ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

Σχετικά έγγραφα
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤ.&ΤΕΧΝΟΛ. ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (3/6/04)

ιαγώνισµα στη Φυσική Κατεύθυνσης Γ Λυκείου

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ÈÅÌÅËÉÏ

Προτεινόμενα θέματα για τις εξετάσεις 2011

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

Για τις παρακάτω ερωτήσεις 2-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό των ερωτήσεων και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ

Θέµα 1 ο Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5o ΔΙΑΓΩΝΙΣΜΑ ΔΙΑΓΩΝΙΣΜΑ - ΘΕΜΑΤΑ

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: , /

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

Φυσική Ο.Π. Γ Λυκείου

ΔΙΑΓΩΝΙΣΜΑ ΤΕΛΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014 ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΟΛΟΣΙΩΝΗΣ ΔΗΜΗΤΡΗΣ

ΟΕΦΕ 2009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012

ÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ

Α4. α. β. Μονάδες 5 Α5. Σωστό Λανθασμένο Σωστό Λάθος Μονάδες 5

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2011

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 29 ΜΑΪOY 2015 ΕΚΦΩΝΗΣΕΙΣ

Γκύζη 14-Αθήνα Τηλ :

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2010

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ

Μονάδες 5 Μονάδες 5 5. β. γ. δ.

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ 1ο. α. f. β. f. γ. f. δ. f. Μονάδες 5

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

2. Σε κύκλωμα αμείωτων ηλεκτρικών ταλαντώσεων LC α. η ενέργεια του ηλεκτρικού πεδίου δίνεται από τη σχέση U E = 2

A4. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΡΙΛΙΟΣ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2008

Γκύζη 14-Αθήνα Τηλ :

ΘΕΜΑ Α : α V/m β V/m γ V/m δ V/m

Α3. Ιδανικό κύκλωμα LC εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις συχνότητας f. (Μονάδες 5)

Θ'εματα Γ Λυκείου. ΘΕΜΑ 1 ο

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Α3. Σε κύκλωμα LC που εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις η ολική ενέργεια είναι α. ανάλογη του φορτίου του πυκνωτή

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 25 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η. ΠΑΓΚΡΑΤΙ : Χρ. Σµύρνης 3, Πλ. Νέου Παγκρατίου τηλ:210/ /

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2006

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ 2013 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ 1 ο. Φροντιστήριο «ΕΠΙΛΟΓΗ» Ιατροπούλου 12 & σιδ. Σταθμού - Καλαμάτα τηλ.: & 96390

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m 2. Οι ταχύτητες υ και υ των σφαιρών μετά την κρούση

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

A1. 5 A2. 5 A3. 5 A4. 5

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

Θέµατα Πανελληνίων Φυσικής Κατ ο Κεφάλαιο (µέχρι και Στάσιµα)

ΘΕΜΑ 1o. , τότε η ένταση του ρεύµατος στο κύκλωµα γίνεται µέγιστη τη χρονική στιγµή: T t= γ. 4. T 2 Μονάδες 5

t 0 = 0: α. 2 m β. 1 m

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

α. n 1 > n 2 β. n 2 > n 1. γ. n 1 = n 2 δ. n 2 = 2n 1. β. 2u cm.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες

r r r r r r r r r r r

ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ

ΘΕΜΑ 1ο. είναι: β.. δ.. γ.. α..

ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΓΡΑΠΤΕΣ ΔΟΚΙΜΑΣΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ 2009

Θέµα 1 ο Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Επαναληπτικό διαγώνισµα στα Κύµατα

Διαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ

Transcript:

