CSC 314: Switching Theory. Chapter 3: Turing Machines

Σχετικά έγγραφα
Θεωρία Υπολογισμού και Πολυπλοκότητα

num(m(w 1 ;... ; w k )) = f(num(w 1 ),..., num(w k ))

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

CSC 314: Switching Theory

CSC 314: Switching Theory. Chapter 3: Turing Machines

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

Περιεχόμενα Ορισμός και λειτουργία των μηχανών Turing Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Επ. Καθ. Π. Κατσαρός Τμήμ

Φροντιστήριο 9 Λύσεις

Θεωρία Υπολογισμού και Πολυπλοκότητα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές

Περιεχόμενα ΜΤ Τυχαίας Προσπέλασης Θεωρία Υπολογισμού Ενότητα 23: Μηχανές Turing Τυχαίας Προσπέλασης Επ. Καθ. Π. Κατσαρός Τμήμα Πληροφορικής Επ. Καθ.

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Φροντιστήριο 10 Λύσεις

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Πεπερασμένος έλεγχος καταστάσεων

Σειρά Προβλημάτων 4 Λύσεις

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων

Σειρά Προβλημάτων 4 Λύσεις

Υπολογίσιμες Συναρτήσεις

Σειρά Προβλημάτων 4 Λύσεις

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E.

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Σειρά Προβλημάτων 4 Λύσεις

Φροντιστήριο 8 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις

Chapter 7, 8 : Time, Space Complexity

Σειρά Προβλημάτων 4 Λύσεις

Φροντιστήριο 8 Λύσεις

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σειρά Προβλημάτων 5 Λύσεις

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Σειρά Προβλημάτων 4 Λύσεις

Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο;

Μηχανές Turing (T.M) I

Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing

Σειρά Προβλημάτων 5 Λύσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα)

HEAD INPUT. q0 q1 CONTROL UNIT

Σειρά Προβλημάτων 4 Λύσεις

Recursive and Recursively Enumerable sets I

Chapter 7, 8 : Time, Space Complexity

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing

Σειρά Προβλημάτων 5 Λύσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA)

Σειρά Προβλημάτων 4 Λύσεις

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων.

CSC 314: Switching Theory. Chapter 3, 4: Turing Machines, Decidability

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Λύσεις 4ης Σειράς Ασκήσεων

Πεπερασμένα Αυτόματα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Σειρά Προβλημάτων 5 Λύσεις

q 0 q 0.2 q 0.1 q 0.05 q 0.05 q 0.25 q 0.15 q 0.1 q 0.2 q 0.25 q 0.25 q 0.25

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α.

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Αλγόριθμοι για αυτόματα

Blum Complexity. Αλγόριθμοι και Πολυπλοκότητα ΙΙ. Παναγιώτης Γροντάς. Δεκέμβριος

Εισαγωγή στην Επιστήμη των Υπολογιστών

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπ

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

10.1 Υπολογίσιμες συναρτήσεις και αναδρομικά σύνολα

Σειρά Προβλημάτων 5 Λύσεις

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Θεωρία Υπολογισμού και Πολυπλοκότητα

Εισαγωγή στην Επιστήμη των Υπολογιστών

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές

K είναι το σύνολο των καταστάσεων. Σ είναι το αλφάβητο των συµβόλων που χρησιµοποιούνται και το οποίο. s K είναι η αρχική κατάσταση της M.

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.

Σειρά Προβλημάτων 1 Λύσεις

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Θεωρία Υπολογισμού. Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας

244 ΚΕΦ ΑΛΑΙΟ 8. ΥΠΟΛΟΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Η f είναι μία μερική συνάρτηση στο πεδίο X, αν και μόνο αν η συνάρτηση ορίζεται για μηδέν ή περισσότερα στοι

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων

Θεωρία Υπολογισµού και Πολυπλοκότητα

214 ΚΕΦΑΛΑΙΟ 7. ΕΠΙΛΥΣΙΜΟΤΗΤΑ - ΜΗ ΕΠΙΛΥΣΙΜΟΤΗΤΑ 7.1 Το Πρόβλημα του Τερματισμού Θεώρημα 7.1 (Πρόβλημα του Τερματισμού - ημιαπόφαση) Η γλώσσα του Προβ

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Transcript:

