Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο;
|
|
- Αφροδίσια Κλωθώ Καραμανλής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Αποφασισιµότητα / Αναγνωρισιµότητα Ορέστης Τελέλης telelis@unipi.gr Μη Επιλύσιµα Προβλήµατα Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 2/12/2015 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Η έννοια της αναγωγής Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο; Βασικό σκεπτικό: Θέλουµε να αποδείξουµε τη µη επιλυσιµότητα προβλήµατος B. Εστω ότι γνωρίζουµε πως ένα πρόβληµα, A, είναι µη επιλύσιµο. Ανάγουµε την επίλυση του A στην επίλυση του B. Αν επιλύαµε το B, ϑα «χρησιµοποιούσαµε» τη µέθοδό µας για το A. Αυτό δείχνει ότι το A είναι το πολύ «τόσο δύσκολο» όσο το B. Επειδή όµως το A είναι µη επιλύσιµο, το επιχείρηµα οδηγεί σε άτοπο. Εποµένως το B πρέπει να είναι µη επιλύσιµο. Ορίζουµε: ΤΕΡΜΑΤΙΣΜΟΣ/TM = { M, w η TM M τερµατίζει για είσοδο w } Θεώρηµα: Η γλώσσα ΤΕΡΜΑΤΙΣΜΟΣ/TM δεν είναι ( Turing-)αποφασίσιµη. Σχόλια: Η γλώσσα αυτή (και το πρόβληµα) δεν αποτελούν το Πρόβληµα του Τερµατισµού. Το Πρόβ. του Τερµατισµού ϱωτά αν µια TM αποδέχεται δεδοµένη είσοδο. ιαισθητικά, το Πρόβληµα του Τερµατισµού «υποκρύπτει» το πρόβληµα του τίτλου. Αν αποφασίζεται η Αποδοχη/TM, ϑα πρέπει να αποφασίζεται η ΤΕΡΜΑΤΙΣΜΟΣ/TM. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28
2 Απόδειξη Για δεδοµένη TM, M, είναι L(M) = ; Εστω ότι υπάρχει µια TM R που αποφασίζει την ΤΕΡΜΑΤΙΣΜΟΣ/TM. Για είσοδο M, w, η R: 1. Αποδέχεται, αν η M τερµατίζει (αποδέχεται ή απορρίπτει) για είσοδο w. 2. Απορρίπτει, αν η M δεν τερµατίζει για είσοδο w. Τότε, ορίζουµε TM που αποφασίζει το Πρόβληµα του Τερµατισµού (Αποδοχη/TM): Για είσοδο M, w, η TM S: 1. Εκτελεί την R, για είσοδο M, w. 2. Απορρίπτει, εφόσον η R απορρίψει. Ορίζουµε: /TM = { M για την TM M έχουµε L(M) = } Θεώρηµα: Η γλώσσα /TM δεν είναι αποφασίσιµη. Απόδειξη: Εστω ότι υπάρχει TM, R, που αποφασίζει για είσοδο M αν M /TM. Θα δείξουµε ότι TM που αποφασίζει την Αποδοχη/TM. (ΑΤΟΠΟ) 3. ιαφορετικά, προσοµοιώνει την M, για είσοδο w. 4. Αποδέχεται, αν αποδεχθεί η M, διαφορετικά, απορρίπτει. ΑΤΟΠΟ Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Απόδειξη (Συνέχεια) ίνεται είσοδος M, w για το πρόβληµα (απόφασης) Αποδοχη/TM. εδοµένης της TM εισόδου M, ορίζουµε την ακόλουθη TM, M w : Για είσοδο z, η M w : 1. Απορρίπτει, αν z w. 2. Αν z = w, προσοµοιώνει M(w). Αποδέχεται, αν αποδέχεται η M(w). Τότε µπορούµε να ορίσουµε την ακόλουθη TM, S, για την Αποδοχη/TM: Για είσοδο M, w, η S: 1. Από την είσοδο M, w δηµιουργεί την M w. 2. Προσοµοιώνει την R (ορισµένη προηγουµένως), για είσοδο M w. 3. Απορρίπτει, αν η R αποδέχεται. ιαφορετικά, αποδέχεται. Επεξήγηση Εστω είσοδος M, w Αποδοχη/TM για την S. Τότε, η M w : απορρίπτει για είσοδο w, αποδέχεται για είσοδο = w. Και, τότε, η S: Προσοµοιώνει την R (για το πρόβληµα /TM) µε είσοδο M w. Η R απορρίπτει, διότι η M w αποδέχεται την w. Τότε η S αποδέχεται ορθώς, αφού M, w Αποδοχη/TM. Οµοίως επαληθεύεται ότι η S απορρίπτει είσοδο M, w Αποδοχη/TM. ιότι, τότε η M w δεν αποδέχεται καµία είσοδο. Εποµένως η R αποδέχεται είσοδο M W για την /TM. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28