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ιδανικό κύκλωµα ηλεκτρικών ταλαντώσεων LC στη διάρκεια µιας περιόδου η ενέργεια του ηλεκτρικού πεδίου του πυκνωτή γίνεται ίση µε την ενέργεια του µαγνητικού πεδίου του πηνίου: α. µία φορά. β. δύο φορές. γ. τέσσερις φορές. δ. έξι φορές. Μονάδες. Τα ηλεκτροµαγνητικά κύµατα: α. είναι διαµήκη. β. υπακούουν στην αρχή της επαλληλίας. γ. διαδίδονται σε όλα τα µέσα µε την ίδια ταχύτητα. δ. δηµιουργούνται από σταθερό µαγνητικό και ηλεκτρικό πεδίο. Μονάδες 3. Σε µια εξαναγκασµένη ταλάντωση η συχνότητα του διεγέρτη είναι µικρότερη από την ιδιοσυχνότητα του ταλαντωτή. Αυξάνουµε συνεχώς τη συχνότητα του διεγέρτη. Το πλάτος της εξαναγκασµένης ταλάντωσης θα: α. αυξάνεται συνεχώς. β. µειώνεται συνεχώς. γ. µένει σταθερό. δ. αυξάνεται αρχικά και µετά θα µειώνεται. Μονάδες 4. Σώµα συµµετέχει ταυτόχρονα σε δύο απλές αρµονικές ταλαντώσεις που περιγράφονται από τις σχέσεις x Αηµω t και x ηµω t, των οποίων οι συχνότητες ω και ω διαφέρουν λίγο µεταξύ τους. Η συνισταµένη ταλάντωση έχει: α. συχνότητα (ω -ω ). β. συχνότητα ω +ω. γ. πλάτος που µεταβάλλεται µεταξύ των τιµών µηδέν και Α. δ. πλάτος που µεταβάλλεται µεταξύ των τιµών µηδέν και Α. Μονάδες Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας το γράµµα κάθε πρότασης και δίπλα σε κάθε γράµµα τη λέξη Σωστό για τη σωστή πρόταση και τη λέξη Λάθος για τη λανθασµένη.. α. Η ροπή αδράνειας εκφράζει την αδράνεια στη µεταφορική κίνηση. β. Σε µια εξαναγκασµένη ταλάντωση το πλάτος παραµένει σταθερό µε το χρόνο. γ. Με τα στάσιµα κύµατα µεταφέρεται ενέργεια από το ένα σηµείο του µέσου σε άλλο σηµείο του ιδίου µέσου. δ. Έκκεντρη ονοµάζεται η κρούση στην οποία οι ταχύτητες των κέντρων µάζας των σωµάτων που συγκρούονται είναι παράλληλες. ε. Το αποτέλεσµα της συµβολής δύο όµοιων κυµάτων στην επιφάνεια υγρού είναι ότι όλα τα σηµεία της επιφάνειας είτε παραµένουν διαρκώς ακίνητα είτε ταλαντώνονται µε µέγιστο πλάτος. Μονάδες Τεχνική Επεξεργασία: Keystne

Απάντηση:. γ. β 3. δ 4. γ. α. Λ β. Σ γ. Λ δ. Σ ε. Λ ΘΕΜΑ ο Για τις παρακάτω ερωτήσεις να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Μια µικρή σφαίρα µάζας συγκρούεται µετωπικά και ελαστικά µε ακίνητη µικρή σφαίρα µάζας. Μετά την κρούση οι σφαίρες κινούνται µε αντίθετες ταχύτητες ίσων µέτρων. Ο λόγος των µαζών των δύο σφαιρών είναι: α. β. /3 γ. / Μονάδες Μονάδες 4. Μονοχρωµατική ακτινοβολία που διαδίδεται στο γυαλί προσπίπτει στη διαχωριστική επιφάνεια του γυαλιού µε τον αέρα, µε γωνία πρόσπτωσης θ α 3 τέτοια ώστε ηµθ α. Ο δείκτης διάθλασης του γυαλιού είναι n α. Η ακτινοβολία θα: α. διαθλαστεί και θα εξέλθει στον αέρα. β. κινηθεί παράλληλα προς τη διαχωριστική επιφάνεια. γ. ανακλαστεί ολικά από τη διαχωριστική επιφάνεια. Μονάδες Μονάδες 4 3. Ένας παρατηρητής κινείται µε σταθερή ταχύτητα υ Α προς ακίνητη σηµειακή ηχητική πηγή. Οι συχνότητες που αντιλαµβάνεται ο παρατηρητής, πριν και f s αφού διέλθει από την ηχητική πηγή, διαφέρουν µεταξύ τους κατά, όπου fs η συχνότητα του ήχου που εκπέµπει η ηχητική πηγή. Αν υ η ταχύτητα υ διάδοσης του ήχου στον αέρα, ο λόγος είναι ίσος µε: υ α. β. / γ. / Μονάδες Μονάδες Τεχνική Επεξεργασία: Keystne

