21 5 2009 5 PROGRESS IN CHEMISTRY Vol. 21 No. 5 May, 2009 3 1, 3 3 3 2 2 1,3 1,3 4 (1. 071002 ; 2. 071000 ; 3. 071002 ; 4. 100081),,, ;,,,,,, : (1) ; (2) ; (3), : R914 : A : 10052281X(2009) 0520919210 Vie wing Safety of Rare2Earth2Based Drugs from Effect of Rare Earth on Bone Metabolism Zhang Jinchao 1,3 3 3 Wang Peng 2 Sun Jing 2 Liu Cuilian 1,3 Chen Hua 1,3 Huang Jian 4 (1. Chemical Biology Laboratory, College of Chemistry & Enviromental Science, Hebei University, Baoding 071002, China ; 2. Affiliated Hospital of Hebei University, Baoding 071000, China ; 3. Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China ; 4. Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China) Abstract Some essential trace elements were reported to be involved in the normal bone metabolism. Nowadays rare earth elements are widely used in many fields and more and more rare earth elements enter the environment and food chains. They are enriched in bone and difficult to be excreted. Because the similarity between rare earth ions (Ln 3 + ) and Ca 2 +, they will intervene and regulate bone formation and remodeling. On one hand, rare earth are presumed to be drug candidates for bone disease ; on the other hand, they have negative effects on bone metabolism. So the safety of rare2earth2based drugs deserves an answer. We review the effect of rare earth ions on bone metabolism as the following three aspects : (1) effect of rare earth ions on differentiation and function expression of osteoblasts and osteoclasts ; (2) effect of rare earth ions on the osteogenic and adipogenic differentiation of bone marrow stromal cells ; (3) effect of rare earth ions on bone mineral phase of animals. In addition, the scarcities and future developing perspectives in this field are also discussed. Key words rare earth ions ; bone metabolism ; osteoblasts ; osteoclasts ; bone marrow stromal cells : 2008 12 ( ) 3 (No. 20031010, 20271005) (No. B2009000161) 3 3 e2mail :jczhang6970 @yahoo. com. cn
920 21 Contents 1 Introduction 2 Effect of rare earth ions on differentiation and function expression of osteoblasts and osteoclasts 2. 1 Effect of rare earth ions on differentiation and function expression of osteoblasts 2. 2 Effect of rare earth ions on differentiation and function expression of osteoclasts 2. 3 Effect of rare earth ions on bone resorption function of osteoclasts regulated by osteoblasts 3 Effect of rare earth ions on osteogenic and adipogenic differentiation of bone marrow stromal cells 4 Effect of rare earth ions on bone mineral phase of animals 5 Conclusion 1,,,, [1 ],,, [2 ] Moonga [3 ], Leek [1 ],,, X,, D 3,,,,,,,, 20 40,,, :,,, DNA, [4 ],,,,,, ( ) [5,6 ],,, :, ;, [8 ] 2, ;, ;,, (osteoblast, OB) (osteoclast, OC), ; ( ),,,,Paget,,,, [9, 10 ] 2. 1
