Study on D isruption M anagem en t of Veh icle Routing Problem w ith the Changes of T im e W indows and D elivery W e ight of Custom ers

Σχετικά έγγραφα
Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Application of a novel immune network learn ing algorithm to fault diagnosis

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Διοίκηση Εφοδιαστικής Αλυσίδας

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

A multipath QoS routing algorithm based on Ant Net

Quick algorithm f or computing core attribute

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

ER-Tree (Extended R*-Tree)

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

M in ing Recursive Function s Ba sed on Gene Expression Programm ing

Motion analysis and simulation of a stratospheric airship

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

MUL TIL EVEL2USER2ORIENTED AGRICUL TURAL INFORMATION CLASSIFICATION

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Approximation Expressions for the Temperature Integral

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

High order interpolation function for surface contact problem

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Probabilistic Approach to Robust Optimization

ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE

Study of urban housing development projects: The general planning of Alexandria City

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

PACS: Pj, Gg

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

The Simulation Experiment on Verifying the Convergence of Combination Evaluation

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Fo recasting Stock M arket Q uo tation s via Fuzzy N eu ral N etw o rk Based on T 2S M odel

Research on model of early2warning of enterprise crisis based on entropy

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Prey-Taxis Holling-Tanner

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Buried Markov Model Pairwise

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

!! " # $%&'() * & +(&( 2010

Congruence Classes of Invertible Matrices of Order 3 over F 2

CorV CVAC. CorV TU317. 1

China Academic Journal Electronic Publishing House. All rights reserved. O ct., 2005

Stabilization of stock price prediction by cross entropy optimization

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

A research on the influence of dummy activity on float in an AOA network and its amendments

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

Accounts receivable LTV ratio optimization based on supply chain credit

Jou rnal of M athem atical Study

College of Life Science, Dalian Nationalities University, Dalian , PR China.

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Control Theory & Applications PID (, )

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Research on Economics and Management

X g 1990 g PSRB

Multi-objective design of control chart for short-run production

A System Dynamics Model on Multiple2Echelon Control

CAP A CAP

Arbitrage Analysis of Futures Market with Frictions

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

Reading Order Detection for Text Layout Excluded by Image

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Bank A ssetgl iab ility Sheet w ith Em bedded Op tion s

On a New Model for Solving B ilevel Leader2follower Decision2making Problem s

Table of Contents 1 Supplementary Data MCD

M in ing M ulti2d im en siona l Com plex A ssoc ia tion Rule Ba sed on Artif ic ia l Imm une System and Gene Expression Programm ing

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)


Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Real time mobile robot control with a multiresolution map representation

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Analysis on construction application of lager diameter pile foundation engineering in Guangdong coastal areas

Adaptive grouping difference variation wolf pack algorithm

Research on the Environmental Impact Factors of Electromagnetic Radiation from High - speed Railway

ΕΡΕΥΝΑ ΕΠΙΤΥΧΙΑ ΚΑΤΑΡΤΙΣΗ ΕΡΓΑΣΙΑ ΕΜΠΕΙΡΙΑ ΥΠΟΤΡΟΦΙΕΣ ΕΚΠΑΙΔΕΥΣΗ ΑΚΑΔΗΜΑΙΚΗ ΕΠΙΤΥΧΙΑ ΚΥΠΡΟΣ ΟΔΗΓΟΣ ΕΠΙΤΥΧΙΑΣ: ΣΤΑΔΙΟΔΡΟΜΙΑ ΧΩΡΙΣ ΣΥΝΟΡΑ!

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

copula, 5 3 Copula Κ L = lim System s Engineering M ay., 2006 : (2006) ,,, copula Ξ A rch im edean copula (Joe,

DOI /J. 1SSN

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Knowledge Rep resentation for Incomp lete Fault D iagnosis Based on Flow Graphs

User Behavior Analysis for a Large2scale Search Engine

Assalamu `alaikum wr. wb.