4. ύο σώµατα Σ και Σ µε ίσες µάζες ισορροπούν κρεµασµένα από κατακόρυφα ιδανικά ελατήρια µε σταθερές k και k αντίστοιχα, που συνδέονται µε τη σχέση k k. Αποµακρύνουµε τα σώµατα Σ και Σ από τη θέση ισορροπίας τους κατακόρυφα προς τα κάτω κατά x και x αντίστοιχα και τα αφήνουµε ελεύθερα την ίδια χρονική στιγµή, οπότε εκτελούν απλή αρµονική ταλάντωση. Τα σώµατα διέρχονται για πρώτη φορά από τη θέση ισορροπίας τους: α. ταυτόχρονα. β. σε διαφορετικές χρονικές στιγµές µε πρώτο το Σ. γ. σε διαφορετικές χρονικές στιγµές µε πρώτο το Σ. Μονάδες Μονάδες 4 Απάντηση:. Σωστή η (β) ' + ' +. Σωστή η (γ) επειδή διαιρώντας κατά µέλη τις δύο σχέσεις και επειδή ισχύει - έχουµε: + + + 3 n aηµθορ ηµθορ ηµθορ, n έχουµε θ ορ 4 ενώ 3 ηµθ α θ α 6 a Ο 3 Άρα µεγαλύτερη από την κρίσιµη γωνία και γι αυτό θα έχουµε ολική ανάκλαση. 3. Σωστή η (γ) + f f fs f S αφαιρώντας κατά µέλη τις δύο σχέσεις και επειδή ισχύει f S f f έχουµε: + f S fs Τεχνική Επεξεργασία: Keystne 3

4. Σωστή η (γ) Επειδή π και κ < π π έχουµε: κ κ πρώτο θα περάσει το σώµα Σ από τη θέση ισορροπίας. ΘΕΜΑ 3ο Ένα τεντωµένο οριζόντιο σχοινί ΟΑ µήκους L εκτείνεται κατά τη διεύθυνση του άξονα x. Το άκρο του Α είναι στερεωµένο ακλόνητα στη θέση xl, ενώ το άκρο Ο που βρίσκεται στη θέση x είναι ελεύθερο, έτσι ώστε µε κατάλληλη διαδικασία να δηµιουργείται στάσιµο κύµα µε συνολικά κοιλίες. Στη θέση x εµφανίζεται κοιλία και το σηµείο του µέσου στη θέση αυτή εκτελεί απλή αρµονική ταλάντωση. Τη χρονική στιγµή t το σηµείο x βρίσκεται στη θέση µηδενικής αποµάκρυνσης κινούµενο κατά τη θετική φορά. Η απόσταση των ακραίων θέσεων της ταλάντωσης αυτού του σηµείου του µέσου είναι,. Το συγκεκριµένο σηµείο διέρχεται από τη θέση ισορροπίας του φορές κάθε δευτερόλεπτο και απέχει κατά τον άξονα x απόσταση, από τον πλησιέστερο δεσµό. α. Να υπολογίσετε την περίοδο του κύµατος. β. Να υπολογίσετε το µήκος L. γ. Να γράψετε την εξίσωση του στάσιµου κύµατος. δ. Να υπολογίσετε το µέτρο της ταχύτητας της ταλάντωσης του σηµείου του µέσου x κατά τη χρονική στιγµή που η αποµάκρυνσή του από τη θέση ισορροπίας έχει τιµή y +,3. Μονάδες 7 ίνεται π 3,4. Απάντηση: α. Το σηµείο που βρίσκεται στη θέση x διέρχεται φορές ανά sec από τη Θ.Ι. Επειδή σε κάθε ταλάντωση διέρχεται φορές από τη Θ.Ι. συµπεραίνουµε ότι εκτελεί ταλαντώσεις ανά sec, δηλ. f Hz Άρα, sec f β. L 4 λ λ 9λ + L L, 9 4 4 λ γ. Α, Α, και, λ,4 4 πx πt y συν ηµ λ πx πt y, συν ηµ y, συνπx ηµπt στο S.I.,4, Τεχνική Επεξεργασία: Keystne 4

