Θεωρι α Γραφημα των 9η Δια λεξη



Σχετικά έγγραφα
Θεωρι α Γραφημα των 10η Δια λεξη

Θεωρι α Γραφημα των 7η Δια λεξη

Θεωρία Γραφημάτων 9η Διάλεξη

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 5η Δια λεξη

Θεωρι α Γραφημα των 11η Δια λεξη

Θεωρι α Γραφημα των 2η Δια λεξη

Θεωρι α Γραφημα των 3η Δια λεξη

Θεωρι α Γραφημα των 1η Δια λεξη

Τι μπορεί να δει κάποιος στο μουσείο της Ι.Μ. Μεγάλου Μετεώρου

q(g \ S ) = q(g \ S) S + d = S.

2ο Μάθημα Πιθανότητες

d(v) = 3 S. q(g \ S) S

Θεωρία Γραφημάτων 10η Διάλεξη

S A : N G (S) N G (S) + d S d + d = S

Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ

α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε

6ο Μάθημα Πιθανότητες

ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ

Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων

Π α σα πνο η αι νε σα τω τον Κυ ρι. Π α σα πνο η αι νε σα α τω τον. Ἕτερον. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη.

Βασικά Χαρακτηριστικά Αριθμητικών εδομένων

1.2.3 ιαρ θρω τι κές πο λι τι κές Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37

Θεωρία Γραφημάτων 7η Διάλεξη

ΧΑΙ ΡΕ ΤΙ ΣΜΟΣ ΤΟΥ ΠΡΟ Ε ΔΡΟΥ ΤΗΣ Ο ΤΟ Ε

Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Κυ ρι ον ευ λο γη τος ει Κυ ρι ε ευ. λο γει η ψυ χη µου τον Κυ ρι ον και πα αν. τα τα εν τος µου το ο νο µα το α γι ον αυ

ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο

ΠΡΑΣΙΝΟ ΤΑΜΕΙΟ - ΕΝΕΡΓΕΙΑΚΟ ΓΡΑΦΕΙΟ ΑΙΓΑΙΟΥ ΧΩΡΟΘΕΤΗΣΗ ΑΠΕ ΣΕ ΝΗΣΙΩΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Lecture 8: Random Walks

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ

Αποτελεσματικός Προπονητής

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.

Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες

Ευγενία Κατσιγιάννη* & Σπύρος Κρίβας**

ε πι λο γές & σχέ σεις στην οι κο γέ νεια

ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ

Α ΡΙΘ ΜΟΣ ΟΙ ΚΗ ΜΑ- ΤΩΝ ΚΑΙ Υ ΝΑ ΜΕΝΟ ΝΑ Ε ΞΥ ΠΗ ΡΕ ΤΗ ΘΕΙ ΠΡΟΣΩΠΙΚΟ. 3 ξε νώ νες Α ΣΣ ΠΡΟΣΩΠΙΚΟ. Ξε νώ νες Α ΣΣ Κοζάνη. Κ.

Θεωρία Γραφημάτων 8η Διάλεξη

των Κοι νω νι κών λει τουρ γών που α πα σχο λού νται στις Νευ ρο ψυ χι α τρι κές κλι νι κές Α θη νών & περιχώρων Ot02R03

Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.

Πρός τούς ἀδελφούς μου

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη

Αρ χές Ηγε σί ας κα τά Πλά τω να

Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης

Πρώϊος Μιλτιάδης. Αθαναηλίδης Γιάννης. Ηθική στα Σπορ. Θεωρία και οδηγίες για ηθική συμπεριφορά

Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης

Πολυμεταβλητή Στατιστική Ανάλυση. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains

Πρα κτι κών µη χα νι κών Δ ηµοσίου, ΝΠΔ Δ & OΤΑ O36R11

ΜΕ ΣΩΝ ΜΑ ΖΙ ΚΗΣ Ε ΝΗ ΜΕ ΡΩ ΣΗΣ (Μ.Μ.Ε.) ΣΤΗΝ ΟΥ ΣΙΟ Ε ΞΑΡ ΤΗ ΣΗ ΤΩΝ Α ΝΗ ΛΙ ΚΩΝ όπως προ κύ πτει α πό τις έ ρευ νες

VAGONETTO. Ωρες: 09:00 17:00. t: (+30) e: w: Kρατήσεις: Fokis Mining Park Μεταλλευτικό Πάρκο Φωκίδας

ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ

ΔΙΑΚΗΡΥΞΗ ΔΗΜΟΣΙΟΥ ΜΕΙΟΔΟΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΥ

Θεωρία Γραφημάτων 5η Διάλεξη

Στις α ντιπα λό τη τες με τα ξύ των

Π Ε Ρ Ι E Χ Ο Μ Ε Ν Α

ΕΙ ΣΑ ΓΩ ΓΗ ΣΤΙΣ Ε ΠΙ ΧΕΙ ΡΗ ΣΕΙΣ

Κόστος Λειτουργίας AdvanTex: Ανάλυση και Συγκριτική Αξιολόγηση

ΠΕΡΙEΧΟΜΕΝΑ. Εισαγωγή... 11

Κε φά λαιο. Έννοιες, Ο ρι σμοί και Βα σι κές Προ ϋ πο θέ σεις. Αναπηρία και ειδική φυσική αγωγή

0a1qqW+1a1`qÁlw n εν σοί Κύ ρι ε τρο πού μαι τού τον.

Αυτοοργανωμε να οικοσυστη ματα επιχειρηματικο τητας: Πα θος, δημιουργι α και αισιοδοξι α στην Ελλα δα του ση μερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΙΓΑΔΙΚΟΤ-ΟΡΙΑ-ΤΝΕΧΕΙΑ

H ΕΝ ΝΟΙΑ ΤΗΣ ΘΡΗ ΣΚΕΙΑΣ ΚΑ ΤΑ ΤΟΥΣ ΑΡ ΧΑΙΟΥΣ ΕΛ ΛΗ ΝΕΣ

των Καθηγητών Φροντιστηρίων Ξένων γλωσσών όλης της χώρας O18R11

Αρχές Μάνατζμεντ και Μάρκετινγκ Οργανισμών και Επιχειρήσεων Αθλητισμού και Αναψυχής

των Κοι νω νι κών Λει τουρ γών που α πα σχο λού νται στους ι δι ω τι κούς παι δι κούς σταθ µούς όλης της χώρας O21R09

των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09

ΤΕΤΑΡΤΗ ΕΒ ΟΜΑ ΟΣ ΤΩΝ ΝΗΣΤΕΙΩΝ ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης

ΕΙΣ ΤΟΝ ΕΣΠΕΡΙΝΟΝ ΑΠΟΔΟΣΕΩΣ ΕΥΑΓΓΕΛΙΣΜΟΥ ΤΗΣ ΘΕΟΤΟΚΟΥ, ΜΕΤΑ Β ΣΤΑΣΕΩΣ ΧΑΙΡΕΤΙΣΜΩΝ ΚΕΚΡΑΓΑΡΙΑ

ΠΑΡΑΣΚΕΥΗ ΣΤ ΕΒ ΟΜΑ ΟΣ ΤΩΝ ΝΗΣΤΕΙΩΝ. ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης

ΘΑ ΛΗΣ Ο ΜΙ ΛΗ ΣΙΟΣ. του, εί ναι ση μα ντι κό να ει πω θούν εν συ ντομί α με ρι κά στοι χεί α για το πο λι τι σμι κό πε ριβάλ

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Μάνατζμεντ και Μάνατζερς

Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης. Ἦχος Πα. υ ρι ι ε ε κε ε κρα α α ξα α προ ος. σε ει σα κου ου σο ο ον μου ει σα κου σο ο ον

ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA

των Oι κο δό µων συ νερ γεί ων O32R09

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του

K υ ρι ε ε λε η σον Κ υ ρι ε ε λε ε η σον Κ υ ρι ε ε λε η σον Κ υ υ ρι ε ε λε ε η σον

ΠΑΡΑΣΚΕΥΗ ΕΒ ΟΜΑ ΟΣ ΝΗΣΤΕΙΩΝ ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης. Ἦχος

Η ΛΕ ΚΤΡΟ ΝΙ ΚΟ Ε ΠΙΧΕΙ ΡΕΙΝ

1 ο Κεφά λαιο. Πώς λειτουργεί η σπονδυλική στήλη;...29

Ποίημα Δρ. Χαραλάμπους Μπούσια, μεγάλου ὑμνογράφου τῆς τῶν Ἀλεξανδρέων Ἑκκλησίας. Μελοποίησις: Ἰωάννης Νέγρης. ΕΙΣ ΤΟΝ Μ.