Transcript:

21 5 2 0 0 810 JOURNAL OF MANAGEM ENT SC IENCES Vol. 21 No. 5 October, 2 0 0 8,,,116023 :,,, ;,, VRPTW MD2 VRPTW MDVRPTW ;,,;,, : ; ; ; ; ; : C93 : A : 1672-0334 (2008) 05-0111 - 10 Study on D isruption M anagem en t of Veh icle Routing Problem w ith the Changes of T im e W indows and D elivery W e ight of Custom ers WANG Xu2p ing, XU Chuan2lei, HU Xiang2pei Institute of System s Engineering, Dalian University of Technology, Dalian 116023, China Abstract: To tackle the disrup tion that is caused by the demands of customers in the logistics, the paper p roposes disrup tion recovery strategies and solutions based on the theory of disrup tion management. The trans2 formation method for the disrup tion recovery of the vehicle routing p roblem is put foward on the basis of the mul2 tip le depots, and the disrup tion recovery strategies and the methods of deviation measurement are given, which is the foundation of the disrup tion management modeling for the vehicle routing p roblem. After the disrup tion is illustrated and distinguished by analyzing and identifying the changes of time windows and delivery weight of customers, the disrup tion management model is constructed, and the normalization method for the model is giv2 en, making the model compatible with VRPTW, MDVRPTW and disrup tion management for MDVRPTW. On the basis of the characteristic of the model, the chromosome code based on customer is ameliorated, which can indicate the disrup tion recovery strategies; according to the disrup tion management, the genetic algorithm is de2 signed to solve the model. The rep resentative result and analysis are p rovided in this paper, and the experiment indicates the validity of the model and algorithm. Keywords: disrup tion management; disrup tion recovery; vehicle routing p roblem; time window; capacity constraint; genetic algorithm : 2008-05 - 21 : 2008-08 - 30 : (70671014, 70571009) ; (70725004) : (1962 - ),,,,,, : E2mail: wxp@ dlut. edu. cn

112 (Journal ofmanagement Sciences) 200810 1,,,,,,,, 2, ( vehi2 cle routing p roblem with time window, VRPTW ) NP 2 Hard, TW / D VRPTW, [ 1 ] ;, [ 2 ],, scheduling re 2scheduling,, L i J ing2quan,, SDVRP, [ 3 ] ;, VRP,, 0,, [ 4 ] ;,, [ 5 ] schedulingre 2sched2 uling,,,,,,, [ 6, 7 ] [ 8 ] [ 9 ] [ 10 ] [ 11 ],, [ 12 ] ; VRPTW,,,, [ 13 ],,,,, ;,, ;,,, VRPTW MDVRPTW MDVRPTW ;, ;, ; 3 3. 1, 3, ; ;, kr m 1,,, 1, k 1 k 1 d, k 1 dk 1 L T dk 1, D t, k 1 ( co x, co y ), D k 1 ( co x, co y ), D t, L T dk, 0, 1 0, k 1 D D t, d D k 1 k 1 k 1 0 2, k 2 k 2 d k 2, dk 2 L T dk 2, D t, k 2 i, i S ervicet i, k 2 i S T i, i ( co x i, co y i ), D k 2 ( co x i, co y i ), D t + S ervicet i - S T i, L T dk 2, 0, g i, k 2 D D t + S ervicet k 2 i - S T i, d D k 2 k 2

5 : 113 0 V, D, D = {D 1, D 2,, D k } ( k V ), (k ) d, d = { d 1, d 2,, d k } ( k V ), m,, D t,, 0, 0, k r m 3. 2 VRPTW, 3 (1) (2),,, ( ), ( ) (3),,,, ; ;,, 3, 3, 3 k, m ) E ( P) E ( P), tm k = - 1; ( i, j, k, m ) E ( P) E ( P), t m k = 0 (1),, (2),,,, P,,,, i s i, P i ( s m ) ik ik i, (k) d = { d 1, d 2,, d k },,,, P plan,, P; { 0} 0 ; T ; R, R = T D; R 1 ( ), R 1 = R d; V, V = {V 1, V 2,, V m } (m { 0} D ) ; P = { ( i, j, k, m ) ( i, j, k, m ) plan, Π i, jt d, k V, m = D k D }, ( i, j, k, m ) m k ij; f D k D k ; b D k D k, k f D k b D k, k f D k, b D k, D, kd k, D k b D k dspa th = { (D k, b D k, k, m ) Π b D k T d, D k D, k V, m = D k D }; k d k D k dd pa th = ( d k, D k, k, m ) ( d k, D k, k, m ) P, Π d k d, D k D, k V, m = D k D },, ; D k b D k (D k, b D k, k, m ) ( f D k, b D k, k, m ),, P, P = P dspa th dd pa th E ( P) P, E ( P) P, t m k, t m k, kv m m { 0} D ir 1 ( i, j, k, m ) E ( P) E ( P), tm k = 1; ( i, j, 0, ( s m ) ik - s i = 0, Π i d m, k V m, m D (3),, k c k, i c i, x m k = 1m kij 0

