Fundamental Equations of Fluid Mechanics

Σχετικά έγγραφα
e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

ANTENNAS and WAVE PROPAGATION. Solution Manual

Tutorial Note - Week 09 - Solution

4.2 Differential Equations in Polar Coordinates

Curvilinear Systems of Coordinates

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Laplace s Equation in Spherical Polar Coördinates

Chapter 7a. Elements of Elasticity, Thermal Stresses

Problems in curvilinear coordinates

Example 1: THE ELECTRIC DIPOLE

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

r = x 2 + y 2 and h = z y = r sin sin ϕ

The Laplacian in Spherical Polar Coordinates

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Strain and stress tensors in spherical coordinates

Course Reader for CHEN 7100/7106. Transport Phenomena I

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Matrix Hartree-Fock Equations for a Closed Shell System

Analytical Expression for Hessian

Solutions Ph 236a Week 2

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

derivation of the Laplacian from rectangular to spherical coordinates

Section 8.3 Trigonometric Equations

3.7 Governing Equations and Boundary Conditions for P-Flow

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Solutions to Exercise Sheet 5

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Orbital angular momentum and the spherical harmonics

Inverse trigonometric functions & General Solution of Trigonometric Equations

The Friction Stir Welding Process

( ) 2 and compare to M.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CRASH COURSE IN PRECALCULUS

Finite Field Problems: Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Spherical Coordinates

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Areas and Lengths in Polar Coordinates

Homework 8 Model Solution Section

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Approximation of distance between locations on earth given by latitude and longitude

Space-Time Symmetries

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Strain gauge and rosettes

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Section 8.2 Graphs of Polar Equations

Example Sheet 3 Solutions

Tutorial problem set 6,

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture VI: Tensor calculus

Areas and Lengths in Polar Coordinates

Srednicki Chapter 55

PARTIAL NOTES for 6.1 Trigonometric Identities

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Trigonometry 1.TRIGONOMETRIC RATIOS

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

arxiv: v1 [math-ph] 15 Nov 2010

Time dependent Convection vs. frozen convection approximations. Plan

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Geodesic Equations for the Wormhole Metric

Homework 3 Solutions

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

1 String with massive end-points

A Note on Intuitionistic Fuzzy. Equivalence Relation

Differentiation exercise show differential equation

MathCity.org Merging man and maths

Derivations of Useful Trigonometric Identities

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Lecture 6 Mohr s Circle for Plane Stress

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

Chapter 5 Stress Strain Relation

Reminders: linear functions

2 Composition. Invertible Mappings

EE512: Error Control Coding


If we restrict the domain of y = sin x to [ π 2, π 2

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Durbin-Levinson recursive method

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Numerical Analysis FMN011

1 Full derivation of the Schwarzschild solution

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Lecture 26: Circular domains

Transcript:

Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates s = s i s i s i z. 1 Clindical pola coodinates s = s i 1 s i s i z. 2 Spheical pola coodinates 1.2 Gadient of a vecto u s = s i 1 s i 1 s sin i. 3 The gadient of a vecto u is a tenso quantit. The diffeential foms of the gadient of a vecto ae povided below in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates The vecto is given b u = u i u i u z i z so u is given b: Clindical pola coodinates u = u i i u i i u i zi u i i u i i u i zi i i z i i z i zi z. 4 The vecto is given b u = u i u i u z i z so u is given b: u = u i i u i i i i z 1 1 u 1 u 1 u u i i u i zi i i u i zi i i z i zi z. 5 1

Spheical pola coodinates The vecto is given b u = u i u i u i so u is given b: u = u i i u i i 1 1 u u u 1 i i u i i u i i 1 u i i 1.3 Divegence of a vecto u sin 1 u sin 1 u sin u u u cot cot u i i u i i i i. 6 The divegence of a vecto u is a scala quantit. The diffeential foms of the divegence depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates The vecto is given b u = u i u i u z i z so u is given b: Clindical pola coodinates u = u u. 7 The vecto is given b u = u i u i u z i z so u is given b: Spheical pola coodinates u = 1 u 1 u. 8 The vecto is given b u = u i u i u i so u is given b: u = 1 2 2 u 1.4 Divegence of a tenso T 1 sin u 1 u sin sin. 9 The divegence of a tenso T is a vecto quantit. The diffeential foms of the divegence depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates The tenso is given b T = T i i T i i T z i i z T i i T i i T z i i z T z i z i T z i z i T zz i z i z so T is given b: 2