Πρόλογος στην ελληνικ κδοση... xvii. Πρόλογος... xix

ε ε λε η σον Κυ ρι ε ε ε

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΔΙΜΗΝΙΑΙΑ ΕΚΔΟΣΗ ΓΕΝΙΚΟΥ ΕΠΙΤΕΛΕΙΟΥ ΣΤΡΑΤΟΥ ΕΤΟΣ ΙΔΡΥΣΕΩΣ 1883 ΤΕΥΧΟΣ 2/2011 (ΜΑΡ.-ΑΠΡ.) ΕΤΗΣΙΑ ΣYΝΔΡΟΜΗ

των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10

Α λιευ τι κή πο λι τι κή

Η Ο ΜΑ ΔΙ ΚΗ. της ζω ής

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης

ΑΠΟΛΥΤΙΚΙΑ & ΘΕΟΤΟΚΙΑ ΕΣΠΕΡΑΣ 1-15 ΑΥΓΟΥΣΤΟΥ. Παρασκευή 1/08/2014 Ἑσπέρας Ψάλλοµεν τὸ Ἀπολυτίκιο τῆς 2/8/2014. Ἦχος.

Κυ ρι ε ε κε κρα α ξα προ ο ος σε ε ει σα

Transcript:

Θεωρι α Γραφημα των 9η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 183 / 198

Ταιρια σματα (Matchings) Ταίριασμα: Ένα υποσυ νολο M των ακμω ν ενο ς γραφη ματος G ονομα ζεται ταίριασμα στο G εα ν οι ακμε ς του M δεν ε χουν κοινε ς κορυφε ς Οι δυ ο κορυφε ς στα α κρα κα θε ακμη ς του M λε με ο τι ε χουν ταιριαστει στο M Κορεσμένη Κορυφή (Saturated): Έστω ε να ται ριασμα M σε ε να γρα φημα G. Μι α κορυφη u ονομα ζεται M-κορεσμένη εα ν μια ακμη του M προσπι πτει στην u. Διαφορετικα ονομα ζεται M-ακόρεστη Μέγιστο Ταίριασμα: Ένα ται ριασμα M του γραφη ματος G ονομα - ζεται μέγιστο ταίριασμα εα ν δεν υπα ρχει ται ριασμα M του G τε τοιο ω στε M > M Τέλειο Ταίριασμα: Εα ν ο λες οι κορυφε ς ενο ς γραφη ματος G ει ναι M-κορεσμε νες, το τε το M ονομα ζεται τέλειο ταίριασμα τε λειο ται ριασμα με γιστο ται ριασμα με γιστο ται ριασμα ται ριασμα Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 184 / 198

µ(g): Το πλη θος ακμω ν κα ποιου με γιστου ταιρια σματος M του γραφη ματος G. Λήμμα 9.1: Έστω γρα φημα G. Ισχυ ει ο τι χ(g) V(G) µ(g) Απόδειξη : Έστω M ε να με γιστο ται ριασμα του G (με µ(g) ακμε ς) Τα α κρα κα θε ακμη ς του M χρωματι ζονται με το ι διο χρω μα. Στο G δεν ενω νονται με ακμη µ(g) χρω ματα Οι υπο λοιπες V(G) 2µ(G) χρωματι ζονται με διαφορετικα χρω ματα V(G) 2µ(G) Συνολικα : V(G) 2µ(G) + µ(g) = V(G) µ(g) χρω ματα χ(g V(G) µ(g) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 185 / 198

Λήμμα 9.2: Έστω γρα φημα G ο που V(G) = n και E(G) = m. Ισχυ ει ο τι µ(g) Απόδειξη : 2mn n+2m Γνωρι ζουμε ο τι για κα θε γρα φημα G ισχυ ει χ(g) n2 n 2 2m Για το G, συνεπω ς, ισχυ ει n 2 χ(g) n 2 2( n(n 1) 2 m) Απο Λη μμα 9.1 ισχυ ει: χ(g) n µ(g) µ(g) (1) n χ(g) (1) n = n 2 n 2 2( n(n 1) m) 2 n = n 2 n 2 n(n 1)+2m = n n 2 n 2 n 2 +n+2m = n n2 n+2m = n(n+2m) n2 n+2m = 2mn n+2m Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 186 / 198