114 (Journal ofmanagement Sciences) 200810 m { 0} D ir 1 kv m c x m k x m k k V V kk m { 0} jr m m { 0} D ir 1 kv m 4 4. 1 0, jc k t m k (1 - x m k ) c i,, ;,,,, ET i i, L T i i, i[ ET i, L T i ];, ET i i, L T i i, i [ ET i, L T i ], 3 (1), L T i > L T i,l T i < s i, i, (2), ET i < ET i,et i > s i, i ET i,,, kt l k k, L T i s i, k T l k, ET i - s i > T l k, (3), k C l k k, i C l k,, g i - g i > C l k, g i i L T i < s i ET i - s i > T l k g i - g i > C l k 4. 2 [14 ],,,,,,,,,,,,,, ;,,,, ( s m ) ik m k i, Π i R, Π k V m, Πm { 0} D, ( lexicographic goal p rogramm ing structure, Lex), m inl ex P 1 : { x m k kv m m { 0} D ir [ ( s m ) ik - s i + w i ] + (1 - x m k ) } (1) P : t m k 2 0, j + P 3 : s. t. k V V kv m { 0} jr m m { 0} D ir 1 kv m (1 - x m k t m k k V m { 0} jr kv V m kv m m { 0} D x m k jr kv m x m k = x m k [ x m k t m k + ) t m k ] (2) 0, jc k + ir 1 [ c x m k t m k + c i (1 - x m k ) ] (3) Φ kr m i = m { 0} D (4) j, d k = 1i = m D, k V m (5) x m k = jt x m k jt kv m x m k m { 0} D ih - x m k ir 1 m { 0} D kv m j, i Φ 1i = m { 0}, k V m (6) Φ 1Π i R (7) x m k m { 0} D kv m hj = 0 Π h R (8) x m k d k, j = 1j = m D, k V m (9) i x m k g ir x m k ji = x m k t j j{ 0} D Φ Q k m { 0} D, k V m (10) j{ 0} D = x m k ir 1 kv m { 0} D m = 0i = m { 0} D, k V m [ ( s m ik ) + t + st i ]j R (11) (12) w i = max(0, ET i - t i ) i R (13) ( s m ) = ET i ET i Ε t i ik i R (14) t i ET i < t i

5 : 115 ET i Φ ( s m ) Φ L T ik i i R 1, k V m, Πm { 0} D (15) ( s m ) - s ik i = 0Π i d m, k V m, m D (16) t m k = x m k 1( i, j, m, k) E ( P) E ( P) 0( i, j, m, k) E ( P) E ( P) - 1( i, j, m, k) E ( P) E ( P) { 0, 1} Π i, j R 1, k V m, m { 0} D (17) (18), V Α V ;; w i ; h i j ; ; ; Q k k ; t ij; st i i;, 4. 3, = 1; (1),, (2),, ;, ; (3),, (4) ( ) ; (5), ; (6),, ; (7) (8) ; (9) k d k ; (10) ; (11) ; (12) ; (13) ; (14) (15) ; (16) (k ) d = { d 1, d 2,, d k } 0, ; (17), 4. 3,, VRPTW, VRPTW MDVRPTW MDVRPTW,3 VRPTW, (1) P ; R, R = { 1, 2,, n}; V (V ), q; Q k = q, Π k V ; D = < (2) = 0,= 0,= 0, (3) ( s m ) ik - s i 0 (4),, c i,, VRPTW,c i = 0 MDVRPTW, {0} NM MDVRPTW, (1) P, R, R = { 1, 2,, n}; V (V ) = { K 1, K 2,, K m } (m NM ) ; Q k = q k, q k k, Π k { K 1, K 2,, K m }; D = < (2) = 0,= 0,= 0, (3) ( s m ) - s ik i 0 (4),, c i,, MDVRPTW,c i 5 5. 1 = 0 ( ), k d { t 1, t 2,, t n }, { t 1, t 2,, t n } ( ) t i, ; g ti t i, ( x ti, y ti ) t i, D t, L T ti t i, ( x k, y k ) k (D k ), LD k k D k, speed, { t 1, t 2,, t n } t i ( x k - x ti ) 2 + ( y k - y ti ) 2 speed Q k + LD k Φ L T ti - D t k { 0} D (19) Ε g ti k { 0} D (20) (19) t i