3 Για δεδοµένη TM, M, είναι η L(M) κανονική; Απόδειξη Ορίζουµε: REG/TM = { M, για την TM M, η L(M) είναι κανονική } Θεώρηµα: Η γλώσσα REG/TM δεν είναι αποφασίσιµη. Απόδειξη: Εστω ότι TM R που, για δεδοµένη TM M, αποφασίζει αν L(M) κανονική. είχνουµε ότι TM S που αποφασίζει την Αποδοχη/TM. Για είσοδο M, w, η TM S: 1. Κωδικοποιεί (στην ταινία) την ακόλουθη TM, M 0 n 1n, όπου: Για είσοδο x µηχανή Turing M 0 n 1 n: 1.1 Αποδέχεται, αν x είναι της µορφής 0 n 1 n, για n ιαφορετικά (όταν x δεν είναι της µορφής 0 n 1 n ), προσοµοιώνει την M για είσοδο w και αποδέχεται, εφόσον η M αποδέχεται. 2. Προσοµοιώνει την R, για είσοδο M 0 n 1 n. 3. Αποδέχεται, αν η R αποδέχεται. Απορρίπτει αν η R απορρίπτει. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Επεξήγηση Αναγνωρίζουν δύο TMs την ίδια γλώσσα; Εστω είσοδος M, w Αποδοχη/TM για την S. Επειδή η M αποδέχεται την w, η TM M 0 n 1 n αποδέχεται κάθε x {0, 1}. Τότε η R αποδέχεται την είσοδο M 0 n 1 n, διότι {0, 1} κανονική. Κατά συνέπεια, η S ορθώς αποδέχεται την είσοδο M, w. Εστω είσοδος M, w Αποδοχη/TM για την S. Επειδή M δεν αποδέχεται w, η M 0 n 1 n αποδέχεται µόνο x {0n 1 n : n 0} Τότε η R απορρίπτει M 0 n 1 n, διότι {0n 1 n : n 0} όχι κανονική. Ορίζουµε: /TM = { M 1, M 2 οι M 1,M 2 είναι TMs και L(M 1 ) = L(M 2 ) } Θεώρηµα: Η γλώσσα /TM δεν είναι αποφασίσιµη. Απόδειξη: Εστω TM R που αποφασίζει τη γλώσσα /TM. Θα δείξουµε ότι υπάρχει TM S που αποφασίζει τη γλώσσα /TM. Κατά συνέπεια, η S ορθώς απορρίπτει την είσοδο M, w. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28
4 Απόδειξη Για είσοδο M, η µηχανή Turing S: 1. Κωδικοποιεί µια µηχανή M, που απορρίπτει όλες τις εισόδους της. 2. Προσοµοιώνει τη µηχανή R, για είσοδο M, M. Αναγωγές Απεικόνισης 3. Αν η R αποδέχεται, αποδέχεται και η S. 4. ιαφορετικά, η R απορρίπτει και απορρίπτει και η S. Επεξήγηση: Αν αποφασίζεται η /TM, τότε αποφασίζεται και η /TM. (ΑΤΟΠΟ) Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Υπολογίσιµες Απεικονίσεις Παράδειγµα 1 Ορισµός: Μια συνάρτηση f : Σ Σ λέγεται υπολογίσιµη αν: Ολες οι συνήθεις αριθµητικές πράξεις µεταξύ ακεραίων αποτελούν υπολογίσιµες συναρτήσεις. Μπορούµε, π.χ., να έχουµε µια µηχανή Turing που: υπάρχει µηχανή Turing που, µε είσοδο w L(Σ ), τερµατίζει, έχοντας στην ταινία της µόνο τη λέξη f(w) L(Σ ). δέχεται είσοδο m, n, όπου m, n ακέραιοι, «επιστρέφει» (αφήνει πάνω στην ταινία σαν έξοδο) m + n. Πώς ϑα µπορούσαµε να περιγράψουµε λεπτοµερώς µια τέτοια µηχανή; Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28