5 921 1994, Quarles [11 ] MC3T32E1 DNA, G, Hartle [12 ] (PGE) (camp), (PTH) camp [13 ] (UMR106), (MTT) (ALP) Ln 3 + (La 3 +,Sm 3 +,Dy 3 +, Nd 3 +,Er 3 + Gd 3 + ) UMR106, UMR106, 1100 10-4 molπl, UMR106,,La 3 +,Sm 3 +,Dy 3 +,Nd 3 +, Er 3 + Gd 3 + 17192 %,4109 %,18130 %,19139 %,22102 % 27174 % 1100 10-9 1100 10-5 molπl,,la 3 +,, 1100 10-9 molπl, 31178 %, Sm 3 +,Dy 3 +,Nd 3 +,Er 3 + Gd 3 + ( Sm 3 +, Dy 3 + Nd 3 + 1100 10-6 molπl, Er 3 + Gd 3 + 1100 10-7 molπl ) ( 1) La 3 +, Sm 3 +, Dy 3 +, Nd 3 +, Er 3 + Gd 3 + 1100 10-5 1100 1 UMR106 [13 ] Fig. 1 The effect of rare earth ions on proliferation of osteoblast UMR106 [13 ] 10-7 molπl, ( P < 0101), 10-7 molπl 1100 10-5 molπl 10-7 molπl, :La 3 + > Sm 3 + > Dy 3 + > Er 3 + > Gd 3 + > Nd 3 + ; 1100 10-5 molπl, : La 3 + > Dy 3 + > Nd 3 + > Er 3 + > Sm 3 +, Gd 3 + ( 2) La 3 + 2 (UMR106) [13 ] Fig. 2 The effect of rare earth ions on ALP activity of osteoblast UMR106 [13 ] G 0 ΠG 1 S, DNA, DNA, (1100 10-4 molπl) La 3 +,,,,, ; (1100 10-9 molπl) La 3 + [14 ], La 3 + Gd 3 + ( 1100 10-5 1100 10-9 molπl), 1100 10-5 1100 10-9 molπl La 3 + Gd 3 +, 1100 10-9 molπl La 3 + 1100 10-5 molπl Gd 3 +, 27 % 17 % 1100 10-5 molπl, La 3 + Gd 3 + La 3 +, 1100 10-8 1100 10-9 molπl Gd 3 +,
922 21 Gd 3 + 212 [15 ], Ln 3 + (La 3 +, Sm 3 +,Dy 3 +,,, Nd 3 +,Er 3 + Gd 3 + ), ( 3 4),,6 [18 ], :La 3 + Fluo232AM, La 3 + 3 3, ( n = 10) [15 ] Fig. 3 The effect of rare earth ions on the surface area of lacunae produced by osteoclasts cultured on bone slices for 3 days( n = 10) [15 ] Sm 3 + Er 3 + 3 Nd 3 + Gd 3 + Dy 3 +, La 3 + Sm 3 + Er 3 + 10-8 molπl,, ; Nd 3 + Gd 3 + Dy 3 + 10-8 molπl,, 10-7 molπl,, La 3 + Sm 3 + Er 3 + 10-8 molπl Nd 3 + Gd 3 + Dy 3 + ; 10-7 molπl Nd 3 + Gd 3 + Dy 3 +, 10-6 molπl,6, Gd 3 +,,,,, [16 ] Shankar [17 ], 1125 0180mmolΠL,La 3 +, La 3 + ( 5 6),, 1100 10-5 1100 10-7 molπl La 3 +,,,,La 3 + ; La 3 + 4 7, ( n = 10) [15 ] Fig. 4 The effect of rare earth ions on the surface area of lacunae produced by osteoclasts cultured on bone slices for 7 days( n = 10) [15 ] 1100 10-8 molπl,, La 3 +,,,,
5 923 5 La 3 + [18 ] Fig. 5 The effect of La 3 + on [ Ca 2 + ] i of rabbit mature osteoclasts [18 ] 7 La 3 + 1,252 D3 (, 3 P < 01001, n = 10) [20 ] Fig. 7 The effect of La 3 + on the surface area of lacunae produced by rabbit osteoclast2like cells induced by 1, 252 dihydroxyvitamin D3 from rabbit bone marrow cells ( compared with the control group, 3 P < 01001, n = 10) [20 ] 6 La 3 + [18 ] Fig. 6 Effect of La 3 + area [18 ] on rabbit mature osteoclast spread David [19 ], [20 ], La 3 + ( 7), : (1)La 3 + : 1100 10-5 1100 10-6 1100 10-7 molπl La 3 + ( P > 0105), 1100 10-8 molπl, ( P < 01001) ; (2) 1100 10-5 1100 10-6 1100 10-7 molπl La 3 + ( P < 01001), 1100 10-8 molπl, ( P < 01001) ; (3) La 3 + 213, 2 Π,,, [21 ], [22 ], [23 ], La 3 + ( 8),,,La 3 + :La 3 + (1100 10-5 1100 10-6 1100 10-7 molπl), 1100 10-8 molπl, ( P < 0101), La 3 + ( P > 0105) ;, La 3 +