116 (Journal ofmanagement Sciences) 200810, (20) t i [19 ],,, S ort2v a lue, 0,,, S ort2v a lue,,,,,, ;,,, 5. 2. 2 D etim e = max[ ( s m ) ik - L T i, 0 ] ir 1m { 0} D kv m D ecap = max( m { 0} D kv m g i ir x m k - Q k, 0) Tota ld e = D etim e + D ecap (19) (20) t i () C i, C i, Cd i, Cv i t i C i, 5. 2 5. 2. 1, [ 1517 ], [ 18, 19 ] VRPTW,,, [ 19 ],,, Tota ld e,, 4, Tota ld e P 1 P 2 P 3,, Tota ld e, P 1, ;,,, N, ind i i, R ( ind i ), [20 ] (1),, F ( ind i ) = [N - R ( ind ) i ]2 N 2 R ( ind i ) R ( ind i ) > 1 = 1 (21) (2),, (1, 2), 5. 2. 3 (1) (G 1, G 2,, G N ), G i, D epot2n um V eh icle2n um S ort2v a lue 3, i D epot2 N um V eh icle2n um, S ort2v a lue, ( ),,, [21 ] (2),,,,,,, (3),,,,, D epot2n um V eh icle2n um S ort2v a lue, (9) 5. 2. 4 (9) k d k,, d k

5 : 117 D epot2n um D k V eh icle2n um k S ort2v a lue,,,,, t i, C i C m, t i D epot2n um Cd m,, V eh icle2n um Cv m S ort2v a lue ; C i, S ort2v a lue0 t i S ort2v a lue0, D epot2n um m ({ 0} D ), V eh icle2n um k (V m ) D epot2n um V eh icle2n ums ort2v a lue 6, Matlab, 6. 1 7, 5 10 3 kg,, ; 1, 1,, VRPTW, [ 19 ]V eh icle2 N um S ort2v a lue, V eh icle2n um S ort2v a lue,, ; V eh icle2n um S ort2v a lue,n = 80, P x = 0. 80, P m = 0. 20, Gen = 500 10 VRPTW, 1: 0-8 - 2-11 - 1-4 - 0, 2: 0-10 - 5-13 - 0, 3: 0-9 - 7-6 - 0, 4: 0-3 - 14-12 - 15-0, 585. 19, [ 22 ] 585. 77 1 Table 1 Da ta of D epot and Custom ers x ( km) y ( km) q ( kg) ( h) ( h) 0 50 50 0 0 + 1 19 0 1. 00 10 3 74 144 2 33 3 1. 80 10 3 58 128 3 35 21 1. 10 10 3 15 85 4 53 19 0. 60 10 3 96 166 5 70 94 1. 90 10 3 47 117 6 27 44 1. 40 10 3 85 155 7 10 69 1. 20 10 3 21 91 8 56 4 0. 20 10 3 9 79 9 16 81 1. 70 10 3 37 107 10 68 76 0. 80 10 3 21 121 11 41 10 0. 90 10 3 74 174 12 83 43 0. 80 10 3 58 158 13 25 91 1. 90 10 3 15 125 14 73 29 1. 60 10 3 56 156 15 70 18 0. 90 10 3 87 187