M-εναλλασσόμενο μονοπάτι (alternating path): Έστω M ε να ται ριασμα στο γρα φημα G. Ένα μονοπα τι P στο G ονομα ζεται M-εναλλασσόμενο μονοπάτι εα ν οι ακμε ς του εναλλα σσονται μεταξυ των ακμω ν του E(G) M και του M M-επαυξανόμενο μονοπάτι (augmenting path): Ένα M-εναλλασσο μενο μονοπα τι του οποι ου τα τερματικα σημει α ει ναι ακο ρεστα u 1 v 1 u 2 v 2 v 1 u 1 v 2 u 3 v 3 : u 2 v 2 u 1 v 1 : εναλλασσο μενο μονοπα τι επαυξανο μενο μονοπα τι u 3 v 3 Θεώρημα 9.3[Berge,1957]: Έστω γρα φημα G και ται ριασμα M του G. Το M ει ναι ε να με γιστο ται ριασμα στο G ανν το G δεν περιε χει κανε να M-επαυξανο μενο μονοπα τι Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 187 / 198

Απόδειξη : [Με α τοπο] Έστω το M ει ναι με γιστο ται ριασμα και το G περιε χει ε να M-επαυξανο μενο μονοπα τι P με 2λ + 1 ακμε ς λ 1 P : v 0 v 1 v 2... v 2λ v 2λ+1 και (v 1, v 2 ), (v 3, v 4 ),..., (v 2λ 1, v 2λ ) M Έστω το ται ριασμα M =M {(v i, v i+1 ), i περιττο και 1 i 2λ 1} {(v i, v i+1 ), i α ρτιο και 0 i 2λ} M = M + 1 άτοπο γιατι το M ει ναι με γιστο [Με α τοπο] Έστω ο τι το G δεν περιε χει M-επαυξανο μενο μονοπα τι Έστω ο τι το M δεν ει ναι με γιστο και ε στω M ε να με γιστο ται ριασμα M > M Έστω H = G [M M ] ο που M M η συμμετρικη διαφορα των M και M M M M M M, M M M Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 188 / 198

Κα θε κορυφη του H ε χει βαθμο 1 η 2 [ει ναι το α κρο το πολυ μιας ακμη ς του M και το πολυ μιας ακμη ς του M ] Κα θε συνιστω σα του H ει ναι: Ει τε α ρτιος κυ κλος με ακμε ς να εναλλα σσονται μεταξυ των M και M η Μονοπα τι με ακμε ς να εναλλα σσονται μεταξυ των M και M Λο γω του ο τι M > M, το M περιε χει πιο πολλε ς ακμε ς απο το M Υπα ρχει ε να μονοπα τι-συνιστω σα P στο M M που περιε χει πιο πολλε ς ακμε ς του M Το μονοπα τι P ξεκινα ει και τελειω νει με ακμη του M Στο H το μονοπα τι P ε χει α κρα τα οποι α ει ναι M -κορεσμε να Στο G τα α κρα του μονοπατιου P ει ναι M-ακο ρεστα Υπα ρχει M-επαυξανο μενο μονοπατι στο G άτοπο γιατι υποθε σαμε ο τι το G δεν περιε χει M-επαυξανο μενο μονοπα τι Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 189 / 198

Ταιρια σματα σε Διμερη Γραφη ματα Θεώρημα 9.4[Hall, 1935]: Έστω G = (A, B, E) ε να διμερε ς γρα φημα. Το G περιε χει ε να ται ριασμα M τε τοιο ω στε κα θε κορυφη του A να ει ναι M-κορεσμε νη ανν N(S) > S για κα θε S A (1) Απόδειξη : Έστω ο τι το G περιε χει ε να ται ριασμα M τε τοιο ω στε κα θε κορυφη του A ει ναι M-κορεσμε νη Οι κορυφε ς του συνο λου S, S A, ταιρια ζονται στο M σε κορυφε ς του N(S) Συνεπω ς, N(S) S, S A Έστω ο τι το G ικανοποιει την (1) αλλα δεν υπα ρχει ται ριασμα M με ο λες τις κορυφε ς του A να ει ναι M-κορεσμε νες Έστω M ε να με γιστο ται ριασμα του G Οι κορυφε ς του A δεν ει ναι ο λες M -κορεσμε νες Έστω u μια M -ακο ρεστη κορυφη του A Έστω D οι κορυφε ς του G που ενω νονται με την u με σω M -εναλλασσο μενων μονοπατιω ν Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 190 / 198