924 21 8, La 3 + [23 ] (a) 3d ; (b) 7d La 3 + ; La 3 + + OC; La 3 + + OC2OB ( ) ; La 3 + + OC2OB ( ) ( n = 4) Fig. 8 Effects of La 3 + osteoclasts in presence of osteoblasts [23 ] on pit numbers of rabbit mature (a) 3d ; (b) 7d. In the absence of La 3 + and OB ; La 3 + + OC; La 3 + + OC2OB ( contact) ; La 3 + + OC2OB (out of contact) ( n = 4),,,,, ( P < 0101),,,,, ( P > 0105), ( ), La 3 +,, : La 3 +,,,,, Π, La 3 + 2 (TNF2 ) 26 ( IL26),, [29, 31 ],,,, 3 (MSCs), [24 ],,, [25 ],,, ;,,,,, [26 ],, [27 ] Benayahu [28 ]
5 925 2000,Nuttal [32 ], ; 2002, [33 ] :, ;,, 2, [34 ] La 3 +,, La 3 + 11 Dy 3 + ( n = 6,, 3 P < 0. 05) [35 ] Fig. 11 Effect of Dy 3 + on the adipogenic differentiation of BMSCs ( n = 6, 3 P < 0105, significant compared to control group) [35 ] 9 Dy 3 + ( n = 6,, 3 3 P < 0. 05, 3 P < 0101) [35 ] Fig. 9 Effect of Dy 3 + on the osteogenic differentiation of BMSCs ( n = 6, 3 P < 0105, compared to control group) [35 ] 3 3 P < 0101, significant 12 Dy 3 + (10 ) ( n = 6,, 3 P < 0105) [35 ] Fig. 12 Effect of Dy 3 + on the adipocytic trans2differentiation of OBs for 10 days ( n = 6, 3 P < 0105, significant compared to control group) [35 ] 10 Dy 3 + ( n = 6,, 3 3 P < 0. 05, 3 P < 0101) [35 ] Fig. 10 Effect of Dy 3 + on the mineralized nodule formation of BMSCs ( n = 6, 3 P < 0105, 3 3 P < 0101, significant compared to control group) [35 ] MSCs, ALP, mrna ;, La 3 + MSCs, La 3 + mrna, ALP, Western Blot La 3 + MSCs (MAPK), MAPK PD98059 La 3 + MSCs ALP, La 3 + MSCs La 3 + MAPK
926 21 1 10-6 molπl Dy 3 +, 1 10-6 molπl Dy 3 + ( 9) Dy 3 + ( 10) 1 10-7 molπl Dy 3 +, Dy 3 + ; Dy 3 + ( 11) Dy 3 + ( 12 13), 4 13 Dy 3 + [35 ] (a) ; (b) + 1 10-8 molπl Dy 3 + ; (c) + 1 10-10 molπl Dy 3 + Fig. 13 Effect of Dy 3 + on adipocytic trans2differentiation of OBs [35 ]. ( a ) adipogenic supplement ; ( b ) adipogenic supplement + 1 10-8 molπl Dy 3 + ; ( c ) adipogenic supplement + 1 10-10 molπl Dy 3 + MSCs, [35 ] Dy 3 +,, 1 10-8 1 10-5 molπl Dy 3 +, ;1 10-10 1 10-9 molπl Dy 3 +, Dy 3 + 7, 1 10-9 1 10-7 molπl Dy 3 +, Dy 3 + ; 14,1 10-5 molπl Dy 3 +,1 10-9, 1 10-8, 1 10-7,, [36 39 ] Shinohara [40 ],,, La 3 +,,,, [41 ] 20 90,Jha [42 ] [43 ] 2mg kg - 1 d - 1 La (NO 3 ) 3 6,, La P,Ca,CaΠP,,,, La (NO 3 ) 3, [44 ] kg 2mg La (NO 3 ) 3 6, X X,, La (NO 3 ) 3
5 927 La,,, GaΠP ( P > 0105) ;,,,, ;, La (NO 3 ) 3,, [45 ] Ce 3 + Nd 3 + Gd 3 + Tb 3 + Lu 3 + CaCO 3 CaCO 3, CaCO 3,, CaCO 3 Ca 2 +,, Ca 2 + Ca 2 +, Ca 2 +, CaCO 3, 5,,,, ; : (1) hormesis, hormesis,,, (2),,,,,, (3), (4),,,, [ 1 ] Leek J C, Keen C L, Vogler J B, et al. Am. J. Clin. Nutr., 1988, 47 : 889 895 [ 2 ] Saltman P D, Strause L G. J. Am. Coll. Nutr., 1993, 12 (4) : 384 389 [ 3 ] Moonga B S, Dempster D W. J. Bone Miner. Res., 1995, 10 (3) : 453 457 [ 4 ] (Li R C), ( Yang X D), (Wang K). (J. Rare Earths), 2004, 22 (1) : 1 6 [ 5 ] (Shen Z G), ( Zhong G T), ( Kong P Y). ( Chinese Journal of Technology), 2000, 13 (1) : 43 44 Health Laboratory [ 6 ] ( Yang P), ( Wei C Y). ( Chemistry), 1996, 54 (1) : 14 17 [ 7 ] Wang K. South Afr. J. Chem., 1997, 54 : 232 239 [ 8 ] (Huang J ). (Doctoral Dissertation of Peking University),2005 [ 9 ] Rodan G A, Martin T J. Science, 2000, 289 : 1508 1514 [10 ] Teitelbaum S L. Science, 2000, 289 : 1504 1508 [11 ] Quarles L D, Hartle J E, Middleton J P, et al. J. Cell Biochem., 1994, 56 (1) : 106 117 [12 ] Hartle J E, Prpic V, Siddhanti S R, et al. J. Bone Miner. Res., 1996, 11 (6) : 789 799 [13 ] (Zhang J C), (Li X X), (Xu SJ). (Progress in Natural Science), 2004, 14 (4) : 404 409 [14 ] Zhang D W, Zhang J C, Chen Y, et al. Progress in Natural Science, 2007, 17 (5) : 618 623 [15 ] Zhang J C, Xu S J, Wang K, et al. Chinese Sci. Bull., 2003, 48 (20) : 2170 2175 [16 ] Miyauchi A, Hruska K A, Greenfield E M, et al. J. Cell Biol., 1990, 111 (6) : 2543 2552 [17 ] Shankar V S, Alam A S, Bax C M, et al. Biochem. Biophys. Res. Commun., 1992, 187 (2) : 907 912 [18 ] Zhang J C, Huang J, Zhang T L, et al. J. Rare Earths, 2005, 23
928 21 (5) : 580 583 [19 ] David J P, Neff L, Chen Y, et al. J. Bone Miner. Res., 1998, 13 (11) : 1730 1738 [20 ] Zhang J C, Zhang T L, Xu S J, et al. J. Rare Earths, 2004, 22 (6) : 891 895 [21 ] Nicholson G C, Moseley J M, Sexton J M, et al. J. Clin. Invest., 1986, 78 (2) : 355 360 [22 ] Rodan G A, Martin T J. Calcif. Tiss. Int., 1981, 33 (4) : 349 351 [23 ] Zhang J C, Huang J, Zhang T L, et al. J. Rare Earths, 2005, 23 (4) : 496 501 [24 ] Ahdjoudj S, Fromigue O, Marie P J. Histol. Histopathol., 2004, 19 : 151 157 [25 ] Keila S, Pitaru S, Grosskopf A, et al. J. Bone Miner. Res., 1994, 9 (3) : 321 327 [26 ] Maurin A C, Chavassieux P M, Frappart L, et al. Bone, 2000, 26 : 485 489 [27 ] Ailhaud G, Grimaldi P, Negrel R. Annu. Rev. Nutr., 1992, 12 : 207 233 [28 ] Benayahu D, Zipori D, Wientroub S. Biochem. Biophys. Res. Commun., 1993, 197 (3) : 1245 1252 [29 ] Kelly KA, Tanaka S, Baron R, et al. Endocrinol., 1998, 139 (4) : 2092 2101 [30 ] Sakaguchi K, Morita I, Murota S. Prostaglandins Leukotrienes and Essential Fatty Acids, 2000, 62 (5) : 319 327 [31 ] Benayahu D, Peled A, Zipori D. J. Cell Biochem., 1994, 56 : 374 384 [32 ] Nuttall M E, Gimble J M. Bone, 2000, 27 (2) : 177 184 [33 ] (Song C L), (Dang G T). (Chinese Journal of Osteoporosis), 2002, 8 (3) : 266 269 [34 ] (Liu H M), (Zhang T L), ( Xu S J). (Chinese Science Bulletin),2006,51 (1) : 28 33 [35 ] Zhang J C, Liu D D, Sun J, et al. Chinese Sci. Bull., 2009, 54 (1) : 66 71 [36 ] Sakurai Y A. J. Dent. Sci., 1998, 20 :1 5 [37 ] Warring P M, Waltling R J. Med. J. Aust., 1990, 153 : 726 730 [38 ] Yumiko N, Yakari T, Yasuhide T, et al. Fundam. Appl. Toxicol., 1997, 37 : 106 116 [39 ] Kazuo T S, Etsuko K, Yuzo I, et al. Toxicol., 1992, 76 : 141 152 [40 ] Shinohara A, Chiba M, Inaba Y. Biomed. Res. Trace Elem., 1993, 4 (2) : 115 116 [41 ] Suzuki S, Ogawa Y, Kisi Y, et al. Biomed. Res. Trace Elem., 1991, 2 (2) : 223 234 [42 ] Jha A M, Singh A C. Mutation Res., 1994, 322 (3) : 169 172 [43 ] (Li R C), ( Yang H W), (Wang K). ( ) ( Journal of Peking University ( Health Sciences) ),2003, 35 (6) : 622 624 [44 ] Huang J, Zhang T L, Xu S J, et al. Calcif. Tissue Int., 2006, 78 : 241 247 [45 ] (Huang J), (Xu SJ), (Lu J F). (J. Rare Earths), 2001, 19 (5) : 478 480