CSC 314: Switching Theory Chapter 3: Turing Machines 28 November 2008 1 1

Υπολογισμοί σε Μηχανές Turing Πως χρησιμοποιούμε μια μηχανή Turing? Για την αναγνώριση μιας γλώσσας? Σύμβαση για την αναγνώριση γλωσσών Για μια μηχανή Μ=(Q, Σ, δ, s, Η) Οι λέξεις που ελέγχουμε δεν περιέχουν κενά :w Σ -{t, B} Αρχική συνολική κατάσταση με είσοδο w: (s, Btw). 2

Κατάσταση Αποδοχής, Απόρριψης Ορισμός. Για μια Μ=(Q, Σ, δ, s, Η) τέτοια ώστε H={y, n}, κάθε συνολική κατάσταση με κατάσταση τερματισμού y = συνολική κατάσταση αποδοχής (accepting configuration) ΗΜαποδέχεται (accepts) την w αν παράγει μια συνολική κατάσταση αποδοχής. Κάθε συνολική κατάσταση με κατάσταση τερματισμού n = συνολική κατάσταση απόρριψης (rejecting configuration) ΗΜαπορρίπτει (rejects) την w αν παράγει μια συνολική κατάσταση τερματισμού 3

Αναδρομικές Γλώσσες (Recursive Languages) Αν Σ 0 Σ -{t, B}το αλφάβητο εισόδου της M H M αποφασίζει μια γλώσσα L Σ 0* αν για κάθε λέξη w Σ * 0 είναι αληθές ότι: Αν w L, η M δέχεται την w και αν w L η Μ απορρίπτει την w. Μια γλώσσα είναι αναδρομική (recursive) αν υπάρχει μια μηχανή που την αποφασίζει (decides). 4

Παρατήρηση Στα προηγούμενα μοντέλα υπολογισμού (αυτόματα) ημηχανή είτε δεχόταν μια είσοδο είτε την απόρριπτε. Στις μηχανές Turing μπορεί να μην είναι μόνο αυτά τα δύο πιθανά αποτελέσματα μιας εισόδου: Για μια λέξη, η οποία δεν είναι δεχτή από τη γλώσσα της μηχανής μπορεί να μην τερματίσει ποτέ. 5

Αναδρομικές Συναρτήσεις (Recursive Functions) H μηχανές Turing μπορεί να υπολογίζουν και συναρτήσεις f(w): Ορισμός. Έστω Μ=(Q, Σ, δ, s, {h}) και Σ 0 Σ -{t, B} w Σ * 0. Αν η Μ τερματίζει με είσοδο w και (s, Btw,) `*(h, Btz), z Σ 0*. z = έξοδος της M με είσοδο w = Μ(w) (η M(w) ορίζεται μόνο αν η Μ τερματίσει) Έστω συνάρτηση f: Σ 0* Σ 0*. HM υπολογίζει (computes)την f αν για κάθε w Σ 0*, M(w) = f(w) Δηλ. για κάθε w Σ 0* η Μ κάποτε τερματίζει με είσοδο w και η ταινία περιέχει την λέξη Btf(w). H συνάρτηση f είναι αναδρομική (decible) αν υπάρχει μια Turing μηχανή M που υπολογίζει την f. 6

Παράδειγμα H συνάρτηση k : Σ * Σ * η οποία ορίζεται ως k(w) = w w μπορεί να υπολογιστεί από τη μηχανή CS C : μηχανή αντιγραφής μιας λέξης w σε wt w ακολουθούμενη από S : μια μηχανή αριστερής μετατόπισης μιας λέξης B twt σε B w t 7

Αναδρομικές Συναρτήσεις Οποιοδήποτε φυσικό αριθμό μπορούμε να τον αναπαραστήσουμε ως 0 1 (0 1) *. Οι μηχανές που υπολογίζουν συναρτήσεις από το {0,1,} * στο {0,1,} * είναι μηχανές που υπολογίζουν συναρτήσεις από τους φυσικούς αριθμούς στους φυσικούς αριθμούς Μιατέτοιασυνάρτησηf: {0,1,} * {0,1,} * ηοποία υπολογίζεται από κάποια μηχανή M ονομάζεται αναδρομική. 8

