MECHANICAL PROPERTIES OF MATERIALS

Σχετικά έγγραφα
(Mechanical Properties)

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Chapter 7 Transformations of Stress and Strain

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Strain gauge and rosettes

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

Grey Cast Irons. Technical Data

CONSULTING Engineering Calculation Sheet

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

TEST REPORT Nο. R Έκθεση Ελέγχου α/α

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

the total number of electrons passing through the lamp.

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

θ p = deg ε n = με ε t = με γ nt = μrad

Aluminum Electrolytic Capacitors

Chapter 10: Failure. Titanic on April 15, 1912 ISSUES TO ADDRESS. Failure Modes:

Accu-Guard II. SMD Thin-Film Fuse ELECTRICAL SPECIFICATIONS

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit

Aluminum Electrolytic Capacitors (Large Can Type)

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

Exercises in Electromagnetic Field

Homework 8 Model Solution Section

Consolidated Drained

[1] P Q. Fig. 3.1


ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

PRB. Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

5.0 DESIGN CALCULATIONS

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1.

Μηχανικές & Θερµικές Ιδιότητες Υλικών

Second Order RLC Filters

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Chapter 8: Mechanical Properties of Metals

Το σχέδιο της μέσης τομής πλοίου

Answers to practice exercises

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΙΙ

The logic of the Mechanics of Materials

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ADVANCED STRUCTURAL MECHANICS

Contents. Preface... xv Acknowledgments... xix About the Authors... xxi Nomenclature... xxiii

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Section 9.2 Polar Equations and Graphs

Pipe E235N (St 37.4 NBK) phosphated and oiled

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Cross sectional area, square inches or square millimeters

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Capacitors - Capacitance, Charge and Potential Difference

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

Thick Film Array Chip Resistor

ST5224: Advanced Statistical Theory II

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

NTC Thermistor:TTC3 Series

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE

RoHS 555 Pb Chip Ferrite Inductor (MFI Series) Engineering Spec.

σ zz Stresses in 3-D σ yy τ yx σ xx z τ zy τ zx τ yz τ xz τ xy

Themistoklis Tsalkatidis Lecturer Democritus University of Thrace Xanthi, Greece

CONTENTS. Examples of Ultimate Limit states. 1. SECT.-001, ULTIMATE LIMIT STATE, Tension Structural design Structural Fire design

Surface Mount Aluminum Electrolytic Capacitors

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Fundamentals of Metal Forming. 1. Overview 2. Material Behavior 3. Temperature Effects 4. Strain Rate Effect 5. Friction and Lubrication

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram.

Thin Film Chip Resistors

Spherical Coordinates

PhysicsAndMathsTutor.com 1

Lecture 8 Plane Strain and Measurement of Strain

Metal Oxide Leaded Film Resistor

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

ΑΝΤΙΣΕΙΣΜΙΚΗ ΤΕΧΝΟΛΟΓΙΑ

Α ιθ EL. 3. Κα ασ ασ ής: fischerwerke GmbH & Co. KG, Klaus-Fischer-Straße 1, Waldachtal, α ία. Tumlingen,

Design Method of Ball Mill by Discrete Element Method

Trimmable Thick Film Chip Resistor

Fixed Inductors / AL TYPE

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Current Sense Metal Strip Resistors (CSMS Series)

Shenzhen Lys Technology Co., Ltd

RJJ Miniature Aluminum Electrolytic Capacitors RJJ. Series RJJ High-Frequency, Low Impedance, Standard Type. Radial Type

MasterSeries MasterPort Lite Sample Output

( ) 2 and compare to M.

Transcript:

MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain Diagram! Failure of Materials Due to Creep and Fatigue 1

Stress Strain Relationship d 0 P P L 0 σ (MPa) 400 350 300 250 200 150 100 50 0 (mm/mm) 0.00 0.10 0.20 0.30 0.40 Upper scale 0.0000 0.0010 0.0020 0.0030 0.0040 Lower scale 2

The Stress-Strain Diagram σ true fracture stress σ f σ u σ f σ Y pl proportional limit elastic limit yield stress ultimate stress fracture stress elastic region yielding strain hardening necking elastic behavior plastic behavior 3

Offset Yield Stress σ (MPa) 300 250 200 150 σ Y 100 50 0 (mm/mm) 0.005 0.010 0.002 (0.2% offset) Offset yield strength for material with no yield points 4

σ P A 0 δ L 0 P σ (MPa) 400 σ u 390 MPa (σ y ) u 230 MPa 350 300 250 σ fail 295 MPa d 0 L 0 (σ y ) l 220 MPa 200 150 σ pl 200 MPa 100 200 E 200x10 3 MPa 200 GPa 50 0.001 0 (mm/mm) 0.00 0.10 0.20 0.30 0.40 Upper scale P 0.0000 0.0010 0.0020 0.0030 0.0040 Lower scale 5

