Character istic Quantities of C losed Pressure System Centers D istribution and Its Application

Σχετικά έγγραφα
Spherical Coordinates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

CYLINDRICAL & SPHERICAL COORDINATES

Journal of the Institute of Science and Engineering. Chuo University

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Homework 8 Model Solution Section

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Answer sheet: Third Midterm for Math 2339

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

,,, (, ) , ;,,, ; -

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

ADVANCES IN WATER SCIENCE

PLATEAU METEOROLOGY. X 6 min. 6 min Vol. 34 No. 4 August doi /j. issn X X / cosθcosφ P412.

Approximation of distance between locations on earth given by latitude and longitude

ACTA SCIEN TIAE CIRCUMSTAN TIAE

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

derivation of the Laplacian from rectangular to spherical coordinates

Hydrologic Process in Wetland

Reading Order Detection for Text Layout Excluded by Image

Jou rnal of M athem atical Study

Reminders: linear functions

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Isotopic and Geochemical Study of Travertine and Hot Springs Occurring Along the Yumoto Fault at North Coast of the Oga Peninsula, Akita Prefecture

Section 8.2 Graphs of Polar Equations

Parametrized Surfaces

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

Section 8.3 Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Chapter 7 Transformations of Stress and Strain

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CRASH COURSE IN PRECALCULUS


Approximation Expressions for the Temperature Integral

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Inverse trigonometric functions & General Solution of Trigonometric Equations

Contents. 1 Introduction. 2 Shape of the Earth. 3 NAD 27 vs NAD 83

High order interpolation function for surface contact problem

Second Order RLC Filters

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Quick algorithm f or computing core attribute

Strain gauge and rosettes

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

( , ,

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Second Order Partial Differential Equations

Solution to Review Problems for Midterm III

3.5 - Boundary Conditions for Potential Flow

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Stem Character istics of W heat w ith Stem L odging and Effects of L odging on Gra in Y ield and Qual ity

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

; +302 ; +313; +320,.

Ινστιτούτο Ερευνών Περιβάλλοντος και Βιώσιμης Ανάπτυξης. Following Nafplio, October Δ. Φουντά

Areas and Lengths in Polar Coordinates

Electronic Supplementary Information:

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Lisun Electronics Inc. Tel:+86(21)

STREETLIGHT PHOTOMETRIC TEST REPORT

QUATERNARY SC IENCES

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Areas and Lengths in Polar Coordinates

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Chapter 6 BLM Answers

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

LED LUMINAIRE PHOTOMETRIC TEST REPORT

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

!"#$%&' !"#$% = = = ! == == !"#$% !"#$%&'#()*+,-./012!"#$%&'()*+,-./0123!"#$%& ====!"#$%&'()*+,-./01

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

LUMINAIRE PHOTOMETRIC TEST REPORT

Αγαπητοί συνεργάτες,

Transcript:

316 Vol. 31 No. 6 2008 12 Journal of Nanjing Institute of Meteorology Dec. 2008,,,. [ J ]., 2008, 31 (6) : 7582766.,,,, (, 210044) : P () C ( ), gc3 : 1) r, C gc ( C ),; 2),, ; 3), gc, 1948 2007 6 7 8 100 hpa, r, : ; ; ; ; : P434 : A : 100022022 (2008) 0620758209 Character istic Quantities of C losed Pressure System Centers D istribution and Its Application WANG Pan2xing, CHEN Yan2cong, LU Chu2han,WANG Rui, L IU Q ing2qing ( School of A tmospheric Sciences, NU IST, Nanjing 210044, China) Abstract:B y using the multi2year series of the circulation indices P ( intensity) and C ( center location) for the closed p ressure system on the unit radius spherical surface, three characteristic quantities of annual system centers( around the climatological center gc) are defined. 1) Average distance r, which is defined as the weighted geometric average distance of the annual system centers C deviating from the climatological center gc ( i. e. the center location anomaly C ), is a measurement for distribution area of the system cen2 ters. 2) Comp ression coefficient, w hich describes the exten t of the annual system cen ter d istribu tion ar2 ea deviating from circularity, is a m easurem ent for distribution aniso trop y of the annual system center locations. 3) M axim um anom aly direction, w hich indicates the m ain anom aly direction of system cen2 ters by using the angle that the system center m axim um anom aly deviates from the east direction at gc. The above three quantities of 100 hpa South A sian H igh (SA H ) are calculated in June, July and A ugust from 1948 to 2007, indicating that they can briefly and exactly describe the distribution characteristics of the center location anom alies on the sp herical surface. A ccord ing to the definitions of r, and, they are also su itable for describing accurately the d istribu tion characteristics of closed system s centers in the other m eteoro log ical elem ent fields on the spherical surface. Key words: closed p ressure system; characteristic quantities of centers distribution; average distance; com2 p ression coefficient; m axim um anomaly direction : 2007212205; : 2008207218 : ( KLME060211) ;(40633018) : (1943 ),,,,,, wangpx@nuist. edu. cn.

