Wavelet based matrix compression for boundary integral equations on complex geometries

Σχετικά έγγραφα
Partial Differential Equations in Biology The boundary element method. March 26, 2013

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Numerical Analysis FMN011

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Srednicki Chapter 55

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Abstract Storage Devices

Approximation of dynamic boundary condition: The Allen Cahn equation

Α Ρ Ι Θ Μ Ο Σ : 6.913

Space-Time Symmetries

Reminders: linear functions

Quick algorithm f or computing core attribute

New Adaptive Projection Technique for Krylov Subspace Method

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Concrete Mathematics Exercises from 30 September 2016

PRESENTATION TITLE PRESENTATION SUBTITLE

Hartree-Fock Theory. Solving electronic structure problem on computers

GMRES(m) , GMRES, , GMRES(m), Look-Back GMRES(m). Ax = b, A C n n, x, b C n (1) Krylov.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

High order interpolation function for surface contact problem

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation

ADVANCED STRUCTURAL MECHANICS

Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου

Discretization of Generalized Convection-Diffusion

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Lecture 2. Soundness and completeness of propositional logic

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Minimum Spanning Tree: Prim's Algorithm

3+1 Splitting of the Generalized Harmonic Equations

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ

The wave equation in elastodynamic

6.3 Forecasting ARMA processes

Approximation of distance between locations on earth given by latitude and longitude

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Jordan Form of a Square Matrix

Computing the Macdonald function for complex orders

Spherical Coordinates

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Nondifferentiable Convex Functions

The Jordan Form of Complex Tridiagonal Matrices

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Variational Wavefunction for the Helium Atom

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

Eulerian Simulation of Large Deformations

!, " # 0 1! "#$ %$ &$ "$$'() '*+'$$ !, -''($'.$+/

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

LTL to Buchi. Overview. Buchi Model Checking LTL Translating LTL into Buchi. Ralf Huuck. Buchi Automata. Example

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

The Pohozaev identity for the fractional Laplacian

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

EE512: Error Control Coding

Uniform Convergence of Fourier Series Michael Taylor

BiCG CGS BiCGStab BiCG CGS 5),6) BiCGStab M Minimum esidual part CGS BiCGStab BiCGStab 2 PBiCG PCGS α β 3 BiCGStab PBiCGStab PBiCG 4 PBiCGStab 5 2. Bi

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Tutorial on Multinomial Logistic Regression

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation


Example Sheet 3 Solutions

Modelli Matematici. Gianni Gilardi. Cortona, giugno Transizione di fase solido solido in un sistema meccanico

Additional Results for the Pareto/NBD Model

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Fundamentals of Signals, Systems and Filtering

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Product Identities for Theta Functions

ΚΩΝΣΤΑΝΤΙΝΟΣ Σ. ΠΟΛΙΤΗΣ Διπλ. Φυσικός Πανεπιστημίου Πατρών Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

Outline. Detection Theory. Background. Background (Cont.)

Εθνικό Μετσόβιο Πολυτεχνείο. Τµήµα Πολιτικών Μηχανικών. Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Elements of Information Theory

Lecture 13 - Root Space Decomposition II

Areas and Lengths in Polar Coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

( ) 2 and compare to M.

Homework 3 Solutions

Models for Probabilistic Programs with an Adversary

d 2 u(t) dt 2 = u 16.4 ε(u) = 0 u(x,y) =?

Contents QR Decomposition: An Annotated Bibliography Introduction to Adaptive Filters

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Transcript:

1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications (Hirschegg) 16.10.2003

2 Overview Motivation - presentation of problem

2 Overview Motivation - presentation of problem Wavelet basis - stiffness matrix

2 Overview Motivation - presentation of problem Wavelet basis - stiffness matrix Wavelet construction

2 Overview Motivation - presentation of problem Wavelet basis - stiffness matrix Wavelet construction Computation of the stiffness matrix

2 Overview Motivation - presentation of problem Wavelet basis - stiffness matrix Wavelet construction Computation of the stiffness matrix Numerical results

3 Preliminaries Aρ = f on Γ = Ω R 2 A : H q (Γ) H q (Γ) (Aρ)(x) = k(x, y)ρ(y) Γ y Γ

4 single layer potential: q = 1 2, A = K K = 1 log y x ρ(y) Γ y 2π double layer potential: q = 0, A = 1 2 + K K = 1 2π Γ Γ n(y), y x y x 2 ρ(y) Γ y