T = T T Tz T T T z T z T z T zz i i i z. 10 Clindical pola coodinates The tenso is given b T = T i i T i i T z i i z T i i T i i T z i i z T z i z i T z i z i T zz i z i z so T is given b: T = 1 T 1 T T z 1 2 T 2 1 T 1 T z 1 T z T zz T i T z 1 T T i i z. 11 Spheical pola coodinates The tenso is given b T = T i i T i i T i i T i i T i i T i i T i i T i i T i i so T is given b: T = 1 2 T 2 1 sin T 1 T sin sin 1 T T i 1 3 T 3 1 sin T 1 T sin sin 1 cot T T T i 1 3 T 3 1 sin T 1 T sin sin 1 cot T T T i. 12 1.5 Cul of a vecto u The cul of a vecto is also a vecto quantit. Once again the diffeential foms of the culs depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates The vecto is given b u = u i u i u z i z so u is given b: u = uz u u i u z u i u i z. 13 3

Clindical pola coodinates The vecto is given b u = u i u i u z i z so u is given b: u = 1 u u i u z i Spheical pola coodinates 1 u 1 The vecto is given b u = u i u i u i so u is given b: u = 1 sin u 1 sin sin 1.6 Laplacian of a scala 2 s u 1 u i sin 1 u i z. 14 u i The Laplacian is fomed fom the divegence of a gadient opeato: = 2. The Laplacian of of a scala is a scala quantit. The foms of the diffeential Laplacian opeato depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates Clindical pola coodinates 2 s = 1 Spheical pola coodinates 2 s = 1 2 2 s 2 s = 2 s 2 2 s 2 2 s 2. 16 s 1 2 s 2 2 2 s 2. 17 1 2 sin 1.7 Laplacian of a vecto u sin s 1 2 sin 2 2 2. 18 The Laplacian of a vecto is a vecto quantit. The foms of the diffeential Laplacian opeato depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates The vecto is given b u = u i u i u z i z so u is given b: 1 u 1 15 u i. 4

u = 2 u 2 2 u 2 2 u z 2 2 u 2 2 u 2 2 u z 2 2 u 2 i 2 u 2 2 u z 2 i i z. 19 Clindical pola coodinates The vecto is given b u = u i u i u z i z so u is given b: u = [ ] 1 u [ ] 1 u 1 1 2 2 u 2 1 2 2 u 2 1 2 u z 2 2 2 u z 2 2 u 2 2 u 2 2 u 2 2 u 2 i i i z. 20 Spheical pola coodinates The vecto is given b u = u i u i u i so u is given b: u = 1 2 2 u 1 2 sin u sin 2 2 u 2 u 2 2cot 2 u 2 u 2 i sin 1 2 2 u 1 2 sin u sin 2 u 2 1 2 sin 2 u 2 cos u 2 sin 2 i 1 2 2 u 1 2 sin u sin 2 u 2 sin 2 cos u 2 sin 2 1 2 sin 2 1 2 sin 2 2 u 2 i 2 u 2 i 1 2 u 2 sin 2 2 1 2 sin 2 u i i. 21 5

1.8 Vecto identities The elationships below ae valid fo an coodinate sstem and fo an scala s vecto fields u u 1 and u 2 and tenso T. s = 0 22 u = 0 23 u = u u 24 su = s u s u 25 st = s T s T 26 T u = T : u u T 27 si : u = s u 28 u 1 u 2 = u 1 u 2 u 2 u 1 29 u 1 u 2 = u 2 u 1 u 1 u 2 u 2 u 1 u 1 u 2. 30 1.9 Gauss divegence theoem The following elationships ae valid fo an vecto u and an tenso T. udv = n uds 31 V V TdV = S S n TdS 32 whee n is the oute unit nomal to an element ds of the suface S of a volume V. 6

2 Mass consevation continuit equations fo an incompessible fluid 2.1 Vecto fom whee u is the velocit vecto. 2.2 Catesian coodinates u = 0 33 Fo velocit vecto u = u i u i u z i z u is given b u u 2.3 Clindical pola coodinates Fo velocit vecto u = u i u i u z i z u is given b 1 u 1 u 2.4 Spheical pola coodinates Fo velocit vecto u = u i u i u i u is given b 1 2 u 2 1 u sin 1 u sin sin = 0. 34 = 0. 35 = 0. 36 7

3 Momentum consevation equations fo an incompessible fluid 3.1 Vecto fom u t u u = g σ 37 whee t is time u is the velocit vecto σ is the stess tenso is the densit and g is the gavitational acceleation vecto. 3.2 Catesian coodinates Fo the following quantities: Velocit vecto u = u i u i u z i z ; Gavitational acceleation vecto g = g i g i g z i z ; Total stess tenso σ = σ i i σ i i σ z i i z σ i i σ i i σ z i i z σ z i z i σ z i z i σ zz i z i z the momentum consevation equations ae given b u t u u u u u z u t u u u u u z uz t u u u z u = g σ σ σ z 38 u = g σ σ σ z 39 = g z σ z σ z σ zz. 40 3.3 Clindical pola coodinates Fo the following quantities: Velocit vecto u = u i u i u z i z ; Gavitational acceleation vecto g = g i g i g z i z ; Total stess tenso σ = σ i i σ i i σ z i i z σ i i σ i i σ z i i z σ z i z i σ z i z i σ zz i z i z 8