6, : 759 0,, 2060, ( ) [ 129 ],, [ 10215 ],,[ 16 ] 3(S P C ) ( ) f (), N CEP /N CA R ECMW F [ 17220 ], ( ) f 0, S P C, {S ( t) P ( t) C ( t) ; t = 1, T} (1), ( 1) {S ( t) P ( t) ; t = 1, T}, [ 16, 21 ] S P (, )= 2, - 2, { c ( t) c ( t) ; t = 1, T} (, ) [ 16 ], o x y, { c ( t) c ( t) ; t = 1, T}3, 100 hpa 6 7 8, 1 7 100 hpa( ), [ 21 ] f 0 = 1 676 dagpm 0 140 E 10 50 N, N C EP /N CA R ( 1948 2007,== 215 ) S P C 60 a( 1) 1 1984 7 100 hpaff f 0, S,f - f 0 P,( 1 ) f f 0 f - f 0 [ 16 ] 2 60 a ; ([ 16 ] ), gc = ( 73118 E, 34158 N ), ( Pakistan) 1 1948 2007 7 100 hpa Table 1 C irculation indices of 100 hpa South A sian H igh (SA H ) in July during 1948 2007 t S / rad 2 P / ( dagpm rad 2 ) c / E c / N t S / rad 2 P / ( dagpm rad 2 ) c / E c / N 1948 0155 3173 71110 36133 1978 0148 2169 71163 35165 1949 0155 4106 77198 38105 1979 0161 4101 76198 34113 1950 0138 1158 70104 35158 1980 0166 4171 72103 34180 1951 0138 1188 71154 33181 1981 0159 4110 75126 35135 1952 0160 3169 74138 37125 1982 0148 2160 78188 32112 1953 0160 3190 73114 35182 1983 0169 4155 77131 32176 1954 0140 2104 70191 35174 1984 0145 2138 69186 36127 1955 0135 1165 74130 34173 1985 0134 1180 68173 34117 1956 0126 1121 61167 35128 1986 0149 3130 71119 34192 1957 0151 3118 75101 33157 1987 0156 3123 77115 32150 1958 0165 4168 74112 34178 1988 0173 5131 75129 35147 1959 0152 3110 70187 35161 1989 0146 2155 74177 34126