5 Παράδειγµα 2 Αναγωγή Απεικόνισης Μια υπολογίσιµη συνάρτηση µπορεί επιτελεί µετασχηµατισµό µιας TM. Παράδειγµα: συνάρτηση f που δέχεται σαν όρισµα µια λέξη w και: Ορισµός: Μια γλώσσα A είναι απεικονιστικά αναγώγιµη σε µια γλώσσα B αν: Αν w = M, όπου M µια TM, τότε η f επιστρέφει M, όπου: υπάρχει υπολογίσιµη συνάρτηση f : Σ Σ, 1. M µηχανή Turing µε L(M ) = L(M), 2. η M δεν προσπαθεί ποτέ να µετακινήσει την κεφαλή της πέρα από το αριστερό άκρο της ταινίας της. Η f µετασχηµατίζει την M προσθέτοντας επιπλέον καταστάσεις. Αν η w δεν είναι κωδικοποίηση µηχανής Turing, τότε η f επιστρέφει ɛ. τέτοια ώστε, για κάθε λέξη w: w A f(w) B. η f λέγεται αναγωγή της A στη B. Συµβολίζουµε µε A m B την αναγωγιµότητα της A στη B. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Παρατηρήσεις Αναγωγές Απεικόνισης: Ιδιότητες και Χρησιµότητα Ερωτήµατα «ανήκειν» στην A απεικονίζονται υπολογιστικά: σε ερωτήµατα «ανήκειν» στη B. αντί να ελέγχουµε αν w A, µπορούµε να ελέγχουµε αν f(w) B. µε την υπολογιστική επιβάρυνση της f. Πρόβληµα που έχει αναγωγή απεικόνισης σε ήδη λυµένο πρόβληµα επιλύεται µέσω του δεύτερου. Η αναγωγή απεικόνισης ονοµάζεται έτσι λόγω της (υπολογίσιµης) συνάρτησης f (που είναι µια απεικόνιση). Θεώρηµα: Αν A m B και B αποφασίσιµη, τότε και A αποφασίσιµη. Απόδειξη: Ορίζουµε µια TM M A, που αποφασίζει την A. δεδοµένης µιας TM M B που αποφασίζει τη B Για είσοδο w, η M A : 1. Υπολογίζει τη λέξη f(w), όπου f : Σ Σ η υπολογίσιµη αναγωγή από την A στη B. 2. Προσοµοιώνει τη µηχανή M B για είσοδο f(w). 3. Επιστρέφει την έξοδο της M B. Χρήσιµο: Αν A m B και A µη αποφασίσιµη, τότε και B µη αποφασίσιµη. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28
6 Παράδειγµα 1 Παράδειγµα 2 είξαµε: αναγωγή της Αποδοχη/TM στην ΤΕΡΜΑΤΙΣΜΟΣ/TM. Θα δείξουµε επίσης ότι: ΤΕΡΜΑΤΙΣΜΟΣ/TM m Αποδοχη/TM. Αρκεί η περιγραφή TM που υπολογίζει την απεικόνιση. Για είσοδο M, w, η µηχανή Turing F: 1. Κωδικοποιεί (στην ταινία της) την εξής µηχανή, M : Για είσοδο x η µηχανή Turing M : είξαµε: µη αποφασισιµότητα της /TM. Η απόδειξη ηταν αναγωγή απεικόνισης /TM m /TM. Απεικονίζει κάθε M /TM σε µια M, M 0 /TM, όπου: 1 Προσοµοιώνει τη µηχανή M για είσοδο x. 2 Αν η M αποδέχεται, αποδέχεται και η M. 3 Αν η M απορρίπτει, η M «εγκλωβίζεται» σε ατέρµονο υπολογισµό. M είναι µια µηχανή που απορρίπτει όλες τις εισόδους της. 2. «Επιστρέφει» (γράφοντας στην ταινία της) τη λέξη M, w. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Παράδειγµα 3 Αναγωγές Απεικόνισης για Αναγνωρισιµότητα Εχουµε ήδη αποδείξει ότι η γλώσσα /TM δεν είναι αποφασίσιµη. Με αναγωγή της γλώσσας Αποδοχη/TM στη γλώσσα /TM. Υπάρχει αντίστοιχη αναγωγή απεικόνισης από την Αποδοχη/TM στην /TM; Μπορούµε εύκολα να κατασκευάσουµε µια µηχανή F, που µετατρέπει µια είσοδο M, w σε µια λέξη M w. Οµως, η M αποδέχεται την w αν και µόνο αν L(M w ) =. Εποµένως, η F «υλοποιεί» (υπολογίζει) µια αναγωγή απεικόνισης από την Αποδοχη/TM στη γλώσσα /TM. Αποδεικνύει ϐεβαίως ότι η /TM δεν είναι αποφασίσιµη. Αλλά δεν αποτελεί αναγωγή απεικόνισης της Αποδοχη/TM στην /TM. Θεώρηµα: Αν A m B και B αναγνωρίσιµη, τότε και A αναγνωρίσιµη. Απόδειξη: Ορίζουµε TM M A, που αναγνωρίζει την A. δεδοµένης TM M B που αναγνωρίζει τη B. Για είσοδο w, η TM M A : 1. Υπολογίζει τη λέξη f(w), όπου f : Σ Σ η υπολογίσιµη αναγωγή από την A στη B. 2. Προσοµοιώνει τη µηχανή M B για είσοδο f(w). 3. Επιστρέφει την έξοδο της M B, εφόσον η M B τερµατίσει. Χρήσιµο: Αν A m B και A µη αναγνωρίσιµη, τότε και B µη αναγνωρίσιµη. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28
7 Τυπική Εφαρµογή Μια (και) συµπληρωµατικά µη αναγνωρίσιµη γλώσσα Προκύπτει όταν ϑέσουµε A = Αποδοχη/TM, µη αναγνωρίσιµη γλώσσα. Αν ϑέλουµε να δείξουµε ότι η B µη αναγνωρίσιµη, αρκεί να δείξουµε: Αποδοχη/TM m B Σύµφωνα µε τον ορισµό της απεικονιστικής αναγωγιµότητας: A m B Ā m B Εποµένως µπορούµε να δείξουµε ότι B µη αναγνωρίσιµη αποδεικνύοντας: Θεώρηµα Η γλώσσες /TM και /TM δεν είναι αναγνωρίσιµες. Χρειαζόµαστε δύο απεικονιστικές αναγωγές: 1. Αποδοχη/TM m /TM. 2. Αποδοχη/TM m /TM. Αποδοχη/TM m B Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Απόδειξη (1/2) Απόδειξη (2/2) Η παρακάτω TM F υλοποιεί την αναγωγή απεικόνισης Αποδοχη/TM m /TM: Για είσοδο M, w, η µηχανή Turing, F: 1. Κωδικοποιεί (στην ταινία της) τη µηχανή Turing M 1 : Για κάθε είσοδο, η µηχανή Turing M 1 απορρίπτει. 2. Κωδικοποιεί (στην ταινία της) τη µηχανή Turing M 2 : Για κάθε είσοδο, η µηχανή Turing M 2 : 2.1 Προσοµοιώνει την M για είσοδο w. 2.2 Αποδέχεται, αν η M αποδέχεται. 3. «Επιστρέφει» τη λέξη M 1, M 2 (την κωδικοποιήση των δύο µηχανών). Η παρακάτω TM G υλοποιεί την αναγωγή απεικόνισης Αποδοχη/TM m /TM: Για είσοδο M, w, η µηχανή Turing, G: 1. Κωδικοποιεί (στην ταινία της) τη µηχανή Turing M 1 : Για κάθε είσοδο, η µηχανή Turing M 1 αποδέχεται. 2. Κωδικοποιεί (στην ταινία της) τη µηχανή Turing M 2 : Για κάθε είσοδο, η µηχανή Turing M 2 : 2.1 Προσοµοιώνει την M για είσοδο w. 2.2 Αποδέχεται, αν η M αποδέχεται. 3. «Επιστρέφει» τη λέξη M 1, M 2 (την κωδικοποιήση των δύο µηχανών). Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 28
Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E.
Οι γλώσσες των Μηχανών Turing Αποφασισιµότητα / Αναγνωρισιµότητα Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L Αποδέχεται όταν (η είσοδος στην TM) w L. Ορέστης Τελέλης telelis@unipi.gr Τµήµα
Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές
Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα
Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.
Μη ντετερµινιστικές Μηχανές Turing - NTMs (1/6) Μηχανές Turing: Μη ντετερµινισµός, Επιλύσιµα Προβλήµατα Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 10 εκεµβρίου 2016
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 16: Αναγωγές Τι θα κάνουμε σήμερα Το Πρόβλημα του Τερματισμού (4.2) Εισαγωγή στις Αναγωγές Ανεπίλυτα Προβλήματα από την Θεωρία των Γλωσσών (5.1) Απεικονιστικές
Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing
Σε αυτό το µάθηµα Εισαγωγή στις Μηχανές Turing Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Παραδείγµατα Μηχανών Turing Παραλλαγές: Πολυταινιακές, Μη ντετερµινιστικές
Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.
Σύνοψη Προηγούµενου Κανονικές Γλώσσες () ιαδικαστικά του Μαθήµατος. Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Εισαγωγή: Υπολογισιµότητα και Πολυπλοκότητα. Βασικές
Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων:
Ανω Φράγµα στην Τάξη των Συναρτήσεων Ορισµός. Εστω συναρτήσεις: f : N R και g : N R Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων Ορέστης Τελέλης η (τάξη της) f(n) είναι O( g(n) ) αν υπάρχουν σταθερές C και n
Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς
Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 17 Υπενθύµιση: Ακολουθίες Ακολουθία είναι συνάρτηση από
Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.
Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό
Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις
Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού
num(m(w 1 ;... ; w k )) = f(num(w 1 ),..., num(w k ))
Υπολογισμοί με Μ.Τ. Εστω M = (K, Σ, δ, s, {y, n}) μια Μ.Τ. Κάθε συνολική κατάσταση τερματισμού της οποίας η κατάσταση τερματισμού είναι το y, θα ονομάζεται συνολική κατάσταση αποδοχής, ενώ αν η κατάσταση
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί);
Μοντελοποίηση του Υπολογισµού Στοιχεία Θεωρίας Υπολογισµού (): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ποιές οι θεµελιώδεις δυνατότητες
Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές
Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 1 /
Παραδείγµατα. Τάξη των Συναρτήσεων (1) Παράδειγµα (2) Να δειχθεί ότι 7n 2 = O(n 3 ). Ορέστης Τελέλης
Τάξη των Συναρτήσεων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 1. Να δειχθεί ότι 7n 2 = O(n 3 ) 2. Να δειχθεί ότι η n 2 δεν είναι O(n). 3. Αληθεύει ότι n 3 =
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ Τι θα κάνουμε σήμερα Επιλύσιμα Προβλήματα σχετικά με Ασυμφραστικές Γλώσσες (4.1.2) Το Πρόβλημα του Τερματισμού
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
Φροντιστήριο 9 Λύσεις
Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.
ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r
ιαιρετότητα Στοιχεία Θεωρίας Αριθµών ο a διαιρεί τον b: συµβολισµός: a b Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς a b και a c a (b + c) a b a bc, για κάθε c Z +
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει την ακόλουθη γλώσσα. { a n b n+2 c n 2 n 2 } Λύση: H ζητούμενη μηχανή Turing μπορεί να
Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς
Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 20 Επιπλέον Ασκήσεις Για κάθε n 1: n i 2 = n(n + 1)(2n
Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:
Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C
Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata
Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:
Προηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Σύνοψη Ιδιοτήτων
Προηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων Ορέστης Τελέλης η (τάξη της) f() είναι O( g() ) αν υπάρχουν σταθερές C και 0, τέτοιες ώστε: f() C g() για κάθε 0
Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων
Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Απόστολος Φίλιππας Τµήµα Μηχανικών Η/Υ και Πληροφορικής 19 Μαΐου,
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 12: Μηχανές Turing Τι θα κάνουμε σήμερα Εισαγωγή στις Μηχανές Turing (TM) Τυπικός Ορισμός Μηχανής Turing (3.1.1) 1 Τι είδαμε μέχρι στιγμής Πεπερασμένα
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w
Φροντιστήριο 10 Λύσεις
Άσκηση 1 Φροντιστήριο 10 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {0,1} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.
Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων. Εφαρµογές. Παράδειγµα 1.
Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων Ορέστης Τελέλης telelis@unipi.g Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς A B C = A + B + C A B B C A C +
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 11: Καθολική μηχανή Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.
Επιπλέον Ασκήσεις Μαθηµατική Επαγωγή Για κάθε n 1: 2 = n(n + 1(2n + 1 6 Ορέστης Τελέλης telels@unpgr Για κάθε n 1: 3 = n2 (n + 1 2 4 Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Για κάθε n 10: 2 n
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Πιο κάτω υπάρχει ένα σχεδιάγραμμα που τοποθετεί τις κλάσεις των κανονικών, ασυμφραστικών, διαγνώσιμων και αναγνωρίσιμων γλωσσών μέσα στο σύνολο όλων των γλωσσών. Ακολουθούν
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 24: Μη Ντεντερμινιστικές Μηχανές Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (3) Παραδείγµατα µε Κανονικές Εκφράσεις. Σε αυτό το µάθηµα.
Σύνοψη Προηγούµενου Κανονικές Γλώσσες (3) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς (Ντετερµινιστική) Κλειστότητα Κανονικών Γλωσσών ως προς Ενωση. Κατασκευή: DFA
Φροντιστήριο 8 Λύσεις
Άσκηση 1 Θεωρήστε την πιο κάτω Μηχανή Turing. Φροντιστήριο 8 Λύσεις Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία των φάσεων τις οποίες διατρέχει η μηχανή όταν δέχεται τη διδόμενη λέξη. (α) 11 (β) 1#1
ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ. Μάθηµα 3.2: ηµήτρης Ψούνης
ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ Μάθηµα 3.2: Ντετερµινιστικά Πεπερασµένα Αυτόµατα ηµήτρης Ψούνης 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β. Θεωρία 1. Πεπερασµένα Αυτόµατα 1. Λειτουργία και Παραδείγµατα
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα Τι θα κάνουμε σήμερα Εισαγωγικά Χρονική Πολυπλοκότητα (7) Κλάση P (7.2) Κλάση ΝΡ (7.3) ΝΡ-πληρότητα (7.4) Χωρική
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων.
