Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15

Σχετικά έγγραφα
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9

Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 14 β-διάσπαση B' μέρος

γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 7

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6

Aσκήσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Ασκήσεις #1 επιστροφή 11/11/2011

ΠΥΡΗΝΙΚΗ 5ου εξαμήνου. 10 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη) Κ. Κορδάς, ακ. έτος

Ασκήσεις #1 επιστροφή 11/11/2011

Μάθημα 4 α) Άλφα διάσπαση β) Σχάση και σύντηξη

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Μάθημα 15 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες)

Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση

Ασκήσεις #1 επιστροφή 15/10/2012

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας. Μάθημα 7 α-διάσπαση

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Πυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 8

ΑΠΟΔΙΕΓΕΡΣΗ (ΔΙΑΣΠΑΣΗ)

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί

γ-διάσπαση Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Διάλεξη 8η Πετρίδου Χαρά Friday, December 2, 2011

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 3 α) QUIZ στην τάξη. Μέγεθος πυρήνα από μιονικά άτομα β) Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 7 Διαγράμματα Feynman

Σχετικιστική Κινηματική

Μάθημα 9 Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό Yukawa Δευτέριο Βάθος πηγαδιού δυναμικού νουλεονίνων Ενέργεια Fermi

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Πυρηνική Επιλογής. Τα νετρόνια κατανέμονται ως εξής;

Μάθημα 2 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών

Ασκήσεις #7 αποδιεγέρσεις γ

Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 10 & 11 Πυρηνικό μοντέλο των φλοιών

Μάθημα 12 α-διάσπαση

ΠΥΡΗΝΙΚΗ. 12 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη, αλλά τα βασικότερα είναι εδώ) Κ. Κορδάς

Μάθημα 5 α) QUIZ στην τάξη β) Σχάση και σύντηξη γ) Πρώτο σετ ασκήσεων δ) β-διάσπαση (μέρος Α')

Μάθημα 5 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ

Νουκλεόνια και ισχυρή αλληλεπίδραση

ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Ενεργός διατοµή Χρυσός Κανόνας του Fermi

Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος μάζας (ή τύπος του Weitzecker). Κοιλάδα β-σταθερότητας

Μάθημα 2-3 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Επανάληψη μέσω ασκήσεων #2: Κοιλάδα σταθερότητας, ενέργεια σύνδεσης, φράγμα Coulomb

Διάλεξη 5: Αποδιέγερσεις α και β

Διάλεξη 11-12: Ασκήσεις στην Πυρηνική Φυσική

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. «Πυρηνική Φυσική & Φυσική Στοιχειωδών Σωματιδίων» (5ο εξάμηνο)

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

Ο Πυρήνας του Ατόμου

Ατομική δομή. Το άτομο του υδρογόνου Σφαιρικά συμμετρικές λύσεις ψ = ψ(r) Εξίσωση Schrodinger (σφαιρικές συντεταγμένες) ħ2. Εξίσωση Schrodinger (1D)

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα

Δευτερόνιο & ιδιότητες των πυρηνικών δυνάμεων μεταξύ δύο νουκλεονίων Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

γ-διάσπαση Διάλεξη 18η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) α-διάσπαση

Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων

Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Transcript:

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις) Πετρίδου Χαρά Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πυρηνική & Στοιχειώδη Ι, Αριστοτέλειο Παν. Θ/νίκης, 1 Δεκεμβρίου 2016

Σήμερα β-διάσπαση - διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις Βιβλίο C&G: Κεφ. 4, παρ. 4.6., Κεφ. 2, παρ. 2.4-2.6 (σελ. 31-35), Κεφ. 12, παρ. 12.1, παρ 12.6 (σελ. 194-195) Σημειώσεις Πυρηνικής, Κεφ. 5, παρ. 5.2, 5.2.1 5.2.3, και ειδικά για σήμερα σελ. 40-41 Ιστοσελίδα: http://www.physics.auth.gr/course/show/125 2