760 31 Table 1 ( continued) t S / rad 2 P / ( dagpm rad 2 ) c / E c / N t S / rad 2 P / ( dagpm rad 2 ) c / E c / N 1960 0144 2108 73159 33184 1990 0153 3127 72144 34114 1961 0154 3141 78139 35157 1991 0154 3149 78139 33106 1962 0145 2137 74159 34136 1992 0126 0195 66149 32172 1963 0141 2107 76188 33164 1993 0138 1196 70142 33102 1964 0143 2131 72138 36118 1994 0146 2191 66162 34142 1965 0130 1100 75104 33153 1995 0138 2106 69102 33148 1966 0151 3121 73140 35143 1996 0135 1154 69114 33168 1967 0151 3108 76123 34163 1997 0137 2102 70156 32151 1968 0141 2109 69128 33195 1998 0168 4177 68115 36115 1969 0143 2135 73166 32185 1999 0133 1125 69159 33141 1970 0143 2142 71105 33147 2000 0131 1109 76115 34178 1971 0132 1119 73119 35127 2001 0138 1185 68132 33195 1972 0142 2133 80122 33136 2002 0139 1149 76192 32131 1973 0136 1175 70134 32199 2003 0139 2100 65109 33116 1974 0114 0130 79132 31117 2004 0117 0133 72125 31166 1975 0125 0166 74196 34150 2005 0145 2167 70149 34167 1976 0123 0191 66104 32135 2006 0162 4147 76144 35119 1977 0144 2146 74157 33139 2007 0149 2163 68106 34180 1 1984 7S P C ( :; :( f 0 = 1 676 dagpm ) ; ; 3 km ) Fig. 1 Calculation graph for S, P and C of SA H in July of 1984 ( : SA H center location; thick solid line: rep resentative geopo2 tential height line ( f 0 = 1 676 dagpm ) ; dash and dot line: boundary line of searching area ; thick broken line: boundary line of the Tibetan Plateau m ain body, w hose altitude is higher than 3 km ) 2 C gc, 3 : 1 ) r, ; 2),; 3),

6, : 761 2 1948 2007 7(, ) Fig. 2 D istribution of SAH center locations in July during 1948 2007 ( : center location in the past years; : clim atological center) 2, C ( ), C = (, ), [ 0, 2 ),- 2, = 2 2 -, C = (, ), [0, 2 ),[ 0, ] (2) 1, : 1) oxy : [ 16 ] S P C o ; x0 ; y 2 3 ; 2 x y ( -, oxy3( ) 2) o x y : o (, ) ; x +, o () ( ), ( +- ), ; y o x,o, o () (), + 2-2, ( + - ) ;x y ( -, o yx y3 3 oxy o x y(o XYZ ) Fig. 3 Relationship betw een coordinate oxy and o x y on spherical surface ( O XYZ is the 3 D system, w hose origin is at the earthπs core) rectangular coordinate, [ 22 ], 211o ( 0, 0 ) oxy o( 0, 0 ),oxy ( x, y), o x y ( x, y), ox y,x y ( x, y) ooxy ( 4) oxo oyo,

762 31 4o oxy ( x, y) () (O XYZ ) Fig. 4 Coordinates ( x, y) of o on the coordinate oxy ( lo2 cal) (O XYZ is the 3 D rectangular coordinate system, w hose origin is at the earthπs core) x = y = 2, xoo = 0, yoo = 2-0, (3) oo = 0, ( oo ), o x = ox = a rc tan ( tan 0 cos 0 ), y = oy = a rc tan o x = a rcs in ( s in 0 sin 0 ), tan 0 cos 2-0 ; o y = a rcs in s in 0 sin 2-0 ; xo o = a rcco t ( cos 0 tan 0 ), (4) yo o = a rcco t cos 0 tan 2-0 212q (, ) o x y q (, ) o x y ( x, y ) q o y x y x ( y ),q x ( y ),x ( y ) x ( y )q o x y ( 5) ox q, x = /2, x oq = - 0, oq = (5) 5q (, ) o x y ( x, y ) (; O XYZ ) Fig. 5 Coordinates ( x, y ) of q (, ) on the coordinate o x y ( local; OXYZ is the 3 D rectangular coordinate sys2 tem, w hose origin is at the earthπs core) ox = a rc tan [ tan cos ( - 0 ) ], x q = a rcsin [ s in sin ( - 0 ) ] (6) o x q, o x = ox - oo = a rc tan [ tan cos ( - 0 ) ] - 0, o q = a rccos ( cosx qcoso x ), x o q = a rcsin s inx q s ino q o y q, y o q = 2 - x o q, o y = a rc tan ( tano qcos y o q), y q = a rcs in ( sino qs in y o q) qo x y (7) (8) x = o x, y = o y, (9) = x o q,= o q (10) ogc = (73118 E, 34158 N ) o x y 7 100 hpa o x y ( 2), ( 6) gc [ 16 ], o { c ( t) c ( t) ; t = 1, 60} 3 [ 16 ], o x y oxy { c ( t) c ( t) ; t = 1, T},o x y