the momentum consevation equations ae given b u t u u 1 u u 1 u 2 u u z = g 1 u t u u 1 u u 1 u u u u z uz t u 1 u u z = g z 1 σ 1 σ = g 1 2 σ 2 1 σ σ σ z 41 σ z 42 σ z 1 σ z σ zz. 43 3.4 Spheical pola coodinates Fo the following quantities: Velocit vecto u = u i u i u i ; Gavitational acceleation vecto g = g i g i g i ; Total stess tenso σ = σ i i σ i i σ i i σ i i σ i i σ i i σ i i σ i i σ i i the momentum consevation equations ae given b u t u u 1 u u 1 sin u u φ φ 1 1 2 2 σ 1 sin σ sin 1 sin u 2 u φ 2 = g σ φ φ σ σ φφ 44 u t u u 1 u u 1 sin u u φ φ 1 u u cot u φ 2 = g 1 2 2 σ 1 σ sin 1 σ φ sin sin φ σ cot σ φφ 45 uφ t u u φ 1 u u φ 1 sin u u φ φ φ 1 u φu cot u u φ = g φ 1 2 2 σ φ 1 σ φ 1 σ φφ sin φ σ φ 2 cot σ φ. 46 9

4 Stess ate of stain voticit and the constitutive elation fo Newtonian fluids 4.1 Rate of stain The ate of stain tenso e fo an incompessible fluid is given b e = 1 2 Note that e is a smmetic tenso. 4.1.1 Catesian coodinates u u T. 47 The Catesian components of e fo velocit components u u u z in z diections ae e e e z e = e e e z. 48 e z e z e zz These component ae given b e = e = 1 2 e = u u u e z = e z = 1 2 e = u e z = e z = 1 2 e zz = 49 u 50 u u z. 51 Note that e = e e z = e z and e z = e z since e is smmetic. 4.1.2 Clindical pola coodinates The e components fo velocit components u u u z in diections z ae These component ae given b e z = e z = 1 2 e = u e = 1 u e = e = 1 2 e e e z e e e z e z e z e zz u u e = 1 e z = e z = 1 2 u 1. 52 e zz = 53 u u z 54. 55 u Note that e z = e z e = e and e z = e z since e is smmetic. 10

4.1.3 Spheical pola coodinates The e components fo velocit components u u u in diections ae These component ae given b e = u e = e = 1 2 e = 1 e = e e e e e e e e e u u e = 1 sin 1 u u u e = e = 1 2 e = e = 1 2. 56 u u u 1 u sin u cot 57 u 58 1 u 1 u sin u cot. 59 Note that e = e e = e and e = e since e is smmetic. 4.2 Stess The total stess σ is given b whee p is pessue I = stess tenso. 1 0 0 0 1 0 0 0 1 σ = pi τ 60 is the unit mati and τ is the deviatoic 4.3 Constitutive elation Fo Newtonian incompessible fluids the constitutive elation fo τ is given b the following vecto fom epession τ = 2µe 61 whee µ is the dnamic viscosit and e is the ate of stain tenso see above. 4.4 Components of stess 4.4.1 Catesian coodinates The Catesian components of σ ae σ = σ σ σ z σ σ σ z σ z σ z σ zz. 62 11

These components ae given b σ = p τ = p 2µ u σ = p τ = p 2µ u σ zz = p τ zz = p 2µ u σ = σ = τ = τ = µ u u σ z = σ z = τ z = τ z = µ u z uz σ z = σ z = τ z = τ z = µ u. 63 4.4.2 Clindical pola coodinates The components of σ in clindical pola coodinates ae σ σ σ z σ = σ σ σ z. 64 σ z σ z σ zz These components ae σ = p τ = p 2µ u 1 σ = p τ = p 2µ u u σ zz = p τ zz = p 2µ σ = σ = τ = τ = µ u 1 u u σ z = σ z = τ z = τ z = µ 1 uz σ z = σ z = τ z = τ z = µ u 4.4.3 Spheical pola coodinates. 65 The components of σ in spheical pola coodinates ae σ σ σ σ = σ σ σ. 66 σ σ σ 12

These components ae σ = p τ = p 2µ u 1 u σ = p τ = p 2µ u 1 u σ = p τ = p 2µ sin u u cot σ = σ = τ = τ = µ u 1 u sin u σ = σ = τ = τ = µ sin 1 u sin 1 u σ = σ = τ = τ = µ sin u. 67 13