5 Galerkin scheme Variational formulation: find ρ H q (Γ) : (Aρ, v) L 2 (Γ) = (f, v) L 2 (Γ) v H q (Γ) V N = span{φ 1,..., φ N } H q (Γ) A Φ ρ Φ = f Φ

6 Geometry Γ N - polygonial approximations of the surface Γ finest level is fixed diam(ω) < 1

7 ansatzfunctions: φ i (x) = 1 Γ i Γ, for x Γ i, 0, else

7 ansatzfunctions: φ i (x) = 1 Γ i Γ, for x Γ i, 0, else φ i (x(s)) = 13 s Γ i 1 Γ+ 1 3 1 s 13 Γ Γ+ 1 i 1 3 Γ i Γ for x(s) Γ i 1, Γ i Γ for x(s) Γ i, 0 else

8 Motivation - presentation of problem classical single scale method

8 Motivation - presentation of problem classical single scale method advantages: reduction of the space dimension good convergence rates

8 Motivation - presentation of problem classical single scale method advantages: reduction of the space dimension good convergence rates disadvantages: densly populated stiffness matrix expensive quadrature rules

8 Motivation - presentation of problem classical single scale method advantages: reduction of the space dimension good convergence rates disadvantages: densly populated stiffness matrix expensive quadrature rules

Objectives 9

9 Objectives sparse stiffness matrix

9 Objectives sparse stiffness matrix low complexity of solving

Wavelet basis - stiffness matrix 10

10 Wavelet basis - stiffness matrix hierarchical wavelets:

10 Wavelet basis - stiffness matrix hierarchical wavelets: hierarchical structure

10 Wavelet basis - stiffness matrix hierarchical wavelets: hierarchical structure ψ i := N k=1 ω i,kφ k, ω i1 ω i2 = δ i1 i 2

10 Wavelet basis - stiffness matrix hierarchical wavelets: hierarchical structure ψ i := N k=1 ω i,kφ k, ω i1 ω i2 = δ i1 i 2 (ψ i, x α ) = 0, α < d ( x α = x α 1 1 xα 2 2 )

10 Wavelet basis - stiffness matrix hierarchical wavelets: hierarchical structure ψ i := N k=1 ω i,kφ k, ω i1 ω i2 = δ i1 i 2 (ψ i, x α ) = 0, α < d ( x α = x α 1 1 xα 2 2 ) Dahmen-Prößdorf-Schneider/ von Petersdorff-Schwab: A ψ is a quasi sparse matrix with O(N log(n)) entries.

11 idea: = Γ k(x, y)ψ k (x)ψ k (y) Γ x Γ y Γ (D α+β k)(x 0, y 0 ) (α,β) N 2 0 N 2 0 Γ ψ k(x)(x x 0 ) α Γ x α! Γ ψ k (y)(y y 0) β Γ y β!

11 idea: = Γ k(x, y)ψ k (x)ψ k (y) Γ x Γ y Γ (D α+β k)(x 0, y 0 ) (α,β) N 2 0 N 2 0 Γ ψ k(x)(x x 0 ) α Γ x α! D α+β k(x 0, y 0 ) ( 1 C x 0 y 0 Γ ψ k (y)(y y 0) β Γ y β! ) α+β+1 2q

Wavelet construction 12

12 Wavelet construction hierarchical structure coarsening cluster tree

12 Wavelet construction hierarchical structure coarsening cluster tree [ ] [ ] Φ ν,j 1 V ν,j 1 Ψ ν,j 1 0 = V ν,j 1 Φ ν,j 0

13 Let M ν,j 1 be the moment matrix of the cluster ν from level j 1 [ ] M ν,j 1 = x α Φ ν,j dx Γ α < d

13 Let M ν,j 1 be the moment matrix of the cluster ν from level j 1 [ ] M ν,j 1 = x α Φ ν,j dx Γ α < d SV D M ν,j 1 = UΣV = U [S, 0] [ V ν,j 1 0 V ν,j 1 0 ]

13 Let M ν,j 1 be the moment matrix of the cluster ν from level j 1 [ ] M ν,j 1 = x α Φ ν,j dx Γ α < d SV D M ν,j 1 = UΣV = U [S, 0] [ V ν,j 1 0 V ν,j 1 0 ] constant/linear ansatzfunctions Ψ is orthonormal/ Riesz-basis.