Κλειστότητα ως προς το Ένωση, Τομή Θεώρημα. Το σύνολο των αναδρομικών γλωσσών είναι κλειστό ως προς τις πράξεις ένωση τομή συμπλήρωση σύμπτηξη θήκη Kleene. 9

Αναδρομικά Απαριθμήσιμες Γλώσσες-(Recursively Enumerable) Αν μια μηχανή Turing αποφασίζει μια γλώσσα ή υπολογίζει μια συνάρτηση μπορεί να θεωρηθεί ως ένας αλγόριθμος. Ορισμός. Έστω Μ=(Q, Σ, δ, s, {h}) και Σ 0 Σ -{t, B}ένα αλφάβητο και L Σ * 0 μια γλώσσα. ΗΜημιαποφασίζει (semiterminates)την L αν για κάθε λέξη w Σ * 0 αληθεύει το εξής: w L αν και μόνο αν η M τερματίζει με είσοδο w. Μια γλώσσα L είναι αναδρομικά απαριθμήσιμη (recursively enumerable)αν υπάρχει μια μηχανή Μ που ημιαποφασίζει την L. 10

Αναδρομικά Αρίθμησες Γλώσσες Αν η Μ έχει είσοδο w L τερματίζει. Αν όμως w Σ * 0-L τότε η Μ δεν θα εισέλθει ποτέ σε κατάσταση τερματισμού. Μ(w) =% : η M αποτυγχάνεινατερματίσειμεείσοδοw Αφού από κάθε συνολική κατάσταση παράγεται με άλλη συνολική κατάσταση η μηχανή θα συνεχίζει να υπολογίζει επ άπειρον. Για μια Μηχανή Turing και μια λέξη w? L δεν μπορούμε να αναγνωρίσουμε αν έχει τελειώσει με τον υπολογισμό της επειδή αν w Σ * 0-Lδεν θα τερματίσει ποτέ αλλά αυτό (ότι w L) δεν το ξέρουμε. Ορισμός (ισοδύναμος). ΗΜημιαποφασίζει την L αν για κάθε λέξη w Σ * 0, ισχύει ότι Μ(w) = % αν και μόνο αν η w L. 11

Παράδειγμα L={w {a, b} * : η w περιέχει τουλάχιστον ένα a}. Τότε η L ημιαποφασίζεται από τη μηχανή: a Σαρώνει δεξιά ώσπου να βρει ένα a και τερματίζει. Ημηχανήτερματίζειμεείσοδοw αν και μόνο αν w L Αν η w δεν περιέχει a, ημδενθατερματίσειποτέ. H L είναι αναδρομικά απαριθμήσιμη. 12

Μειονέκτημα Μηχανών Turing Στα αυτόματα αν διαβαστεί όλη η λέξη το αυτόματο τερματίζει πάντα σε τελική (οπότε αποδέχεται τη λέξη) ημητελικήκατάσταση(οπότε δεν αποδέχεται τη λέξη). Στις μηχανές Turing που ημιαποφασίζουν για μια γλώσσα αν η λέξη δεν είναι αποδεχτή δεν τερματίζει ποτέ αλλά συνεχίζει επ άπειρον να κάνει υπολογισμούς. Οπότεδενξέρουμεανπεριμέναμεαρκετάγιαναδούμεανηλέξη είναι αποδεχτή ή όχι. 13

Αναδρομικές και Αναδρομικά Αρίθμησες Γλώσσες Θεώρημα. Αν μια γλώσσα είναι αναδρομική είναι και αναδρομικά αριθμίσιμη. Απόδειξη. Μετατρέπουμε την μηχανή έτσι ώστε να ημιαποφασίζει αντί να αποφασίζει. Αλλάζουμε την κατάσταση απόρριψης n σε μη τερματική κατάσταση και επεκτείνουμε την δ: δ (n, a) =(n, a) για κάθε a Σ. 14

Ισχύει το αντίστροφο? Μπορούμε πάντα να μετατρέψουμε μια γλώσσα που είναι αναδρομικά απαριθμήσιμη (ημιαποφασίζει) αναδρομική (αποφασίζει)? Όχι! Υπάρχουν γλώσσες που δεν είναι αναδρομικές. Επίσης, Δεν είναι όλες οι συναρτήσεις αναδρομικές! (για οποιαδήποτε συνάρτηση, δεν υπάρχει πάντα μια μηχανή Turing M που να την υπολογίζει) 15