σ (MPa) 400 σ u 360 MPa 350 300 σ fail 310 MPa 250 200 σ y 250 MPa 150 σ pl 180 MPa 100 50 0 (mm/mm) 0.00 0.10 0.20 0.30 0.40 Upper scale 0.0000 0.0010 0.0020 0.0030 0.0040 Lower scale E 100 0.0005 200x10 3 MPa 200 GPa 6

Stress-Strain Behavior of Ductile and Brittle Materials σ (MPa) Brittle material 400 Ductile material 300 200 100 0.02 0.04 0.06 (mm/mm) σ diagrams for a methacrylate plastic 7

Elongation Percent Percent reduction elongation of area L A f 0 L 0 A 0 L A 0 f (100%) (100%) 8

Temperature Effects: σ (MPa) 10 o C 400 300 200 100 40 o C Brittle to Ductile 70 o C Ductile to Brittle 0.02 0.04 0.06 (mm/mm) σ diagrams for a methacrylate plastic 9

Hooke s Law σ σ pl σ E pl pl pl Constant 10

Elastic and Plastic Behavior of Materials - Apply load to failure σ EL 1 Failure PL 11

- Apply and release load σ EL 1 PL (a) Load is less than proportional limit σ 2 1 EL PL 2 (b) Load is more than proportional limit, but less than elastic limit 12

σ PL EL 1 3 2 (c) Load is more than elastic limit, and reaply σ PL EL 3 1 2 4 Mechanical hysteresis (d) Repeated load is more than elastic limit loading 13

- Comparison σ 1 O σ Apply load once PL EL 3 1 mechanical hysteresis 2 4 Repeated loading n times 14

elastic region σ plastic region σ elastic region plastic region A B A O load E A O E unload O mechanical hysteresis permanent set elastic recovery 15

Strain Energy Modulus of Resilience Modulus of Toughness σ σ σ pl u t u r pl Modulus of resilience u r Modulus of toughness u t u r 2 1 pl 1 σ pl σ pl 2 2 E 16

Modulus of Resilience σ (MPa) 400 350 300 250 200 150 σ pl 180 MPa 100 Modulus of resiliency 50 0 (mm/mm) 0.00 0.10 0.20 0.30 0.40 Upper scale 0.0000 0.0010 0.0020 0.0030 0.0040 Lower scale Modulus of resiliency (u r ) Area under curve @ proportional limit u r (1/2)(0.001)(180 MPa) 90 kpa 90 kn/m 2 90 kn m/m 3 90 kj/m 3 Energy per unit volume (90 kn/m 2 )(1 m 3 ) 90 kn m 90 kj 17

σ (MPa) 400 350 300 250 200 EL 1 3 150 100 Modulus of hyper-resiliency 50 0 2 (mm/mm) 0.00 0.10 0.20 0.30 0.40 Upper scale 0.0000 0.0010 0.0020 0.0030 0.0040 Lower scale 18

Modulus of Toughness σ (MPa) 400 350 300 250 200 150 Failure Modulus of toughness 100 50 0 (mm/mm) 0.00 0.10 0.20 0.30 0.40 Upper scale 0.0000 0.0010 0.0020 0.0030 0.0040 Lower scale 19

Example 1 A tension test for a steel alloy results in the stress-strain diagram shown. Calculate the modulus of elasticity and the yield strength based on a 0.2% offset. Identify on the graph the proportional limit, elastic limit, ultimate stress and the fracture stress. σ (MPa) 400 350 300 250 200 150 100 50 0 (mm/mm) 0.00 0.10 0.20 0.30 0.40 Upper scale 0.0000 0.0010 0.0020 0.0030 0.0040 Lower scale 20

σ (MPa) Modulus of Elasticity 400 σ u 100 MPa E 200 GPa 350 0.0005 mm / mm σ fail 300 Yield Strength 250 σ 200 σ y 250 MPa σ y EL 150 Proportional Limit σ pl 100 E σ pl 180 MPa 50 0 (mm/mm) 0.00 0.10 0.20 0.30 0.40 Upper scale 0.0000 0.0010 0.0020 0.0030 0.0040 Lower scale Elastic Limit σ pl 220 MPa Ultimate Stress Fracture Stress σ u 365 MPa σ f 310 MPa 21

Example 2 An aluminum specimen shown has a diameter of d 0 25 mm, a gauge length of L 0 250 mm and is subjected to an axial load of 294.5 kn. If a portion of the stress-strain diagram for the material is shown, determine the approximate elongation of the rod when the load is applied. If the load is removed, does the rod return to its original length? Also, compute the modulus of resilience both before and after the load application. σ (MPa) 750 600 450 d 0 294.5 kn 294.5 kn L 0 300 150 0.01 0.02 0.03 0.04 (mm/mm) 22