118 (Journal ofmanagement Sciences) 200810 6. 2, 3,, 32. 65, 4 8 11 14,, 2 2 Table 2 Changes of T im e W indows and D elivery W e ight of Custom ers 4 8 11 14 [ 96, 166 ] [ 9, 79 ] [ 74, 174 ] [ 56, 156 ] 0. 60 0. 20 0. 90 1. 80 [ 10, 54 ] [ 20, 70 ] 1. 60 1. 40 1. 90 6. 3,,, 0-3 - 14-12 - 15-0 3,0-10 - 5-13 - 0 10,, 1 2 3 4,, 4 8 11, 4 14,, 3,, 1-8 - 2-0 - 1, 0-11 - 1-0, 0-4 - 0, 2-5 - 13-0 - 2, 3-9 - 7-6 - 0-3, 0-14 - 0, 4-12 - 15-0 - 4 6. 4,,, MDVRPTW,, 1-4 - 8-15 - 0-1, 2-0 - 2, 3-13 - 9-7 - 0-3, 4-5 - 0-4, 0-1 - 2-11 - 0, 0-6 - 0, 0-14 - 12-0, 169 6. 5, N = 80, P x = 0. 80, P m = 0. 07, Gen = 500 = 5, k c k 2010, 1-4 - 8-0 - 1, 2-5 - 13-0 - 2, 3-9 - 7-6 - 0-3, 4-12 - 15-11 - 0-4, 0-14 - 2-1 - 0, 189 3 6. 6 (1) 3,, ;,, (2) VRPTW,,,,,,,, 5. 2. 4 ;, VRPTW, P x 0. 80, P m 0. 20, 3 Table 3 Com para tive Results of D isruption M anagem en t, Scheduling Accord ing to the O r ig ina l One and Rescheduling 805. 04 20 149. 83 7 605. 70 31 276. 38 7 611. 22 14 136. 06 5 ( % ) 24 30 9 29 ( % ) - 1 55 51 29

5 : 119, P x 0. 80, P m 0. 07,,, 7,,,,,,,,,, VRPTW MDVRPTW MDVRPTW,,,, ;,,,,,,,,, : [ 1 ] D ror M, Powell W B. Stochastic and Dynam ic Models in Transportation [ J ]. Operations Research, 1993, 41 (1) : 11-14. [ 2 ] Huisman D, Freling R, W agelmans A. A Robust So2 lution App roach to the Dynam ic Vehicle Scheduling Problem [ J ]. Transportation Science, 2004, 38 ( 4 ) : 447-458. [ 3 ] L i J ing2quan, Denis Borenstein, Pitu B M irchandani. A Decision Support System for the Single 2depot Ve2 hicle Rescheduling Problem [ J ]. Computers & Oper2 ations Research, 2007, 34 (4) : 1008-1032. [ 4 ]. [ D ]. :, 2005. Zhang Y H. Study of Commerical Vehicle Emergent D ispatch [ D ]. Being: Being University of Technol2 ogy, 2005. ( in Chinese) [ 5 ],,. [ J ]., 2007, 21 (4) : 114-118. Zhong S Q, Du G, He G G. Study on U rgency Vehi2 cle Scheduling Problem with the Changes of Time W indows and Delivery W eight of Customers [ J ]. Journal of Industrial Engineering and Engineering Management, 2007, 21 (4) : 114-118. ( in Chinese) [ 6 ] Yu G, A rguello M, Song M, McMowan S, W hite A. A New Era for Crew Recovery at Continental A irline [ J ]. Interfaces, 2003, 33 (1) : 5-22. [ 7 ] W u Cheng2Lung. Inherent Delays and Operational Reliability of A irline Schedules [ J ]. Journal of A ir Transport Management, 2005, 11 ( 4) : 273-282. [ 8 ] C W alker, J Snowdon, D Ryan. Simultaneous D isrup2 tion Recovery of a Train Timetable and Crew Roster in Real Time [ J ]. Computers and Operations Re2 search, 2005, 32 (8) : 2077-2094. [ 9 ] Portougal V ictora, Trietsch Dan. Setting Due Dates in a Stochastic Single Machine Environment [ J ]. Com2 puters & Operations Research, 2006, 33 ( 6 ) : 1681-1694. [ 10 ],,. [ J ]., 2005, 25 ( 7) : 9-16. Yu H, Chen J, Yu G. How to Coordinate Supp ly Chain under D isrup tions [ J ]. System s Engineering Theory & Practice, 2005, 25 (7) : 9-16. ( in Chinese) [ 11 ] Stn Van de Vonder, Erik Demeulemeester, W illy Herroelen, Roel Leus. The U se of Buffers in Project M anagement: The Trade 2off between Stability and M akespan [ J ]. International Journal of Production E2 conom ics, 2005, 97 (2) : 227-240. [ 12 ]. [ D ]. :, 2007. Zhang Y. D isrup tion Management Model of Delaying Problem in Logistics D istribution [ D ]. Dalian: Dalian University of Technology, 2007. ( in Chinese) [ 13 ],,. VRPTW TABU SEARCH [ J ]., 2006, 26 (2) : 231-236. W ang M C, Gao C X, Zeng Y T. Recovery of the VRPTW D isrup tion and the Tabu Search A lgorithm [ J ]. Journal of Mathematics, 2006, 26 ( 2 ) : 231-236. ( in Chinese) [ 14 ] Yu Gang, Xiangtong Q i. D isrup tion Management: Frame2 work, Models and App lications[m ]. Singapore: World Scientific Publishing Co. Pte. L td., 2004. [ 15 ] Tan K, Lee T, Ou K, Lee L H. A Messy Genetic A l2 gorithm for the Vehicle Routing Problem with Time W indow Constraints [ C ] Proceedings of IEEE Con2