Κλειστότητα ως προς το Συμπλήρωμα Θεώρημα. Αν L είναι αναδρομική γλώσσα τότε το συμπλήρωμα της είναι επίσης αναδρομική γλώσσα. Απόδειξη. Αν M είναιτοαυτόματοπουδέχεταιτηνl. Μ = ίδια όπως M αλλά αλλάζουμε όλες τις μεταβιβάσεις σε n σε y και αντίστροφα. L 16

Αναδρομικά Απαριθμήσιμες Γλωσσες-Κλειστότητα Θεώρημα. Το σύνολο των αναδρομικά αριθμήσιμων γλωσσών είναι κλειστό ως προς τις πράξεις ένωση τομή. Θεώρημα. Το σύνολο των αναδρομικά αριθμήσιμων γλωσσών δεν είναι κλειστό ως προς την πράξη συμπλήρωσης. 17

Συναναδρομικά Απαριθμίσιμες Γλώσσες Μιαγλώσσαείναισυναναδρομικά απαριθμήσιμη αν υπάρχει μια μηχανήπουναημιαποφασίζειγιατοσυμπλήρωματηςγλώσσας. Κάθε αναδρομική γλώσσα είναι αναδρομικά απαριθμίσιμη και συναναδρομικά απαριθμίσιμη. Πρόταση. Μια γλώσσα είναι αναδρομική αν και μόνο αν είναι αναδρομικά απαριθμίσιμη και συναναδρομικά απαριθμίσιμη. Η τομή των αναδρομικά απαριθμήσιμων και συναναδρομικά απαριθμίσιμων γλωσσών είναι το σύνολο των αναδρομικών γλωσσών. 18

Επεκτάσεις Μηχανών Turing Μηχανές Turing με πολλαπλές ταινίες (k) Σε κάθε βήμα, κάθε κεφαλή διαβάζει και γράφει ή μετακινείται. 19

Mηχανή ktαινιών Πρόταση. Οποιαδήποτε συνάρτηση υπολογίζεται ή οποιαδήποτε γλώσσα αποφασίζεται ή ημιαποφασίζεται από μια μηχανή k ταινιών, υπολογίζεται, αποφασίζεται ή ημιαποφασίζεται, αντίστοιχα από μια μηχανή Turing. 20

Μηχανή πολλαπλών κεφαλών Επιτρέπουμε πολλαπλές κεφαλές και μια ταινία. Πρόταση. Οποιαδήποτε συνάρτηση υπολογίζεται ή οποιαδήποτε γλώσσα αποφασίζεται ή ημιαποφασίζεται από μια μηχανή με πολλαπλές κεφαλές, υπολογίζεται, αποφασίζεται ή ημιαποφασίζεται, αντίστοιχα από μια μηχανή Turing. 21

Μηχανές Turing Τυχαίας Προσπέλασης Η κεφαλή στις μηχανές που είδαμε μέχρι τώρα μπορεί σε ένα βήμα να διαβάσει ένα τετράγωνο αριστερά ή δεξιά της τρέχουσας θέσης. Στις μηχανές τυχαίας προσπέλασης Ηκεφαλήμπορείναδιαβάσειοποιοδήποτε τετράγωνο της ταινίας σε ένα βήμα. Με την χρήση καταχωρητών οι οποίοι διαχειρίζονται τις διευθύνσεις των τετράγωνων της ταινίας Πρόταση. Οποιαδήποτε συνάρτηση υπολογίζεται ή οποιαδήποτε γλώσσα αποφασίζεται ή ημιαποφασίζεται από μια μηχανή Turing τυχαίας προσπέλασης, υπολογίζεται, αποφασίζεται ή ημιαποφασίζεται, αντίστοιχα από μια μηχανή Turing. 22

Μη Ντετερμινιστικές Μηχανές Turing Από μια συνολική κατάσταση είναι δυνατόν να προκύψουν πολλές εναλλαχτικές συνολικές καταστάσεις. Πρόταση. Οποιαδήποτε συνάρτηση υπολογίζεται ή οποιαδήποτε γλώσσα αποφασίζεται ή ημιαποφασίζεται από μια Μη Ντετερμινιστική μηχανή Turing, υπολογίζεται, αποφασίζεται ή ημιαποφασίζεται, αντίστοιχα από μια μηχανή Turing. 23