4.5 Voticit 4.5.1 Vecto fom The voticit is given b the following vecto fom epession 4.5.2 Catesian coodinates ω = u. 68 The ω = ω i ω i ω z i z components in catesian coodinates fo a velocit vecto u = u i u i u z i z ae uz ω = u u ω = u z u ω z = u. 69 4.5.3 Clindical pola coodinates The ω = ω i ω i ω z i z components in clindical pola coodinates fo a velocit vecto u = u i u i u z i z ae ω = 1 u ω = u ω z = 1 u 1 u. 70 4.5.4 Spheical pola coodinates The ω = ω i ω i ω i components in spheical pola coodinates fo a velocit vecto u = u i u i u i ae ω = 1 sin u sin u ω = 1 u sin 1 u 71 4.6 Rotation tenso ω = 1 u 1 u. 72 It is also useful to define the otation tenso Γ which has the following vecto fom epession Γ = 1 u u T. 73 2 It is possible to elate the Γ components to the ω components. We illustate this in Catesian coodinates Γ = Γ = 1 2 ω z Γ z = Γ z = 1 2 ω Γ z = Γ z = 1 2 ω. 74 Note that Γ is not smmetic unlike the ate of stain tenso e. 14

5 The Navie-Stokes equations fo an incompessible Newtonian fluid 5.1 Vecto fom u t u u = p g µ 2 u. 75 5.2 Catesian coodinates u t u u u u u u z u t u u u u u z uz t u u u z 5.3 Clindical coodinates = g p 2 µ u 2 2 u 2 2 u 2 u = g p 2 µ u 2 2 u 2 2 u 2 = g z p 2 µ u z 2 2 u z 2 2 u z 2 76 77. 78 u t u u 1 u u 1 u 2 u u z = g p 1 µ u 1 2 u 2 2 2 u 2 2 u 2 79 u t u u 1 u u 1 u u u u z = g 1 1 µ u 1 2 u 2 2 2 u 2 2 u 2 p 80 uz t u 1 u 1 µ u z 1 2 u z 2 2 2 u z 2 = g z p. 81 15

5.4 Spheical coodinates u t u u 1 u u 1 sin u u 1 2 2 u u = g p 1 µ 2 2 u 1 2 sin u sin 1 2 u µ 2 sin 2 2 2 u 2 2 cot 2 u 2 u 2 82 sin u t u u 1 u 1 µ 2 2 u 1 2 u µ 2 sin 2 2 u 1 1 2 sin sin u u 1 u u cot sin u 2 2 u 1 2 sin 2 u 2 cos 2 sin 2 u 2 = g 1 p u 83 u t u u 1 u u = g 1 sin µ 1 2 sin 2 p µ 1 sin u u 1 u u cot u u 1 2 2 u 1 2 sin u sin 2 u 2 1 2 sin 2 u 2 u 2 sin 2 cos 2 sin 2 u. 84 16

6 Renolds-aveaged Navie-Stokes equations 6.1 Catesian coodinates u u u t u u u u u z u u u t u u u u u z u u uz t u u u z u z u u = g p u u u u z u = g p u u u u z = g z p u z u u z u z = 0. 85 2 µ u 2 2 u 2 2 u 2 86 2 µ u 2 2 u 2 2 u 2 87 2 µ u z 2 2 u z 2 2 u z 2. 88 17

6.2 Clindical coodinates 1 u 1 u = 0 89 u t u u 1 u u 1 u 2 u u z = g p 1 µ u 1 2 u 2 2 2 u 2 2 u 2 u u u u u z u 1 u u 90 u t u u 1 u u 1 u u u u z = g 1 1 µ u 1 2 u 2 2 2 u 2 2 u 2 u u u u u zu p 2 u u 91 uz t u 1 u 1 µ u u z u z 1 2 u z 2 2 u u z = g z p 2 u z 2 u z u z. 92 18

6.3 Spheical coodinates 1 2 1 2 u sin sin u 1 u sin = 0 93 u t u u 1 u u 1 sin u u 1 2 2 u u = g p 1 µ 2 2 u 1 2 sin u sin 1 2 u µ 2 sin 2 2 2 u 2 2 cot 2 u 2 u 2 sin 2 2 u u sin u sin u u sin u 1 u u 1 u u 94 u t u u 1 u u 1 sin u u 1 u u cot 1 µ 2 2 u 1 2 sin u sin 1 2 u µ 2 sin 2 2 2 u 2 1 2 sin 2 u 2 cos u 2 sin 2 3 3 u u sin u sin u u sin u u 2 = g 1 p cot u u 95 u t u u 1 u u = g 1 sin 1 µ 3 sin p µ 2 u 2 sin 2 2 1 2 sin 2 u 3 u u sin 1 sin u u 1 u u cot u u 1 2 2 u 1 2 sin u sin 2 u 2 sin sin u u 2 cos 2 sin 2 u u u cot u u. 96 19