Κοιλάδα β-σταθερότητας Σχήμα 4.6 στο βιβλίο σας Ν Ζ < Α/2 Για κάθε Α, τα β-σταθερά νουκλίδια είναι στη μαύρη ζώνη ( κοιλάδα σταθερότητας - valley of stability ). Αυτά που είναι μακρυά απ'την κοιλάδα, πάνε προς αυτήν με διασπάσεις β + (= e + ) ή β - (= e - ) Για A=σταθερό: Οι πυρήνες διαφέρουν ως προς το Ζ (και N) Ζ N unstable to β- decay valley of stability α unstable to β+ decay (or e- capture) Z 3

β-διασπάσεις: ενεργειακές συνθήκες 1) Ενεργειακή συνθήκη β - : Σηµείωση: Μ ατόµου ( Α Χ) = Μ(Α,Ζ) Ζ Θα πρέπει Q>0 2) Ενεργειακή συνθήκη β + : >= 0 3) Ενεργειακή συνθήκη σύλληψης ηλεκτρονίου (EC, K- σύλληψη ): 4

β-διάσπαση: εκτός από το να έχουμε διατήρηση φορτίου και ενέργειας, έχουμε κι άλλες συνθήκες: διατήρηση σπιν και επίσης: τι γίνεται με την ομοτιμία (parity)? 5

Spin και ομοτιμία ενός πυρήνα (J και πάριτυ: J π ) Σπιν πυρήνα, J = ολικό τροχιακό σπίν των νουκλεονίων + το άθροισμα των σπιν τους. Parity = +1 ή -1 Οπότε για κάθε πυρήνα έχουμε σπιν (J) και parity (π): J π π.χ., 2 + 6

Spin και ομοτιμία ενός πυρήνα (J και ομοτιμία: J π ) Σπιν πυρήνα, J = ολικό τροχιακό σπίν των νουκλεονίων + το άθροισμα των σπιν τους. 7ΚΑΝΟΝΑΣ που δουλεύει στα περισσότερα!

Κβάντωση στροφορμής Άθροισμα στροφορμών: 8

Spin και ομοτιμία ενός πυρήνα (J και ομοτιμία: J π ) Σπιν πυρήνα, J = ολική τροχιακή στροφορμή των νουκλεονίων + το άθροισμα των σπιν τους. J J J J J J J J Parity = +1 ή -1 Οπότε για κάθε πυρήνα έχουμε σπιν (J) και parity (π): J π π.χ., 2 + 9

10

Είδαμε ότι η ενέργεια ενός συστήματος εξαρτάται και από το σπιν του: ΟΚ. Ερώτηση: Η ομοτιμία / πάριτυ / parity επηρεάζει κάτι μετρήσιμο/παρατηρίσιμο; Βεβαίως και ναι. 11

α) Parity #1: η αναστροφή του χώρου και η Αρχή του Pauli (1) Όλα τα σωματίδια με ακέραιο σπιν (s=0, 1, 2, ) - τα αποκαλούμενα μποζόνια περιγράφονται από συμμετρικές κυματοσυναρτήσεις (Parity = +1), ενώ όλα τα σωματίδια με ημι-ακέραιο σπιν (s=1/2, 3/2, ) - τα αποκαλούμενα φερμιόνια περιγράφονται από αντισυμμετρικές κυματοσυναρτήσεις (Parity = -1) ως προς την εναλλαγή των μεταβλητών τους (=αναστροφή του χώρου) 12

α) Parity #1: η αναστροφή του χώρου και η Αρχή του Pauli (2) 13

α) Parity #1: η αναστροφή του χώρου και η Απαγορευτική Αρχή του Pauli Παρατηρίσιμο; Μα, έτσι ακριβώς εξηγούμε τη δομή των ατόμων!!! 14