Η u ει ναι η μο νη M -ακο ρεστη κορυφη του D [Απο Θ. 9.3 και επειδη το M ει ναι με γιστο ται ριασμα] Ορι ζουμε το S = D A και το T = D B D u S T A B Οι κορυφε ς του S {u} ταιρια ζονται με τις κορυφε ς του T. Άρα T = S 1 (2) Λο γω του ο τι κα θε κορυφη του N(S) ενω νεται με την u με σω ενο ς M -εναλλασσο μενου μονοπατιου ισχυ ει ο τι N(S) = T (3) (2),(3) N(S) = S 1 < S άτοπο γιατι υποθε σαμε ο τι N(S) S, S A Λήμμα 9.5: Έστω διμερε ς r-κανονικο γρα φημα G = (A, B, E). Το τε ισχυ ει ο τι A = B Απόδειξη : E = r A και E = r B Άρα, r A = r B A = B Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 191 / 198

Θεώρημα 9.6(marriage theorem): Έστω G = (A, B, E) ε να r-κανονικο διμερε ς γρα φημα, r 1. Ισχυ ει ο τι το G ε χει ε να τε λειο ται ριασμα Απόδειξη : Ισχυ ει ο τι A = B [απο Λη μμα 9.5] Έστω S A Ορι ζουμε ως E 1 :ακμε ς που προσπι πτουν στο S E 2 :ακμε ς που προσπι πτουν στο N(S) Εξ ορισμου του N(G) S E 1 E 2 A E r N(S) = E 2 E 1 = r S 1 N(S) S E 2 B N(S) Άρα απο το Θεω ρημα του Hall Το G ε χει ε να τε λειο ται ριασμα Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 192 / 198

Τε λεια Ταιρια σματα Λήμμα 9.7: Έστω ε να μεγιστοτικο γρα φημα G με α ρτιο βαθμο n το οποι ο δεν ε χει τε λειο ται ριασμα και ε στω U το συ νολο κορυφω ν του με βαθμο n 1. Το τε ισχυ ει ο τι το G U ει ναι η ε νωση ξε νων μεταξυ τους πλη ρων γραφημα των Απόδειξη [Με άτοπο]: Έστω ο τι υπα ρχει μια συνιστω σα του G U η οποι α δεν ει ναι πλη ρης Στην συνιστω σα υπα ρχουν κορυφε ς x, y, z: y (x, y) E(G), (y, z) E(G), (x, z) / E(G) Το ο τι y / U σημαι νει ο τι d(y) n 2 και α ρα υπα ρχει κορυφη w G U : (y, w) / E(G) x z Το G + e ε χει τε λειο ται ριασμα για κα θε e / E(G) [γιατι το G ει ναι μεγιστοτικο ] Έστω M 1 ε να τε λειο ται ριασμα στο G + (x, z) Έστω M 2 ε να τε λειο ται ριασμα στο G + (y, w) Έστω H το υπογρα φημα του G {(x, z), (y, w)} που παρα γεται απο τις ακμε ς του M 1 M 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 193 / 198

Κα θε κορυφη του H ε χει βαθμο 2 [προσπι πτουν σε κα θε κορυφη μια ακμη του M 1 και μια του M 2 ] Το H ει ναι ε νωση ξε νων μεταξυ τους κυ κλων α ρτιου πλη θους κορυφω ν, με ακμε ς εναλλασσο μενες μεταξυ των M 1 και M 2 Περίπτωση 1: Οι (x, z) και (y, w) ανη κουν σε διαφορετικε ς συνιστω σες του H Έστω η (y, w) ανη κει στον κυ κλο C του H Οι ακμε ς του M 1 που ανη κουν στο C και οι ακμε ς του M 2 που δεν ανη κουν στο C ει ναι ε να τε λειο ται ριασμα του G άτοπο x y z M 1 M 2 Περίπτωση 2: Οι (x, z) και (y, w) ανη κουν στην ι δια συνιστω σα (κυ κλο) του H Έστω ο τι στον C οι κορυφε ς εμφανι ζονται με την σειρα : x,..., y, w,..., z x y z M 1 M 2 Οι ακμε ς του M 1 στο τμη μα y, w,..., z του C μαζι με την ακμη (y, z) και τις ακμε ς του M 2 στο τμη μα z, x,..., y του C και ο λες τις α λλες ακμε ς του M 2 στο H C σχηματι ζουν ε να τε λειο ται ριασμα στο G άτοπο Άρα, το G U αποτελει ται απο την ε νωση ξε νων μεταξυ τους πλη ρων γραφημα των Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 194 / 198