120 (Journal ofmanagement Sciences) 200810 gress on Evolutionary Computation. South Korea, 2001: 679-686. [ 16 ],,. [ J ]., 2001, 36 (2) : 211-213. Xie B L, L i J, L iu J X. A Heuristic Genetic A lgo2 rithm for the Travelling Salesman Problem with Time Restraints [ J ]. Journal of Southwest J iaotong Univer2 sity, 2001, 36 (2) : 211-213. ( in Chinese) [ 17 ] Hwang H S. An Imp roved Model for Vehicle Routing Problem with Time Constraint Based on Genetic A l2 gorithm [ J ]. Computers & Industrial Engineering, 2002, 42 (224) : 361-369. [ 18 ] Baker B, Ayechew M. A Genetic A lgorithm for the Vehicle Routing Problem [ J ]. Computers and Opera2 tions Research, 2003, 30 (5) : 787-800. [ 19 ],,,. [ J ]., 2004, 40 (21) : 82-83. Zou T, L i N, Sun D B, L i J. Genetic A lgorithm for M ultip le 2depot Vehicle Routing Problem [ J ]. Com2 puter Engineering and App lications, 2004, 40 ( 21) : 82-83. ( in Chinese) [ 20 ],,. [ J ]., 2003, 34 ( 7) : 64-69. You J J, J i C M, Fu X. New Method for Solving M ulti2objective Problem Based on Genetic A lgorithm [ J ]. Journal of Hydraulic Engineering, 2003, 34 (7) : 64-69. ( in Chinese) [ 21 ]. MATLAB [ M ]. :, 2005. Lei Y J. MATLAB Genetic A lgorithm Toolbox and Ap2 p lication [M ]. Xi an: Xidian University Press, 2005. ( in Chinese) [ 22 ]. [ D ]. :, 2004. Zhong S Q. Study on Intelligent A lgorithm for Vehicle Scheduling in Logistics D istribution [ D ]. Tianjin University, 2004. ( in Chinese) Tianjin: B iography:wang Xu2p ing is an associate p rofessor in Insti2 tute of System Engineering at Dalian University of Technolo2 gy. H is research areas include electronic commerce and logis2 tics management, information system s integration, etc.,, 2009 ;;; ;,, ( IE),,,,,IE,,,, 1996, 120, A4,,12/,72, 10 /, 60, 4-585,,, : 1954 806 : 200030 : / : 0086-21 - 62933226 E - ma il: qdx2@ yahoo. com. cn http: / / jiem. net,, : 2009,,,,