β) Parity #2: Πείραμα της Wu: 1957 Αν υπάρχει προτίμηση στην κατεύθυνση των ηλεκτρονίων, τότε η πάριτυ δεν είναι καλή συμμετρία (δηλ. παραβιάζεται) Γιατί η προτιμητέα κατεύθυνση έχει σχέση με την πάριτυ; Πείραμα Wu: ΟΛΑ τα ηλεκτρόνια πήγαιναν αντίθετα από το σπίν του πυρήνα. Όχι μόνο υπήρχε ασυμμετρία, αλλά μέγιστη ασυμμετρία. Όχι μόνο η πάριτυ δεν διατηρείται, αλλά παραβιάζεται στο μέγιστο βαθμό! 15

Το πείραμα της Wu 16

γ) Parity #3: Σε τί διαφέρουν τα νετρίνα (ν) από τα αντινετρίνα (ν) που είδαμε στις β- διασπάσεις); Δεν έχουν φορτίο => Δεν έχουν ηλεκτρομαγνητικές αλληλεπιδράσεις Τα νετρίνα είναι αριστερόστροφα => Το σπίν έχει διέυθυνση αντίθετη από το διάνυσμα της ορμής Τα αντι- νετρίνα είναι δεξιόστροφα => το σπιν έχει διεύθυνση ομόρροπη με το διάνυσμα της ορμής ορµή νετρίνο σπίν ορµή αντι-νετρίνο σπίν 17

γ) Parity #3: νετρίνο (ν) και αντινετρίνο (ν) Μετασχηματισμός Parity (P): αναστροφή του χώρου Η β-διάσπαση, έχοντας είτε μόνο νετρίνα (στις διασπάσεις β+), είτε μόνο αντινετρίνα (στις β-), παραβιάζει τη συμμετρία της Parity, αφού υπάρχει διαφορετική συμπεριφορά του νετρίνο και αντινετρίνο: Σε αναστροφή του χώρου, το νετρίνο γίνεται δεξιόστροφο γιατί το σπίν δεν αλλάζει φορά. Έτσι, η αναστροφή του χώρου δημιουργεί δεξιόστροφα νετρίνα και αριστερόστροφα αντινετρίνα. Κάτι που όμως ΔΕΝ παρατηρείται, οπότε η φύση (όσον αφορά τις β-διασπάσεις) δεν θεωρεί την Parity καλή συμμετρία, οπότε λέμε ότι παραβιάζει την Parity 18

Όλα τα προηγούμενα ήταν μια εισαγωγή για τους επιπλέον κανόνες για τη β-διάσπαση που αφορούν το σπιν και την ομοτιμία (πάριτυ) των πυρήνων. β-διάσπαση: Επιτρεπτές και απαγορρευμένες διασπάσεις Επιτρεπτές: Fermi ή Gamow-Teller 19

β-διασπάσεις: Επιτρεπτές και απαγορευμένες με βάση την αλλαγή του σπιν αρχικού και τελικού πυρήνα Οι αποδιεγέρσεις β κατηγοριοποιούνται σε επιτρεπτές ή απαγορευμένες όσον αφορά την μεταβολή του σπίν μεταξύ αρχικού και τελικού πυρήνα: Επιτρεπτές σημαίνει ότι έχουν πολύ μεγαλύτερη πιθανότητα να γίνουν, σε σχέση με άλλες που είναι πιό σπάνιες και λέγονται απαγορευμένες. Όσο μεγαλύτερου βαθμού απαγόρευση έχει μια διάσπαση, τόσο πιό σπάνιο είναι να γίνει. 20

Διατήρηση στροφορμής (σπιν) Γενικά, με διατήρηση του σπίν, γράφουμε για τη β-διάσπαση: Όπου: J i S ev J f i f +e+ν J i = J f + S ev + l ev και είναι το ολικό σπίν του αρχικού και του τελικού πυρήνα, αντίστοιχα, είναι το ολικό σπίν του συστήματος ηλεκτρονίουαντινετρίνο πού μπορεί να είναι 0 ή 1 (αφού συνδυάζω το ηλεκτρόνιο και το αντινετρίνο που έχουν σπίν 1/2 το καθένα), και l ev είναι η σχετική στροφορμή ηλεκτρονίου-αντινετρίνο. 21