Θεώρημα 9.8[Tutte,1947]: Έστω γρα φημα G. Το G ε χει ε να τε λειο ται ριασμα ανν o(g S) S για κα θε S V(G), ο που με c( ) συμβολι ζουμε τον αριθμο των συνιστωσω ν περιττου βαθμου ενο ς γραφη ματος Απόδειξη [Από τον Lovász-1973]: Έστω ο τι το G ε χει ε να τε λειο ται ριασμα M Έστω S ε να γνη σιο υπολυ νολο του V(G) Έστω G 1, G 2..., G k οι περιττε ς συνιστω σες του G S Επειδη η συνιστω σα G i, 1 i k ε χει περιττο βαθμο, κα ποια κορυφη της u i ταιρια ζεται στο M με κα ποια κορυφη του S περιττές συνιστώσες του G S άρτιες συνιστώσες του G S G 1 u 1 G i u i G k u k v 1 v i v k S o(g S) = k = {v 1, v 2,..., v k } S λο γω του ο τι {v 1, v 2,..., v k } S Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 195 / 198

(Με α τοπο) Έστω ο τι o(g S) S για κα θε S V(G) αλλα το G δεν ε χει τε λειο ται ριασμα Έστω ε να μεγιστοτικο γρα φημα G το οποι ο δεν ε χει τε λειο ται ριασμα του οποι ου παραγο μενο υπογρα φημα ει ναι το G [V(G ) = V(G)] o(g S) o(g S) Άρα o(g S) S, S V(G ) (1) Για S = o(g S) 0 Το G ε χει α ρτιο πλη θος κορυφω ν Έστω U το συ νολο κορυφω ν του G που ε χουν βαθμο n 1 [V(G) = n] στο G Το γρα φημα G U αποτελει ται απο ε να συ νολο ξε νων μεταξυ τους πλη ρων γραφημα των [Λη μμα 9.7] Απο την (1) o(g U) U, δηλαδη το πολυ U απο τις συνιστω σες του G U ει ναι περιττου βαθμου Το G ε χει ε να τε λειο ται ριασμα! Ταιρια ζουμε μια κορυφη απο κα θε περιττη συνιστω σα με μια κορυφη του U. Ει ναι δυνατο γιατι o(g U) U Όλες οι υπο λοιπες κορυφε ς ταιρια ζονται αυθαι ρετα σε κα θε πλη ρη συνιστω σα περιττές συνιστώσες του G U U άρτιες συνιστώσες του G U άρτιο πλήθος κορυφών [γιατί;] άτοπο γιατι υποθε σαμε ο τι το G μεγιστοτικο χωρι ς τε λειο ται ριασμα Άρα το G ε χει τε λειο ται ριασμα Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 196 / 198

Πόρισμα 9.9: Κα θε 3-κανονικο γρα φημα δι χως γε φυρες ε χει ε να τε λειο ται ριασμα [Petersen,1891] Απόδειξη : Έστω G ε να γρα φημα χωρι ς γε φυρες Έστω συ νολο κορυφω ν S V(G) Έστω G!, G 2,..., G k οι περιττε ς συνιστω σες του G S Έστω m i, 1 i k ο αριθμο ς των ακμω ν με το ε να α κρο στο G i και το α λλο στο S Το γρα φημα G ει ναι 3-κανονικο περιττές συνιστώσες του G S d(v) = 3V(G i ), i = 1... k (1) G 1 G i G k v V(G i ) m 1 m i m k d(v) = 3 S (2) S v S m i = d(v) 2E(G i ) v V(G i ) Το m i ει ναι περιττο [κα θε συνιστω σα G i ει ναι περιττου βαθμου ] m i 1 λο γω του ο τι το G δεν ε χει γε φυρες m i 3 λο γω του ο τι m i 1 και περιττο άρτιες συνιστώσες του G S Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 197 / 198

k o(g S) = k 1 3 m i i=1 1 d(v) (2) = S 3 v S Το G ε χει ε να τε λειο ται ριασμα [Θεω ρημα 9.8(Tutte)] Σημείωση: Υπα ρχουν 3-κανονικα γραφη ματα με γε φυρες τα οποι α δεν ε χουν τε λειο ται ριασμα. Απόδειξη : G: v Το γρα φημα G ει ναι 3-κανονικο με γε φυρες o(g {v} = 2 > {v} = 1 το οποι ο παραβια ζει την συνθη κη στο θεω ρημα του Tutte [Θ. 9.8] Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 198 / 198