2M k 2.49 reduced-struct-freq 7.33M 41.3M k ( 3 ) 1-gram / 4-gram [%] sent-rand / / / gram-rand / / / 5.98 sent-by-4gram-freq / / / En-Ja 4gram-freq / / / / maxsubst-freq / / / reduced-maxsubst-freq / / /10.57 struct-freq / / / 7.02 reduced-struct-freq / / / 7.14 sent-rand / / / gram-rand / / / sent-by-4gram-freq / / / En-Fr 4gram-freq / / / / maxsubst-freq / / / reduced-maxsubst-freq / / / struct-freq / / / reduced-struct-freq / / / maxsubst-freq struct-freq reduced-struct-freq 4gram-freq maxsubst-freq reduced-maxsubst-freq struct-freq reducedstruct-freq 1 2 c 2015 Information Processing Society of Japan 6
7 n-gram 4-gram gram 4-gram 3 reduced-struct-freq 1-gram 4-gram 3 sent-by-4gram-freq 1 4-gram 4 1-gram 4-gram 6. 4-gram ( )ATR-Trek [1] Peter F. Brown, Vincent J.Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics, Vol. 19, pp , [2] Matthias Eck, Stephan Vogel, and Alex Waibel. Low Cost Portability for Statistical Machine Translation based in N-gram Frequency and TF-IDF. In Proc. IWSLT, pp , [3] Gholamreza Haffari and Anoop Sarkar. Active Learning for Multilingual Statistical Machine Translation. In Proc. ACL, pp , August [4] Sankaranarayanan Ananthakrishnan, Rohit Prasad, David Stallard, and Prem Natarajan. A Semi-Supervised Batch-Mode Active Learning Strategy for Improved Statistical Machine Translation. In Proc. CoNLL, pp , July [5] Michael Bloodgood and Chris Callison-Burch. Bucking the Trend: Large-Scale Cost-Focused Active Learning for Statistical Machine Translation. In Proc. ACL, pp , July [6] Jesús González-Rubio, Daniel Ortiz-Martínez, and Francisco Casacuberta. Active learning for interactive machine translation. In Proc. EACL, pp , April [7] Spence Green, Sida I. Wang, Jason Chuang, Jeffrey Heer, Sebastian Schuster, and Christopher D. Manning. Human Effort and Machine Learnability in Computer Aided Translation. In Proc. EMNLP, pp , October [8] Daisuke Okanohara and Jun ichi Tsujii. Text Categorization with All Substring Features. In Proc. SDM, pp , [9] Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. Bleu: a Method for Automatic Evaluation of Machine Translation. In Proc. ACL, pp , July [10] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-Time Longest- Common-Prefix Computation in Suffix Arrays and Its Applications. In Proc. CPM, pp , [11] Phillip Koehn, Franz Josef Och, and Daniel Marcu. Statistical Phrase-Based Translation. In Proc. HLT, pp , [12] Kenneth Heafield. KenLM: Faster and Smaller Language Model Queries. In Proc, WMT, July [13] Franz Josef Och. Minimum Error Rate Training in Statistical Machine Translation. In Proc. ACL, pp , [14] Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. Ckylark: A More Robust PCFG-LA Parser. In Proc. NAACL, pp , June c 2015 Information Processing Society of Japan 7
(Statistical Machine Translation: SMT[1]) [2]
1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e) 2 1. (Statistical Machine Translation: SMT[1]) [2] [3] [4][5][6] 2 1 (a) 3 approach 1 Nara Institute of Science and Technology a) miura.akiba.lr9@is.naist.jp
1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)
1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e) 1. [11], [15] 1 Nara Institute of Science and Technology a) akabe.koichi.zx8@is.naist.jp b) neubig@is.naist.jp c) ssakti@is.naist.jp d) tomoki@is.naist.jp
1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;
ISSN1000-0054 CN11-2223/N ( ) 2014 54 12 JTsinghuaUniv(Sci& Technol), 2014,Vol.54, No.12 4/20 1529-1533,, (,, (), 100084) [1-2] :,,,,,,,, :, 0.3~ [3] 0.8BLEU,, : ; ; [4], ; :TP391.2 :A, :1000-0054(2014)12-1529-05,
(String-to-Tree ) KJ [11] best 1-best 2. SMT 2. [9] Brockett [2] Mizumoto [10] Brockett [2] [10] [15] ê = argmax e P(e f ) = argmax e M m=1 λ
1,a) 1,b) 2 2 Shared Task 4 n-best 1-best 1. Web SNS Lang-8 *1 GIN- GER *2 2 HOO 2011 2012 [7], [8] CoNLL Shared Task 2013 [14] 2014 CoNLL Shared Task 1 Rozovskaya and Roth [16] Tajiri [19] Rozovskaya
An Analysis of Problems in Grammatical Error Correction of ESL Writings Using a Large Learner Corpus of English
1,a) 1,b) 1,c) 2,d) 1,e) An Analysis of Problems in Grammatical Error Correction of ESL Writings Using a Large Learner Corpus of English Abstract: English as a Second Language (ESL) learners writings contain
,.,,., [1], [3], [4], [5] [6]. [2]. ,,, Tree-to-String. 1,f) input 1 (Python) : if x % 5 == 0: output 2 (Comment): # y x 5
1,a) 2,b) 1,c) 1,d) 1,) 1,f) Tr-to-String 1.,.,,., [1], [2].,,,, 1.,,,. 1, 1, 1 Nara Institut of Scinc and Tchnology 2 Shinshu Univrsity a) oda.yusuk.on9@is.naist.jp b) dlihiros@gmail.com c) nubig@is.naist.jp
: Active Learning 2017/11/12
: Active Learning 2017/11/12 Contents 0.1 Introduction............................................ 2 0.2..................................... 2 0.2.1 Membership Query Synthesis..............................