Μεταβολή σπιν μεταξύ αρχικού και τελικού πυρήνα και σχετική τροχιακή στροφορμή ηλεκτρονίου-νετρίνο Οπότε γράφουμε: J i J f = S ev + l ev και Δπ = ΠάριτυΑρχικούΠυρήνα * ΠάριτυΤελικούΠυρήνα Δ J όπου η μεταβολή του σπιν (αρχικού πυρήνα - τελικού) μπορεί να έχει μέτρο οποιαδήποτε τιμή μέσα στα όρια: J i J f Δ J J i +J f Δ J= S ev + και το ολικό σπίν ηλετρονίου-νετρίνο (καθένα με σπίν 1/2): 1/2 1/2 S eν 1/2+1 /2 S eν = 0 ή 1 l ev Όσο μικρότερο το τόσο πιό εύκολα γίνεται η μετάβαση (δηλ. τόσο πιό επιτρεπτή είναι). Οπότε, από όλα τα ΔJ, το πιό πιθανό είναι αυτό με τη μικρότερη τιμή, δηλαδή το (J i J ) f l ev 22

Επιτρεπτές μεταπτώσεις: Fermi ή Gamow-Teller ανάλογα με S eν =0 ή 1 ΚΑΝΟΝΑΣ #1: Οι επιτρεπτές μεταπτώσεις ᄄ έχουν l ev = 0 Άν: S eν =0 (που έχει μόνο έναν τρόπο να γίνει, Sz=0), τότε η β- διάσπαση/μετάπτωση λέγεται μετάπτωση Fermi. Οπότε αφού το σπίν διατηρείται, σύμφωνα με τα παραπάνω, το ΔJ στις επιτρεπτές β-διασπάσεις είναι 0 ή 1, όσο και το S eν. 23

Επιτρεπτές μεταπτώσεις: Fermi ή Gamow-Teller ανάλογα με S eν =0 ή 1 ΚΑΝΟΝΑΣ #1: Οι επιτρεπτές μεταπτώσεις ᄄ έχουν l ev = 0 Άν: S eν =1 (που έχει Sz = +1, 0, -1), τότε η β-διάσπαση/μετάπτωση λέγεται μετάπτωση Gamow-Teller. Οπότε αφού το σπίν διατηρείται, σύμφωνα με τα παραπάνω, το ΔJ στις επιτρεπτές β-διασπάσεις είναι 0 ή 1, όσο και το S eν. 24

Επιτρεπτές μεταπτώσεις: μεταβολή της partity Εκτός από το σπιν, έχουμε να σκεφτούμε και την πάριτυ. Η πάριτυ του συστήματος ηλεκτρονίου-αντινετρίνο είναι: (εσωτερική πάριτυ eν)* = (-1)*(-1) leν Για τις επιτρεπτές μεταπτώσεις (l ev =0) δίνει: Άρα: Parity(eν)= -1, ( 1) l eν ( 1) l eν = ( 1) 0 = +1 ΑΝ: Parity(i) = - Parity(f)*Parity(eν)=> Parity(i) = Parity(f)=> ΕΠΙΤΡΕΠΤΕΣ ΚΑΝΟΝΑΣ #2: οι επιτρεπτές μεταπτώσεις [ που έχουν l eν =0 ] δεν έχουν μεταβολή της πάριτυ μεταξύ αρχικού και τελικού πυρήνα. Parity(i) = Parity(f) ᄄ i f +e+ν 25

Απαγορευμένες β-διασπάσεις Όταν δεν έχουμε ΔJ = 0 ή 1 και Δπάριτυ = Δπ = +1, τότε η β- διάσπαση ονομάζεται απαγορευμένη. Όπου: Δπ = ΠάριτυΑρχικούΠυρήνα * ΠάριτυΤελικούΠυρήνα Ερώτηση: Μια απαγορευμένη μετάπτωση (δηλαδή που δεν είναι ΔJΔπ = 1 + ή ΔJΔπ = 0 + ), τι τάξης απαγορευμένη είναι; Απάντηση: όση είναι η ελάχιστη τιμή της l ev που μας χρειάζεται για να εξηγήσουμε τη μετάπτωση που μας δίνεται. Βρίσκουμε την τιμή αυτή δοκιμάζοντας: 1) ποιό l ev χρειάζεται (άρτιο ή περιττό) για να εξηγήσει την Δπάριτυ, και 2) πόσο να είναι αυτό το l ev για να μας δώσει το ΔJ (σε συνδυσαμό με το S ev = 0 ή 1) 26