14 complexity of computing cluster tree and wavelets: O(N)

15 Computation of the stiffness matrix transformation matrix Ω Ψ,Φ := (ω i,k ) N i,k=1

15 Computation of the stiffness matrix transformation matrix Ω Ψ,Φ := (ω i,k ) N i,k=1 A Ψ ρ Ψ = Ω Ψ,Φ A Φ Ω Ψ,Φ Ω Ψ,Φ ρ Φ = Ω Ψ,Φ (f, φ i ) N i=1 = f Ψ

15 Computation of the stiffness matrix transformation matrix Ω Ψ,Φ := (ω i,k ) N i,k=1 A Ψ ρ Ψ = Ω Ψ,Φ A Φ Ω Ψ,Φ Ω Ψ,Φ ρ Φ = Ω Ψ,Φ (f, φ i ) N i=1 = f Ψ calculation of f Ψ in O(N) possible

16 Ω Ψ,Φ = ψ ν2 1 0 0 0 ψ ν1 1 0 ψ ν0 1 0 ψ ν2 2 0 0. 0. 0 0 ψ ν2 3 0 0 ψ ν1 2. 0 0 0 ψ ν2 4 0..

16 Ω Ψ,Φ = ψ ν2 1 0 0 0 ψ ν1 1 0 ψ ν0 1 0 ψ ν2 2 0 0. 0. 0 0 ψ ν2 3 0 0 ψ ν1 2. 0 0 0 ψ ν2 4 0.. ψ ν2 1 ψ ν1 1 ψ ν0 1 ψ ν2 2.. ψ ν2 3 ψ ν1 2. ψ ν2 4..

16 Ω Ψ,Φ = ψ ν2 1 0 0 0 ψ ν1 1 0 ψ ν0 1 0 ψ ν2 2 0 0. 0. 0 0 ψ ν2 3 0 0 ψ ν1 2. 0 0 0 ψ ν2 4 0.. O(log(N)) columns ψ ν2 1 ψ ν1 1 ψ ν0 1 ψ ν2 2.. ψ ν2 3 ψ ν1 2. ψ ν2 4..

17 Using multipole method the multipole method

17 Using multipole method the multipole method iterative solving of A Φ ρ Φ = f Φ

17 Using multipole method the multipole method iterative solving of A Φ ρ Φ = f Φ fast matrix-vector product

17 Using multipole method the multipole method iterative solving of A Φ ρ Φ = f Φ fast matrix-vector product expansion of kernel

17 Using multipole method the multipole method iterative solving of A Φ ρ Φ = f Φ fast matrix-vector product expansion of kernel k(x, y) = (D α+β k)(x 0, y 0 ) (α,β) N 2 0 N 2 0 (x x 0 ) α (y y 0 ) β α! β!

low rank approximation of parts of A Φ 18

18 low rank approximation of parts of A Φ (A Φ i,j) i I,j J XkY

18 low rank approximation of parts of A Φ subdivision of A Φ (A Φ i,j) i I,j J XkY

18 low rank approximation of parts of A Φ subdivision of A Φ hierarchical matrix (A Φ i,j) i I,j J XkY

18 low rank approximation of parts of A Φ (A Φ i,j) i I,j J XkY subdivision of A Φ hierarchical matrix cluster-cluster interactions possible

18 low rank approximation of parts of A Φ (A Φ i,j) i I,j J XkY subdivision of A Φ hierarchical matrix cluster-cluster interactions possible complexity of a matrix-vector product: O(N log 2 (N))

18 low rank approximation of parts of A Φ (A Φ i,j) i I,j J XkY subdivision of A Φ hierarchical matrix cluster-cluster interactions possible complexity of a matrix-vector product: O(N log 2 (N))

application on wavelets 19

19 application on wavelets using fast matrix-vector products on ψ ν2 1 ψ ν1 1 ψ ν0 1 ψ ν2 2.. ψ ν2 3 ψ ν1 2. ψ ν2 4..

19 application on wavelets using fast matrix-vector products on ψ ν2 1 ψ ν1 1 ψ ν0 1 ψ ν2 2.. ψ ν2 3 ψ ν1 2. ψ ν2 4.. complexity of computing A Ψ : O(N log 3 (N))

19 application on wavelets using fast matrix-vector products on ψ ν2 1 ψ ν1 1 ψ ν0 1 ψ ν2 2.. ψ ν2 3 ψ ν1 2. ψ ν2 4.. complexity of computing A Ψ : O(N log 3 (N))

H.Harbecht: Error estimates for entries of A Ψ 20

Numerical results 21

Future research 22

22 Future research application to the 3D-case

22 Future research application to the 3D-case improved combination of multipole and wavelets