[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) 2.3. 2.2 Jiang [6] (word lattice reranking)
1,a) 1 2 10 1. [6] [1], [6], [8], [10], [11] 2 n n+1 C 2 O(n 2 ) 1 153-8505 4-6-1 a) kaji@tkl.iis.u-tokyo.ac.jp [10] [19], [23] [6] [6] (3 ) 10 (1) (2) 3 c 2012 Information Processing Society of Japan
1,a) 1,b) 2 3 Sakriani Sakti 1 Graham Neubig 1 1. A Study on HMM-Based Speech Synthesis Using Rich Context Models
HMM 1,a 1,b 3 Sakriani Sakti 1 Graham Neubig 1 1 Hidden Markov Model HMM HMM HMM HMM HMM A Study on HMM-Based Speech Synthesis Using Rich Context Models Shinnosuke Takamichi 1,a Toda Tomoki 1,b Shiga Yoshinori
Faruqui [7] WordNet [15] FrameNet [2] PPDB [8]
1,a) 1,b) 1,c) 2,d) 2,e) word2vec WordNet fine-tuning fine-tuning 1. [10] Faruqui [7] WordNet[15] fine-tuning Retrofitting Retrofitting WordNet[11] 1 2 a) taguchi-y2@asahi.com b) tamori-h@asahi.com c)
Η Αυτοματοποιημένη και μη-αυτοματοποιημένη αξιολόγηση συστήματος Στατιστικής Μηχανικής Μετάφρασης για το γλωσσικό ζεύγος Ελληνικά - Ιταλικά
111 Η Αυτοματοποιημένη και μη-αυτοματοποιημένη αξιολόγηση συστήματος Στατιστικής Μηχανικής Μετάφρασης για το γλωσσικό ζεύγος Ελληνικά - Ιταλικά Πολυξένη Κανελλιάδου* Κωνσταντίνος Χατζηθεοδώρου** Machine