The Load is Applied d 0 25 mm 294.5 kn 294.5 kn σ (MPa) L 0 250 mm 750 B F 600 A 450 300 σ - Normal Stress P A 0 3 294.5 10 N ( π / 4)(0.025 m) - The Strain 0.023 mm/mm - The Elongation 2 600 MPa δ L (0.023 mm/mm)(250 mm) 5.75 mm 150 O D (mm/mm) (5.75 mm)/2 (5.75 mm)/2 0.01 0.02 0.03 0.04 0.023 294.5 kn 294.5 kn L 0 250 mm 23

The Load is Removed - Normal Stress d 0 25 mm 294.5 kn 294.5 kn σ P A 0 3 294.5 10 ( π / 4)(0.025 N m) 2 600 MPa σ pl 750 600 450 300 150 σ (MPa) O A OC L 0 250 mm B F E - Permanent Strain 450 MPa 75.0 GPa 0.006 mm / mm CD 0.008 mm/mm The permanent strain, OC 0.023 - CD 600 MPa CD OC 0.023-0.008 0.015 mm/mm - The Permanent Elongation E E CD δ L (0.015 mm/mm)(250 mm) C D (mm/mm) 3.75 mm 0.01 0.02 0.03 0.04 (3.75 mm)/2 (3.75 mm)/2 pl 0.006 0.023 294.5 kn 294.5 kn L 0 250 mm 24

Modulus of Resilience - Normal Stress d 0 25 mm 294.5 kn 294.5 kn σ P A 0 3 294.5 10 ( π / 4)(0.025 N m) 2 600 MPa σ pl σ (MPa) L 0 250 mm 750 B F 600 A 450 300 (u r ) initial (u r ) final 150 CD 0.008 C D (mm/mm) O 0.01 0.02 0.03 0.04 pl 0.006 0.023 ( u ( u - Modulus of Resilience r r ) ) initial final 1 σ pl pl 2 1 (450 MPa)(0.006 mm / mm) 2 3 1.35 MJ / m 1 σ pl pl 2 1 (600 MPa)(0.008 mm / mm) 2 3 2.40 MJ / m 25

Example 3 An aluminum rod shown has a circular cross section and is subjected to an axial load of 10 kn. If a portion of the stress-strain diagram for the material is shown, determine the approximate elongation of the rod when the load is applied. If the load is removed, does the rod return to its original length? Take E al 70 GPa. 20 mm 15 mm A B C 10 kn 10 kn σ (MPa) 600 mm 400 mm 60 50 40 30 20 10 O 0.02 0.04 0.06 0.08 0.10 0.12 (mm/mm) 26

The Load is Applied 20 mm 15 mm A B C 10 kn 10 kn 600 mm 400 mm 56.6 31.83 σ (MPa) 60 50 40 30 20 10 O BC 0.045 mm/mm 0.02 0.04 0.06 0.08 0.10 0.12 σ σ (mm/mm) P kn A 10 π (0.01 m) AB 31. 83 2 P kn A 10 π (0.0075 m) BC 56. 6 2 MPa MPa 6 AB 31.83 10 Pa AB σ 0.0004547 mm / mm 9 70 10 Pa E al The elongation of the rod is δ Σ L AB L AB + BC L BC (0.0004547)(600 mm) + (0.045)(400 mm) 18.3 mm 27

The Load is Removed 20 mm 15 mm A B C 10 kn 10 kn 600 mm 400 mm 56.6 σ pl 31.83 σ (MPa) 60 50 40 30 20 10 O parallel G BC 0.045 mm/mm 0.02 0.04 0.06 0.08 0.10 0.12 OG σ σ (mm/mm) P kn A 10 π (0.01 m) AB 31. 83 2 P kn A 10 π (0.0075 m) BC 56. 6 2 6 BC 56.6 10 Pa rec σ 0.000808 mm / mm 9 70 10 Pa E al The permanent strain, OG 0.0450-0.000808 0.0442 mm/mm MPa MPa The elongation of the rod is δ Σ L 0 + OG L BC 0.0442(400 mm) 17.7 mm 28

Poisson s Ratio δ/2 P L δ/2 Original Shape r Tension δ/2 L P Original Shape δ δ/2 Final Shape P δ δ ' long and lat L r ν lat long Final Shape r Compression δ P 29