δ. Για την ταλάντωση υλικού σηµείου ισχύει: E ΤΑΛ + K D Dy + ω Α ω y + ω Α y για το σηµείο x Α, άρα,4 π /s. ΘΕΜΑ 4ο Συµπαγής και οµογενής σφαίρα µάζας kg και ακτίνας R, κυλίεται ευθύγραµµα χωρίς ολίσθηση ανερχόµενη κατά µήκος κεκλιµένου επιπέδου γωνίας φ µε ηµφ,6. Τη χρονική στιγµή t το κέντρο µάζας της σφαίρας έχει ταχύτητα µε µέτρο υ 8/s. Να υπολογίσετε για τη σφαίρα: α. το µέτρο της γωνιακής ταχύτητας περιστροφής της τη χρονική στιγµή t. β. το µέτρο της επιτάχυνσης του κέντρου µάζας της. γ. το µέτρο του ρυθµού µεταβολής της στροφορµής κατά τη διάρκεια της κίνησής της. δ. το µέτρο της ταχύτητας του κέντρου µάζας της καθώς ανεβαίνει, τη στιγµή που έχει διαγράψει 3/π περιστροφές. Μονάδες 7 ίνονται: η ροπή αδράνειας της σφαίρας περί άξονα διερχόµενο από το κέντρο της: Ι R και η επιτάχυνση της βαρύτητας: g/s. Απάντηση: kg R, Ηµερ,6 8/s I/ R Αφού η σφαίρα εκτελεί οµαλά επιβραδυνόµενη στροφική κίνηση η ροπή της στατικής τριβής Τ θα αντιστέκεται στη περιστροφή της σφαίρας άρα η κατεύθυνση της θα είναι προς τα πάνω. Τεχνική Επεξεργασία: Keystne

8 α. ω R ω ω ω 8rad / s R, β. Εφαρµόζουµε τον θεµελιώδη νόµο της Μηχανικής για την µεταφορική και περιστροφική κίνηση της σφαίρας στον άξονα κίνησης ΣF a W a gηµφ a () x x Στ Ιa R R a R R R Ra a () a R Αντικαθιστώ την () στην (): () a gηµφ a 7 7 gηµφ + gηµφ a a gηµθ a 7 a 4/ s γ. Στ Τ R (3) Από την () έχω: a 4 6N Άρα η (3) γίνεται: R 6,,6 kg / s δ. Βρίσκω την κινητική ενέργεια της σφαίρας K Κ µετ + Κπερ Κ + Iω Κ + Rω Κ + 7 K (4) Η σφαίρα διανύει διάστηµα 3 S N π R S π, S 6 π Εφαρµόζουµε θεώρηµα έργου ενέργειας για τη σφαίρα: Κ ΣW Κ Κ W + W + W + W τελ αρχ (4) 7 7 gηµφs 7 7 gηµφs Wx Wy N Τεχνική Επεξεργασία: Keystne 6

7 gηµφs 7 7 gηµφs 7 64,6 6 7 64 48 6 4/ s Σηµείωση: το δ) ερώτηµα επιδέχεται και άλλη λύση. Από το γεγονός ότι η σφαίρα κάνει οµαλά επιβραδυνόµενη στροφική κίνηση θα ισχύει για κάθε θέση ότι 3 ω ωο a φ ω 8 4 α α ω 8 8 6 ω 8 ω Άρα ωr 4, 4 /s 4rad / s Τεχνική Επεξεργασία: Keystne 7