Οπότε: Τάξη β-διάσπασης ΚΑΝΟΝΑΣ #3: η τάξη της β-διαπασης είναι το μικρότερο l eν που εξηγεί και την μεταβολή της παριτυ [ Δπάριτυ = (-1) l ] και τη μεταβολή του σπιν ΔJ μεταξύ αρχικού και τελικού πυρήνα. Αν αυτό το l είναι το l=0, τότε η β-διάσπαση είναι επιτρεπτή, αλλιώς είναι απαγορευμένη τάξης l. 27

Άσκηση: αντιδράσεις β-διάσπασης: Q-values, επιτρεπτές, τάξη απαγόρευσης Για να βρίσκετε τις ατομικές μάζες των στοιχείων που σας χρειάζονται, χρησιμοποιείτε: Μ(Α,Ζ) = 931.478 * Α + Δ (MeV), Όπου το Δ το βρίσκεται για κάθε στοιχείο και τα ισότοπά του στο: http://skiathos.physics.auth.gr/atlas/nuclear_physics/wallarge.pdf Δ( 66 Ga) = 63.724 MeV, Δ( 66 Zn) = 68.899 MeV Δ( 72 As) = 68.230 MeV, Δ( 72 Ge) = 72.586 MeV m(e) = 0.511 ΜeV, m(ν) = 0 28

Άσκηση σημείωση για επιτρεπτή ή όχι α) με ΔJ Δπ = 2+ έχουμε αναγκαστικά l=άρτιο γιατί (-1) l = +1. * Αφού το Sev γίνεται το πολύ Sev=1, δεν μπορεί να γίνει η μετάβαση με l=0. Άρα δεν είναι επιτρεπτή η μετάβαση. * Η επόμενη άρτια τιμή είναι l=2. Με S=0, δίνουν ΔJ=2. Με S=1, δίνουν από ΔJ = 2-1 =1 μέχρι και 2+1=3, οπότε όντως το l=2 (και με S=0 και με S=1) μπορεί να εξηγήσει το ΔJ=2+ απαγορευμένη 2ης τάξης 29

Ενεργειακές στάθμες του πυρήνα Μερικά χαρακτηριστικά των διεγερμένων καταστάσεων Οι ισχυρές δυνάμεις είναι ανεξάρτητες του φορτίου 30 Οσο βαρύτερος ο πυρήνας τόσο περισσότερες στάθμες Το πρότυπο των φλοιών εξηγεί ποιοτικά τις διεγερμένες καταστάσεις του πυρήνα Πετρίδου Χαρά γ-διάσπαση Θεσσαλονίκη 2-12-2016

Υπενθύμηση: Γωνιακή Ορμή του Πυρήνα: Πυρηνικό Spin 31 Οι πυρήνες, ακόμα και στη βασική κατάσταση μπορεί να έχουν Γωνιακή ορμή που καθορίζεται/συμβολίζεται με το κβαντισμένο διανυσμα J J=ħ J(J+1) J = [J(J+1)]ħ H αναμενόμενη τιμή του J δεν είναι παρατηρήσιμο μέγεθος. Η συνιστώσα του όμως J z=m j ħ κατά την διεύθυνση κβάντωσης μπορεί να μετρηθεί και βρέθηκε ότι παίρνει 2J+1 τιμές: J m j -J J z =mħ όπου m=+j.. -J J J Η μέγιστη τιμή του J ονομάζεται σπίν του πυρήνα Είναι το διανυσματικό άθροισμα ( διανυσματική σύζευξη ) των τροχιακών στροφορμών Πετρίδου Χαρά (l) και σπίν γ-διάσπαση (s) των νουκλεονίων Θεσσαλονίκη του 2-12-2016 πυρήνα

