ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Σχετικά έγγραφα
Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι το μέσο του τόξου ΓΔ, να αποδείξετε ότι:

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Θεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

2ηέκδοση 20Ιανουαρίου2015

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΓΕΩΜΕΤΡΙΑ. Β τάξης Γενικού Λυκείου Θέμα 4ο. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (16/11/2014)

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015

1. 3 3cm 2. E( ) 24 3cm 3. E( ) 12 3cm ) 1. 8cm 2. 18cm 3. E 56 3 cm 4. E 20 3 cm. 6cm, cm, 3 6 cm, E cm )

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)

Τάξη A Μάθημα: Γεωμετρία

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου. // ) και BE

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»


ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο Γ ΓΥΜΝΑΣΙΟΥ

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια

1. 3 3cm 2. E( ) 24 3cm 3. E( ) 12 3cm ) 1. 8cm 2. 18cm 3. E 56 3 cm 4. E 20 3 cm. 6cm, cm, 3 6 cm, E cm )

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

Ασκήσεις - Πυθαγόρειο Θεώρηµα

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ.

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

α <β +γ τότε είναι οξυγώνιο.

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

3o ΚΕΦΑΛΑΙΟ : Τρίγωνα

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

Τράπεζα Θεμάτων Γεωμετρία Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ

Επαναληπτικές Ασκήσεις

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

Βασικές Γεωμετρικές έννοιες

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

Transcript:

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (14)

-- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος

-- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ () 1.GI_V_GEO_4_18994 1 Στην πλευρά ΑΒ παραλληλογράμμου ΑΒΓΔ θεωρούμε σημείο Ε τέτοιο, ώστε και στην 1 πλευρά ΔΓ θεωρούμε σημείο Ζ τέτοιο, ώστε. Αν η διαγώνιος ΑΓ τέμνει τις ΔΕ και ΒΖ στα σημεία Μ και Ν αντίστοιχα, να αποδείξετε ότι: α) ΑΜ = ΓΝ = MN (Μονάδες 1) 1 β) (Μονάδες 1) 5.GI_V_GEO_4_19000 Δίνεται τρίγωνο ΑΒΓ. Θεωρούμε ΑΜ τη διάμεσό του και Ε τυχαίο σημείο του τμήματος ΒΜ. Από το Ε φέρουμε ευθεία παράλληλη στην ΑΜ που τέμνει την πλευρά ΑΒ στο Δ και την προέκταση της ΓΑ στο Ζ. α) Να συμπληρώσετε τις αναλογίες και να αιτιολογήσετε την επιλογή σας:......... i. ii. (Μονάδες... BM...... 1) β) Να αποδείξετε ότι το άθροισμα ΔΕ + ΕΖ είναι σταθερό, για οποιαδήποτε θέση του Ε στο ΒΜ. (Μονάδες 1)

-4- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος ΘΕΩΡΗΜΑΤΑ ΤΩΝ ΔΙΧΟΤΟΜΩΝ ΤΡΙΓΩΝΟΥ