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
2. N-gram IDF. DEIM Forum 2016 A1-1. N-gram IDF IDF. 5 N-gram. N-gram. N-gram. N-gram IDF.
DEIM Forum 216 A1-1 N-gram IDF 565 871 1-5 E-mail: {hirakawa.maumi,hara}@it.oaka-u.ac.jp N-gram IDF IDF N-gram N-gram N-gram N-gram IDF N-gram N-gram IDF N-gram N-gram IDF Web Wikipedia 1 N-gram IDF [3]
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Πτυχιακή Εργασία Στατιστική μηχανική μετάφραση από τα Αρχαία Ελληνικά στα Αγγλικά Βασίλειος Καλογηράς Επιβλέπων: Ίων Ανδρουτσόπουλος Βοηθός επιβλέπων:
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
SocialDict. A reading support tool with prediction capability and its extension to readability measurement
SocialDict 1 2 2 2 Web SocialDict A reading support tool with prediction capability and its extension to readability measurement Yo Ehara, 1 Takashi Ninomiya, 2 Nobuyuki Shimizu 2 and Hiroshi Nakagawa
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)
1,a) 1,b) 2,c) 1,d) Gait motion descriptors 1. 12 1 Osaka University 2 Drexel University a) higashiyama@am.sanken.osaka-u.ac.jp b) makihara@am.sanken.osaka-u.ac.jp c) kon@drexel.edu d) yagi@am.sanken.osaka-u.ac.jp
DEIM Forum 2 D3-6 819 39 744 66 8 E-mail: kawamoto@inf.kyushu-u.ac.jp, tawara@db.soc.i.kyoto-u.ac.jp, {asano,yoshikawa}@i.kyoto-u.ac.jp 1.,, Amazon.com The Internet Movie Database (IMDb) 1 Social spammers
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
A hybrid approach to compiling bilingual dictionaries of medical terms from parallel corpora
A hybrid approach to compiling bilingual dictionaries of medical terms from parallel corpora Georgios Kontonatsios georgios.kontonatsios@cs.man.ac.uk 14 th October 2014 14/10/2014 1 Overview Background
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης «Γλωσσικά μοντέλα μορφολογικά περίπλοκων γλωσσών» Δημήτρης
The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining
1,a) 1,b) J-POP 100 The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining Shinohara Toru 1,a) Numao Masayuki 1,b) Abstract: Chord is an important element of music
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN
78 Maude 1 Maude [1] UIUC J. Meseguer ( 1 ) ( ) Maude Maude SRI 90 UIUC SRI Maude SRI S. Eker C++ Maude 2 Maude Meseguer OBJ 1983-84 OBJ2[3] OBJ Maude OBJ 1 CafeOBJ 3 Maude 4 Maude CafeOBJ Maude: A Computer
Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters
Vol.21-SLP-83 No.9 21/1/29 1 Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters Takanobu Nishiura 1 We study on estimation, evaluation
DEIM Forum 2014 A8-1, 606 8501 E-mail: {tsukuda,ohshima,kato,tanaka}@dl.kuis.kyoto-u.ac.jp 1 2,, 1. Google 1 Yahoo 2 Bing 3 Web Web BM25 [1] HITS [2] PageRank [3] Web 1 [4] 1http://www.google.com 2http://www.yahoo.com
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,
DEIM Forum 2014 A5-2 Twitter 565 0871 1 5 E-mail: {shirakawa.masumi,hara,nishio}@ist.osaka-u.ac.p 9 24 Twitter,,, Wikipedia, Explicit Semantic Analysis, 1. political leaning Twitter Cision 2013 1 90% 9
ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ
ΚΑΤΑΡΤΙΣΗ ΜΗΤΡΩΟΥ ΕΣΩΤΕΡΙΚΩΝ & ΕΞΩΤΕΡΙΚΩΝ ΜΕΛΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε., ΣΤΕΦ/ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ Γνωστικό Αντικείμενο: Computer Aided Design (CAD) Computer
Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)
1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on
Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment
Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...
Από το CUDOS και το Semion στον οργανισμό Creative Commons και στο Open Knowledge Foundation
Από το CUDOS και το Semion στον οργανισμό Creative Commons και στο Open Knowledge Foundation Διεπιστημονικό Συνέδριο Ιστορία της Πληροφορίας: Σημεία αναφοράς από τον πάπυρο στο ηλεκτρονικό έγγραφο Νομική
Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System
(MIRU2008) 2008 7 SIFT 572-8572 26-12 599-8531 1-1 E-mail: umemoto@ipc.osaka-pct.ac.jp, kise@cs.osakafu-u.ac.jp SIFT 1 ANN 3 1 SIFT 1 Speeding up the Detection of Scale-Space Extrema in SIFT Based on the
Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία
Ελληνική ημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία Ενότητα 2 : Εφαρμογές της Τεχνητής Νοημοσύνης στη Γεωργία Μελετίου Γεράσιμος 1 Ανοιχτά Ακαδημαϊκά
Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker
Ειδική Ερευνητική Εργασία Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker ΚΑΡΑΔΗΜΑΣ ΗΛΙΑΣ Α.Μ. 323 Επιβλέπων: Σ. Φωτόπουλος Καθηγητής, Μεταπτυχιακό Πρόγραμμα «Ηλεκτρονική και Υπολογιστές», Τμήμα Φυσικής,
Area Location and Recognition of Video Text Based on Depth Learning Method
21 6 2016 12 Vol 21 No 6 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Dec 2016 1 1 1 2 1 150080 2 130300 Gabor RBM OCR DOI 10 15938 /j jhust 2016 06 012 TP391 43 A 1007-2683 2016 06-0061- 06
Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes
Tunable Diode Lasers Turning Laser Diodes into Diode Lasers Laser diodes Mode selection FP diodes high power at low cost AR diodes for best performance Compact and robust Littrow setup Highest power from
Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ
Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ Διπλωματική Εργασία Μεταπτυχιακού Προγράμματος στην Εφαρμοσμένη Πληροφορική Κατεύθυνση: Συστήματα Υπολογιστών
{takasu, Conditional Random Field
DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»
ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ
Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
(C) 2010 Pearson Education, Inc. All rights reserved.
Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.
ΟΡΓΑΝΙΣΜΟΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΙΔΙΟΚΤΗΣΙΑΣ
ΟΡΓΑΝΙΣΜΟΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΙΔΙΟΚΤΗΣΙΑΣ Ο Οργανισμός Βιομηχανικής Ιδιοκτησίας (Ο.Β.Ι.) ιδρύθηκε το 1987 (Ν.1733/1987), είναι νομικό πρόσωπο ιδιωτικού δικαίου, οικονομικά ανεξάρτητο και διοικητικά αυτοτελές.
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. y y yy y 1565 0871 2 1 yy 525 8577 1 1 1 E-mail: yfmakihara,shiraig@cv.mech.eng.osaka-u.ac.jp, yyshimada@ci.ritsumei.ac.jp
A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. Πτυχιακή εργασία του ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ Επιβλέπων καθηγητής:βέντζας Δημήτριος ΛΑΡΙΣΑ ΜΑΙΟΣ
Transient Voltage Suppressor
Transient Suppressor Features Glass passivated junction Low incremental surge resistance, excellent clamping capability Underwriters Laboratory Recognition under UL standard for safety 497B: Isolated Loop
(1) (2) MFA/SFA: material flow analysis/ substance flow analysis MFA/SFA
(1) (2) MFA/SFA: material flow analysis/ substance flow analysis MFA/SFA 18 1) I. Daigo, Y. Matsuno, Y. Adachi: Substance Flow Analysis of Chromium and Nickel in the Material Flow of Stainless Steel in
Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.
SIG-SWO-041-05 SPAIDA: SPARQL Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- 1 2 Takuya Adachi 1 Naoki Fukuta 2 1 1 Faculty of Informatics, Shizuoka University
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4//,a) Vocoder (F) F F. PSOLA [] sinusoidal model [] phase vocoder Vocoder [3] (F) F 3 [4], [5], [6], [7], [8], [9] [], [], [], [3], [4] [5], [6] [7], [8], University
Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ
Estimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.
c 1. SNS Social Networking Service [3,5,12] 3 1 CM 190 8562 10 3 E-mail: eiji.motohashi@gmail.com 141 6009 2 1 1 190 8562 10 3 12.5.3 12.7.24 Yahoo 2 1 2 3 1 1 2 574 32 Copyright c by ORSJ. Unauthorized
[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation
References [1] B.V.R. Punyawardena and Don Kulasiri, Stochastic Simulation of Solar Radiation from Sunshine Duration in Srilanka [2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar
Ηλεκτρονικά σώματα κειμένων και γλωσσική διδασκαλία: Διεθνείς αναζητήσεις και διαφαινόμενες προοπτικές για την ελληνική γλώσσα
818 Ηλεκτρονικά σώματα κειμένων και γλωσσική διδασκαλία: Διεθνείς αναζητήσεις και διαφαινόμενες προοπτικές για την ελληνική γλώσσα Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Ελλάδα Abstract Corpus linguistics
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN
CDF(BIVNORM or CHISQ or DICKEYF or F or NORMAL or T or WTDCHI, DF=CHISQ T, DF1=F, DF2=F, NLAGS= Dickey-Fuller, NOB=, NVAR=, RHO=BIVNORM, EIGVAL=WTDCHI, LOWTAIL or UPTAIL or TWOTAIL, CONSTANT, TREND, TSQ,
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
Text Mining using Linguistic Information
630-0101 8916-5 {taku-kukaoru-yayuuta-tmatsu}@isaist-naraacjp PrefixSpan : PrefixSpan Text Mining using Linguistic Information Taku Kudo Kaoru Yamamoto Yuta Tsuboi Yuji Matsumoto Graduate School of Information
Computing the Gradient
FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement
Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement Tatsunori Hirai, Tomoyasu Nakano, Masataka Goto and Shigeo Morishima Abstract We
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Automatic extraction of bibliography with machine learning
Automatic extraction of bibliography with machine learning Takeshi ABEKAWA Hidetsugu NANBA Hiroya TAKAMURA Manabu OKUMURA Abstract In this paper, we propose an extraction method of bibliography using support
Minimum Spanning Tree: Prim's Algorithm