6, : 763 2 1948 2007 7 100 hpa o x y Table 2 Coordinates on the o x y, longitude and colatitude of 100 hpa SAH centers in July during 1948 2007 t x c y c c / ( ) c / ( ) t x c y c c / ( ) c / ( ) 1948-01031 - 01029 223145 2144 1978-01019 - 01022 229137 1166 1949-01062 01066 133137 5120 1979 01007 01055 82190 3117 1950-01018 - 01045 247171 2176 1980-01004 - 01017 256137 0198 1951 01013-01024 299103 1156 1981-01014 01030 114189 1187 1952-01047 01017 160136 2184 1982 01041 01084 64131 5135 1953-01022 - 01001 181164 1124 1983 01031 01061 63131 3189 1954-01021 - 01032 237114 2119 1984-01030 - 01047 237107 3119 1955-01003 01016 99188 0194 1985 01006-01064 275108 3170 1956-01022 - 01164 262144 9146 1986-01006 - 01029 257154 1167 1957 01017 01027 56199 1182 1987 01035 01058 58194 3191 1958-01004 01013 105132 0180 1988-01016 01030 117188 1195 1959-01018 - 01033 240160 2115 1989 01005 01023 76198 1135 1960 01013 01006 24190 0182 1990 01008-01011 305156 0175 1961-01019 01074 104154 4138 1991 01025 01076 72117 4159 1962 01004 01020 79187 1118 1992 01029-01098 286158 5187 1963 01015 01054 73197 3121 1993 01027-01040 303136 2177 1964-01028 - 01011 201197 1173 1994 01000-01094 269179 5141 1965 01018 01027 56129 1186 1995 01018-01061 286140 3162 1966-01015 01003 167191 0187 1996 01015-01059 283188 3146 1967-01002 01044 91197 2151 1997 01036-01039 312167 3100 1968 01010-01057 279195 3129 1998-01029 - 01071 247154 4140 1969 01030 01007 13100 1177 1999 01019-01052 290136 3119 1970 01019-01031 301152 2108 2000-01004 01043 95153 2145 1971-01012 01000 179119 0169 2001 01009-01070 277157 4107 1972 01018 01103 80122 5196 2002 01039 01055 55112 3186 1973 01027-01042 303106 2185 2003 01020-01118 279162 6187 1974 01057 01092 58128 6118 2004 01051-01014 344173 3102 1975 01001 01026 87156 1147 2005-01002 - 01039 266181 2122 1976 01035-01105 288150 6136 2006-01011 01047 103180 2174 1977 01021 01020 44150 1165 2007-01006 - 01073 265152 4121 T w ( t) x c ( t) = 0, t = 1 T w ( t) y c ( t) t = 1, tw ( t) = 0 (11) w ( t) = T P ( t) P ( t) t = 1 (12), 26 Q ( ) = T w ( t) p 2 r ( t) (13) t = 1, p r ( t) tc ( t) d

764 31 6 1948 2007 7 100 hpax 2y 2( : ; : x ; : y ) Fig. 6 D istribution of 100 hpa SA H centers in July during 1948 2007 on the x 2y and 2 coordinate ( : center location in the past years; dash line: x isoline; dash and dot line: y isoline) (,x ) 7, p r ( t) = a rc tan [ tan c ( t) cos ( c ( t) - ) ] (14) Q ( ) Q ( ) Q m ax m ax, Q m in m in Q ( ),0, 2 ) Q m ax, m ax1 m ax2 ; Q m in, m in1 m in2 ; m ax m in ( ) [ 0, 2 Q m ax Q m in m ax m in, { P ( t) ( t) ( t) ; t = 1, T} ; Q m ax Q m in m ax m in 7 o x y C ( t)d ( ) p r Fig. 7 Schem atic diagram of p r that is the p rojection of system center C ( t) at the undeterm ined direction d ( ) on the coordinate o x y in a certain year