-5- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ Ο - ΟΜΟΙΟΤΗΤΑ ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ (4) 1.GI_V_GEO_4_18976 Σε οξυγώνιο τρίγωνο ΑΒΓ φέρουμε τα ύψη του ΑΔ και ΒΕ. α) Αν το τρίγωνο ΑΒΓ είναι και σκαληνό, τότε: i. Να αποδείξετε ότι τα τρίγωνα ΑΔΓ και ΒΕΓ είναι όμοια. (Μονάδες 10) ii. Να δικαιολογήσετε γιατί τα τρίγωνα ΑΔΒ και ΒΕΑ δεν μπορεί να είναι όμοια. (Μονάδες 10) β) Αν το τρίγωνο ΑΒΓ είναι και ισοσκελές με κορυφή το Γ, τότε μπορούμε να ισχυριστούμε ότι τα τρίγωνα ΑΔΒ και ΒΕΑ είναι όμοια; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 5).GI_V_GEO_4_19016 Στο διπλανό σκαληνό τρίγωνο ΑΒΓ θεωρούμε τα σημεία Δ και Ε στις πλευρές ΑΒ και ΑΓ αντίστοιχα, έτσι ώστε να ισχύουν: και α) Να αποδείξετε ότι ˆ ˆ (Μονάδες 9) β) Να εξετάσετε αν ισχύει (Μονάδες 8) γ) Να εξετάσετε αν το τμήμα ΒΓ είναι παράλληλο στο τμήμα ΔΕ. Να αιτιολογήσετε πλήρως τις απαντήσεις σας. (Μονάδες 8).GI_V_GEO_4_1909 Δίνεται τραπέζιο ΑΒΓΔ (ΑΒ// ΓΔ) και το σημείο Μ της 1 πλευράς του ΑΔ ώστε. Από το Μ φέρνουμε παράλληλη προς τις βάσεις του τραπεζίου, η οποία τέμνει τις ΑΓ και ΒΓ στα σημεία Κ και Ν αντίστοιχα. Να αποδείξετε ότι: 1 α) (Μονάδες 6) β) (Μονάδες 6) 1 γ) (Μονάδες 6) δ)ο ισχυρισμός «τα τραπέζια ΑΒΝΜ και ΑΒΓΔ είναι όμοια» είναι αληθής ή ψευδής; Να δικαιολογήσετε την απάντησή σας. (Μονάδες 7)

-6- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος 4.GI_V_GEO_4_1909 Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ, ˆ 6 0 και η διχοτόμος του ΒΔ. α) Να αποδείξετε ότι: i) Τα τρίγωνα ΒΔΓ και ΑΒΓ είναι όμοια. (Μονάδες 6) ii) ΑΔ = ΑΓ.ΔΓ. (Μονάδες 9) β) Αν θεωρήσουμε το ΑΓ ως μοναδιαίο τμήμα (ΑΓ = 1), να υπολογίσετε το μήκος του τμήματος ΑΔ και το λόγο (Μονάδες 10)

-7- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ Ο - ΜΕΤΡΙΚΕΣ ΣΧΕΣΙΣ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ () 1.GI_V_GEO_4_18985 Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι το μέσο του τόξου ΓΔ, να αποδείξετε ότι: i. Όταν η χορδή ΑΒ είναι κάθετη στη χορδή ΓΔ, τότε AM.ΑΒ = ΑΓ (Μονάδες 8) ii. Όταν η χορδή ΑΒ δεν είναι κάθετη στη χορδή ΓΔ, ισχύει η σχέση AM.ΑΒ = ΑΓ ; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 9) β) Αν για τις χορδές ΑΒ και ΓΔ που τέμνονται σε σημείο Μ ισχύει ότι AM.ΑΒ = ΑΓ, να αποδείξετε ότι το σημείο Α είναι το μέσο του τόξου ΓΔ. (Μονάδες 8).GI_V_GEO_4_19006 Δίνεται κύκλος (O,R) και μία διάμετρός του ΑΒ. Με διαμέτρους τα τμήματα ΟΑ και ΟΒ γράφουμε τους κύκλους κέντρων Κ και Λ αντίστοιχα. Ένας τέταρτος κύκλος κέντρου Μ και α- κτίνας ρ εφάπτεται εξωτερικά των κύκλων κέντρων Κ και Λ και εσωτερικά του κύκλου κέντρου Ο. α) Να εκφράσετε τις διακέντρους ΚΜ, ΛΜ και ΟΜ των αντιστοίχων κύκλων ως συνάρτηση των ακτίνων τους, δικαιολογώντας την απάντησή σας. (Μονάδες 1) β) Να αποδείξετε ότι R ρ. (Μονάδες 1)