Minimum Spanning Tree: Prim's Algorithm 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph. 2. Grow the tree by one edge: of the edges that connect the tree to vertices not yet
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment
18 2 JOURNAL OF CHINESE INFORMATION PROCESSING Vol118 No12 :1003-0077 (2004) 02-0073 - 07 Ξ 1,2, 1, 1 (11, 215006 ;21, 210000) : ISO/ IEC 10646,,,,,, 9919 % : ; ; ; ; : TP39111 :A Research of Han Character
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Comparison of Discriminant Analysis in Ear Recognition
IPSJ SIG echnical Report PCA 288 XM2VS 97.8% Null space LDA Random LDA Comparison of Discriminant Analysis in Ear Recognition Yuki ajima oji Soma Sai Hideyasu Daishi Watae Discriminant analyses are popular
C F E E E F FF E F B F F A EA C AEC
Proceedings of the International Multiconference on Computer Science and Information Technology pp. 767 774 ISBN 978-83-60810-27-9 ISSN 1896-7094 CFEEEFFFEFBFFAEAC AEC EEEDB DACDB DEEE EDBCD BACE FE DD
DEIM Forum 2013 A2-2 606 8501 E-mail: kato@dl.kuis.kyoto-u.ac.jp 1. 2. 1 4 A B C D A B C D A : B :: C : D : :: : : :: : A B C D A= B= C= D= D 3 Turney [20] A B C D A B C D Bollegala [5] Web SVM A B C D
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ. 2004 2009 Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ ΔΙΕΥΘΥΝΣΗ Ινστιτούτο Έρευνας και Τεχνολογίας Θεσσαλίας (ΙΕΤΕΘ) Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης (ΕΚΕΤΑ) Δημητριάδος 95 και Παύλου Μελά 38333 Βόλος
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
070-A
764 070-A543-50 www.tektronix.com Copyright Tektronix Japan, Ltd. All rights reserved. 141 0001 5 9 31 TektronixTek Tektronix, Inc. i v ix xi 1 11 12 12 12 13 19 110 110 2 21 21 22 23 24 24 26 211
ΕΥΧΑΡΙΣΤΙΕΣ. Θεσσαλονίκη, Δεκέμβριος 2005. Κώστας Δόσιος
ΕΥΧΑΡΙΣΤΙΕΣ Μου δίνεται η ευκαιρία με την περάτωση της παρούσης διδακτορικής διατριβής να σημειώσω ότι, είναι ιδιαίτερα δύσκολο και κοπιαστικό να ολοκληρώσεις το έργο που ξεκινάς κάποια στιγμή έχοντας
Η μετεπιμέλεια της αυτόματης μετάφρασης ως μεταφραστική πράξη
Η μετεπιμέλεια της αυτόματης μετάφρασης ως μεταφραστική πράξη Κωνσταντίνος Χατζηθεοδώρου Τμήμα Ιταλικής Γλώσσας και Φιλολογίας, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Abstract It is widely acknowledged
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD
FX,a),b),c) Bailey Double-Double [] FMA FMA [6] FX FMA SIMD Single Instruction Multiple Data 5 4.5. [] Bailey SIMD SIMD 8bit FMA (SpMV Sparse matrix and vector product) FX. DD Bailey Double-Double a) em49@ns.kogakuin.ac.jp
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 36: Προοπτικές και Εφαρμογές Κβαντικών Αλγορίθμων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Προοπτικές
ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Π.Μ.Σ. «ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» «Εφαρμογή
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Διάλεξη: Προσαρμόσιμο Αρμονικό Μοντέλο Παρουσίαση: Gilles Degottex Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών A Full-Band Adaptive Harmonic
Παρουσίαση ιπλωµατικής
Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Πληροφορικής Επιστήµη Υπολογιστών Παρουσίαση ιπλωµατικής Επιµέλεια: *Φλουρή Χαρά, Α.Μ.:ΕΥ0808 Επιβλέπον : * Βασίλειος Σύρης Αθήνα, 2010 1 Ποιο είναι το πρόβληµά? Σωστός
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator
2008 10 10 :100026788 (2008) 1020076206 (, 400074) :, Inver2over,,, : ; ; ; Inver2over ; : F54015 : A Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator
ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ
Ενότητα 6 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS
Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Electrical and Computer Engineering Graduate Theses Spring 5-2015 Development and Verification of Multi-Level Sub- Meshing Techniques