P y t x L b P z x ν z y z Assumption: Homogeneous Isotropic Elastic 30

Example 4 A bar made of A-36 steel has the dimensions shown. If an axial force of P 80 kn is applied to the bar, determine the change in its length and the change in the dimensions of its cross section after applying the load. The material behaves elastically. Take E 200 GPa and ν st 0.32. P 80 kn y 50 mm x P 80 kn z 1.5 m 100 mm 31

The change in the bar s length (δ) P 80 kn y 50 mm x P 80 kn z 1.5 m 100 mm - z direction P 80 kn σ z A (0.1 m)(0.05 m) 16 200(10 9 E st σ z z 6 16(10 ) Pa ) Pa 6 80(10 ) mm / mm 80µ z z MPa - x and y direction Poisson' s Ratio : ν st lat long x z y x y - ν st z -0.32[(80(10-6 )] -25.6 µ δ x - x L x -[25.6(10-6 )(0.1 m) -2.56 µm z δ z z L z [80(10-6 )(1.5 m)] 120 µm δ y - y L y -[25.6(10-6 )(0.05 m) -1.28 µm 32

The Shear Stress-Strain Diagram y y τ xy γ xy /2 x γ xy /2 π/2 - γ xy x τ τ u τ f τ Gγ τ pl G γ pl γ u γ f γ G E 2(1 + ν ) 33

Example 5 A specimen of titanium alloy is tested in torsion and the shear stress-strain diagram is shown. (a) Determine the shear modulus G, the proportional limit, and the ultimate shear stress. (b ) Determine the distance d that the top of a block of this material, shown, could be displaced horizontally by a shear force V of 135 MN. τ (MPa) 75 mm 400 300 200 100 100 mm d γ 50 mm V O 0.008 0.54 0.73 γ (rad) 34

(a) The shear modulus, proportional limit, and the ultimate shear stress. τ (MPa) 400 300 τ u 370 τ pl 270 200 100 G O γ pl 0.008 γ (rad) 0.73 - Proportional limit ; τ pl 270 MPa - Shear Modulus ; 270 MPa G 33. 75 GPa 0.008 rad - Ultimate shear stress; τ u 370 MPa 35

(b) The maximum distance d and the magnitude of V if the material behaves elastically τ (MPa) 400 300 200 τ avg 180 MPa 100 Oγ 180 0.00533 75 mm 100 mm 1.35 MN d γ γ 180 0.00533 50 mm τ avg γ (rad) 0.73 - Shear stress τ τ V avg A 1.35MN τ avg (0.1 m 0.075 m) - Shear strain γ - The distance d 180 MPa τ avg γ G 180MPa γ (33.75GPa) 0.005333 tan( 0.00533 rad) 0.00533 rad d 0.267 mm d 50 mm 36

Example 6 An aluminum specimen shown has a diameter of d 0 25 mm and a gauge length of L 0 250 mm. If a force of 165 kn applies to the specimen shown, determine the diameter of the specimen. Take E 70 GPa,G al 26 GPa and σ Y 440 MPa. 165 kn d 0 L 0 165 kn 37

The diameter of the specimen (d f ) if a force 165 kn applies 165 kn d f d 0 + δ d 0 + e lat d 0 ----------(1) d 0 25 mm d f L 0 250 mm - Stress and Strain Relation ship P 165 kn σ A ( π / 4)(0.025 m) 2 336.1 MPa Since σ < σ Y 440 MPa, the material behaves elastically. The modulus of elasticity is E al σ long 165 kn 9 336.1 10 70.0 10 Pa long 0.0048 long 6 Pa 38

165 kn - G and E Relationship G E 2(1 + ν ) d f 26 GPa 70 GPa 2(1 +ν ) d 0 25 mm L 0 250 mm ν 0.346 - Poisson s Ratio ν lat long 165 kn 0.346 lat 0.00480 mm / mm From lat -0.00166 mm/mm δ' (0.00166)(25 mm) 0.0415 mm eq.( 1) : d f d0 + latd0 25 mm + ( 0.00166)(25 mm) 24. 96 mm 39

Failure of Materials due to Stress Relaxation, Creep, and Fatigue Stress Relaxation σ (MPa) 200 150 100 50 200 400 600 800 1000 σ τ diagram for stainless steel at 1200 o F and creep strain at 1% t (hrs.) 40

Creep 10-3 (µ) 2.0 1.5 1.0 0.5 200 400 600 800 1000 σ τ diagram, typical aluminum t (hrs.) 41

Fatigue Fatigue limit (endurance limit) σ (MPa) 400 (σ el ) st 210 (σ fs ) al 130 300 200 100 (σ el ), Endurance limit 0.1 (σ fs ), Fatigue strength @ 500(10 6 ) cycles 1 10 100 1000 Structural steel aluminum S-N diagram for steel and aluminum alloys (N axis has a logarithmic scale) N (10 6 ) 42