-8- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος ΓΕΝΙΚΕΥΣΗ ΤΟΥ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ (1) 1.GI_V_GEO_4_19009 Ένα κινητό ξεκινάει από ένα σημείο Α και κινείται βόρεια χιλιόμετρα, κατόπιν συνεχίζει 10 χιλιόμετρα ανατολικά, στη συνέχεια προχωράει 4 χιλιόμετρα βόρεια και τέλος 14 χιλιόμετρα ανατολικά καταλήγοντας στο σημείο Ε. α) Αν από το σημείο Ε επιστρέψει στο σημείο Α από το οποίο ξεκίνησε, κινούμενο ευθύγραμμα, να βρείτε την απόσταση ΑΕ που θα διανύσει. (Μονάδες 1) β) Τα σημεία Α, Γ και Ε είναι συνευθειακά; Να αιτιολογήσετε πλήρως την απάντησή σας. (Μονάδες 1)

-9- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

-10- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος ΤΕΜΝΟΥΣΕΣ ΚΥΚΛΟΥ (1) 1.GI_V_GEO_4_1905 Κυρτό τετράπλευρο ΑΒΓΔ είναι εγγεγραμμένο σε κύκλο. Οι διαγώνιοί του ΑΓ και ΒΔ τέμνονται στο σημείο Μ, το οποίο είναι το μέσο της διαγωνίου ΒΔ. Να αποδείξετε ότι: α) ΔΒ = 4ΜΑ.ΜΓ (Μονάδες 7) β) ΑΒ + ΑΔ = ΑΜ.ΑΓ (Μονάδες 9) γ) ΑΒ + ΒΓ + ΓΔ + ΑΔ = ΑΓ (Μονάδες 9)

-11- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ 10 Ο - ΕΜΒΑΔΑ ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜΜΑ ΣΧΗΜΑΤΑ (1) 1.GI_V_GEO_4_1907 Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ και Ε των πλευρών του ΑΒ και ΑΓ αντίστοιχα, ώστε 1 Από το σημείο Α φέρνουμε ευθεία (ε) παράλληλη στη ΒΓ. Η ευθεία (ε) τέμνει τις προεκτάσεις των ΒΕ και ΓΔ στα σημεία Ζ, Η αντίστοιχα. Να αποδείξετε ότι: α) ΔΕ//ΓΒ (Μονάδες 5) 1 β). (Μονάδες 7) 1 γ). (Μονάδες 7) δ) (ΒΗΖ) =(ΑΒΖ) (Μονάδες 6)

-1- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

-1- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ ΠΟΛΥΓΩΝΩΝ () 1.GI_V_GEO_4_190 Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο (Ο,R) τέτοιο ώστε να ισχύει α = β + γ. Αν η προέκταση της διάμεσου του ΑΜ τέμνει τον κύκλο στο σημείο Ρ, να αποδείξετε ότι : α α) μα (Μονάδες 8) α β) ΜΡ (Μονάδες 8) 6 γ) (ΑΒΓ) = 6(ΜΡΓ) (Μονάδες 9).GI_V_GEO_4_190 Δίνονται δύο κύκλοι (Ο,α) και (Κ,β) με α > β,οι οποίοι εφάπτονται εξωτερικά στο Μ. Φέρνουμε το κοινό εφαπτόμενο τμήμα ΑΒ με Α,Β σημεία των κύκλων (Ο,α) και (Κ,β) αντίστοιχα. Από το Μ Θεωρούμε την κάθετη στο ΑΒ, η οποία τέμνει τα ευθύγραμμα τμήματα ΑΚ και ΑΒ στα σημεία Λ και Ν αντίστοιχα. Να αποδείξετε ότι: αβ α) (Μονάδες 8) α β αβ β) (Μονάδες 8) α β γ) Αν Ε 1 και Ε είναι τα εμβαδά των κύκλων (Ο,α) και (Κ,β) αντίστοιχα, τότε: (Μονάδες 9) 1 ΑΛΝ.GI_V_GEO_4_1904 Δίνεται τρίγωνο ΑΒΓ και σημεία Μ, Λ και Ζ πάνω στις πλευρές ΑΒ, ΑΓ και ΒΓ αντίστοιχα τέτοια, 1 ώστε, και 1 1 α) Να αποδείξετε ότι (Μονάδες 7) β) Να αποδείξετε ότι 5 (Μονάδες 1) 18 (Μονάδες 6) γ) Να υπολογίσετε το λόγο των εμβαδών Copyright Φεργαδιώτης Αθανάσιος