Υπενθύμηση: Γωνιακή Ορμή του Πυρήνα: Πυρηνικό Spin Διανυσματική σύζευξη των τροχιακών στροφορμών (l) και σπιν(s) των νουκλεονίων του πυρήνα Τα διάφορα πυρηνικά μοντέλα ορίζουν τον τρόπο σύζευξης των διανυσμάτων Λογικό να υποθέσουμε ότι όμοια νουκλεόνια: nn, pp, φτιάχνουν ζευγάρια με ίσα και αντίθετα σπιν και στροφορμή (σε συμφωνία και με την αρχή του Pauli, και λόγω ελάχιστης δυναμικής ενέργειας) Αν ο πυρήνας αποτελείται απο αρτιο-ζ και άρτιο-ν, ανεξαρτητα μοντέλου, εχει σπιν μηδέν στη βασική κατάσταση Αν όλα τα ζευγάρια νουκλεονίων έχουν συνιστώσα (s)=0 το σπιν J ενος περιττού-a πυρήνα θα είναι το J = l+s του περιττού νουκλεονίου 32 Η βασική κατάσταση του πυρηνικού σπιν ενος πυρήνα μετριέται με τις μεθόδους της Υπερλεπτης Πετρίδου Χαρά Υφής και γ-διάσπαση του Μαγνητικού Θεσσαλονίκη Συντονισμού 2-12-2016

Σχετικιστική κινηματική: Σχετικιστική κινηματική E = mc 2 = η ενέργεια πού έχω επειδή απλά και μόνο έχω μάζα m ενέργεια μάζα c = ταχύτητα του φωτός Η μάζα είναι μια μορφή ενέργειας γενικά, µ ε κινητική ενέργεια Κ, έχουµε : E = Κ!m + c 2 E= m γ c 2, όπου γ = 1, και β= υ/c, µ ε υ= ταχύτητα σωµατιδίου 2!1 β p= m γ υ = m γ β c,ό π ο υ p= ο ρ µ ή E 2 ˆ p 2 c 2 m 2 c 4 : E [MeV], p [MeV/c], m [MeV/c 2 ] Σηµείωση: µε c = 1, γράφουµε : E 2 = p 2 +m 2,κλπ. 33

c= 197 MeV fm, όπου = h 2π Μονάδες c= 3 10 8 m/s µ ο ν ά δ α τ α χ ύ τ η τ α ς 1 µονάδα ενέργειας ev = 1.6 10 19 C b V = 1.6 10 19 Joule Συνήθως χρησιμοποιούμε το MeV (= 10 9 ev) Σταθερά του Plank = h = 6.626 x 10-3 4 J s α= e 2 e2 [mks]= 4 πε 0 c c [cgs]= 1 137 α = η σταθερά λεπής υφής = 1/137 µονάδα δράσης!ενέργειας χρόνου! 1 Θα χρησιμοποιούμε παντού: ev για ενέργεια (ή MeV στην πυρηνική), 1/4πε 0 = 1 σε όλους τους τύπους, και θα βάζουμε: Μετράμε: c= 197 MeV fm Μάζα: MeV/c 2 (αφού Ε = mc 2 ) Ορμή: MeV/c (αφού p = mγβc) Χρόνο σε: 1/MeV (αφού η μονάδα δράσης = Ενέργεια * Xρόνος = 1) Μήκος σε: μονάδες χρόνου = 1/MeV (αφού η μονάδα ταχύτητας=1) 1 amu = 1/12 μάζας ουδέτρου ατόμου 12 C = 931.5 MeV/c 2 Mάζα ηλεκτρονίου = 0.511 MeV/c 2 Μάζα πρωτονίου = 938.3 MeV/c 2, Μάζα νετρονίου = 939.6 MeV/c 2 e 2 = α c, όπουα= 1/137 34