6, : 765, Q m ax Q m in a b, a = Q 1 2 m ax, (15) b = Q 1 2 m in a b m ax m in gc,, a b m ax 1) r r = (Q m ax + Q m in ) 1 2 (16) gc, C ( t), r, 2) = b (17) a,,, 3) = m ax - (18) 2 gc ( o x y),, [ - /2, /2) ]> 0, ; < 0, ; = 0, 4,, [ 16 ] { P ( t) ( t) ( t) ; t = 1, T} gc, C gc,,1 2 7 100 hpa, Q m ax = 2169 10-3 2, Q m in = 5137 10-4 2, m ax = 8712, m in = 17712, a = 5119 10-2 = 2197, b = 2132 10-2 = 1133, r = 5168 10-2 = 3126, = b a = 0145, = - 5106 10-2 = - 2190 [ 21 ] ( 6 8 ) 100 hpa P C, gc r ( 3), 100 hpa 3 1948 2007 6 7 8 100 hpa Table 3 Characteristic quantities of 100 hpa SA H centers 6 7 8 5 in June, July and A ugust during 1948 2007 gc = (, g ) r / ( ) / ( ) (8015 E, 2817 N ) 4174 0127-5160 (7312 E, 3416 N ) 3126 0145-2190 (7619 E, 3319 N ) 4104 0129-7160 [ 16 ] P () C ( ), gc 3 : 1) r, C gc ( C ),; 2 ),, ; 3), gc, 1948 2007 6 7 8 100 hpa, r, : [ 1 ]. [ J ]., 1962, 31 (4) : 3052418. [ 2 ],. [ J ]., 1981, 36 (1) : 59269. [ 3 ],,. [ J ]., 1983, 7 (4) : 3642374. [ 4 ]. [ J ]., 1991, 14 () : 4612467.

766 31 [ 5 ],,. 5 [ J ]., 1994, 13 (2) : 2172223. [ 6 ],,,. [ J ]., 1997, 55 (6) : 7502758. [ 7 ],,,. [ J ]., 2000, 23 (1) : 9215. [ 8 ],,. [ J ]., 2001, 17 (3) : 2152222. [ 9 ] Q ian W eihong, Zhang Henian, Zhu Yafen. Interannual and inter2 decadal variability of East A sian ACA S and their im pact on tem 2 perature of China in w inter season for the last century [ J ]. A dv A tm os Sci, 2001, 18 (4) : 5112523. [ 10 ]. [ M ]. :, 1999: 56264. [ 11 ],,,. [M ]. :, 2000. [ 12 ],,. [ J ]., 2000, 24 (1) : 67278. [ 13 ],,. [ J ]., 2005, 25 (5) : 4652473. [ 14 ],. [ J ]., 2006, 26 (2) : 1352142. [ 15 ],,,. [ J ]., 2007, 27 (3) : 2942301. [ 16 ],,,. [ J ]., 2007, 30 (6) : 7302735. [ 17 ] Kalnay E, Kanam itsu M, Kistler R, et al. The NCEP /NCAR 402 year reanalysis p roject [ J ]. B ull Am er M eteor Soc, 1996, 77 (3) : 4372471. [ 18 ] Kistler R, Kalnay E, Collins W, et al. The NCEP /NCAR 502year reanalysis: M onthly m eans CD 2ROM and docum entation [ J ]. B ull Am er M eteor Soc, 2001, 82 (2) : 2472267. [ 19 ] G ibson J K, Kallberg P, Uppala S, et al. ERA descrip tion [ R ] / / ECMW F. Re2A nalysis ( ERA ) Park, Reading: ECMW F, 1997. Project Report Series. Shinfield [ 20 ] S imm ons A J, G ibson J K. The ERA 240 p roject p lan [ R ] / / EC2 MW F. ERA 240 Project Report Series. Shinfield Park, Reading: ECMW F, 2000. [ 21 ],,,..,. [ 22 ]. [M ]. :, 2005: 52.