30 Νοεμβρίου 2016 Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων. Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων. t = (c Α, c Π, c Δ, c Κ ) C 4 πλακίδιο του Wang. Πλακίδια του Wang C πεπερασμένο σύνολο
CSC 314: Switching Theory
CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2
Φροντιστήριο 8 Λύσεις
Άσκηση 1 Φροντιστήριο 8 Λύσεις Θεωρήστε την πιο κάτω Μηχανή Turing όπου όλες οι μεταβάσεις που απουσιάζουν οδηγούν στην κατάσταση απόρριψης (q απόρριψης). Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή
Περιεχόμενα Ορισμός και λειτουργία των μηχανών Turing Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Επ. Καθ. Π. Κατσαρός Τμήμ
Θεωρία Υπολογισμού Ενότητα 20: Μηχανές Turing: Σύνθεση και Υπολογισμοί Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε
Οµοφωνία σε σύστηµα µε αϖοτυχίες κατάρρευσης διεργασιών Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες
Στοιχεία Θεωρίας Γραφηµάτων (1)
Στοιχεία Θεωρίας Γραφηµάτων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 1 / 23 Μη κατευθυνόµενα γραφήµατα
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {1010 2 10 3 10 n 1 10 n 1 n 1}. (β) Να διατυπώσετε
Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1.
Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα 2): Αυτόµατα Στοίβας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μη Κανονικές Γλώσσες Το Λήµµα της Αντλησης για τις
Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαγνώσιμες Γλώσσες (4.1) Επιλύσιμα Προβλήματα σχετικά με Κανονικές Γλώσσες Επιλύσιμα Προβλήματα
Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.
Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 10. Μηχανές Turing 20,23 Μαρτίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μηχανές Turing: Ένα Γενικό Μοντέλο Υπολογισμού Ποια μοντέλα υπολογισμού μπορούν να δεχθούν γλώσσες
Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: L p Σύγκλιση Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creaive Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές
Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές
Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε
τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n
Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w w = (ab) 2m b m (ba) m, m 0 } (β) Να διατυπώσετε
Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)
Μη κατευθυνόµενα γραφήµατα Στοιχεία Θεωρίας Γραφηµάτων (1) Απλό µη κατευθυνόµενο γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E) µε σύνολο κορυφών/κόµβων V Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων,
- εξίσωση που εκφράζει τον n-οστό όρο a n της ακολουθίας, - µέσω ενός ή περισσότερων όρων από τους a 0, a 1,..., a n 1, - για κάθε n n 0, όπου n 0 N.
Αναδροµικές Σχέσεις Αναδροµικές Σχέσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αναδροµική Σχέση για την ακολουθία a n } είναι: - εξίσωση που εκφράζει τον n-οστό
Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.
Παράδειγµα (2) s t Στοιχεία Θεωρίας Γραφηµάτων (2) w x Ορέστης Τελέλης z y tllis@unipi.r v u Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Τα δύο γραφήµατα δεν είναι ισόµορφα. Ο κόµβος (αριστερά) είναι
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
Εισαγωγή στην Τοπολογία
Ενότητα: Κατασκευή νέων τοπολογικών χώρων Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Θεωρία Υπολογισµού Theory of Computation
1 ο µέρος Θεωρία Υπολογισµού Theory of Computation 1 Υπολογισιµότητα - Computability o Υπολογισιµότητα (Computability) n Τι µπορεί να υπολογιστεί και τι όχι; o Υπολογιστική πολυπλοκότητα (Computational
ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία
ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση
f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )
302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας
Σειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την
HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις
HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015
Chapter 7, 8 : Time, Space Complexity
CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να
ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι
ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους
Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)
Όρια συναρτήσεων.5. Ορισµός. Έστω, f : Α συνάρτηση συσσώρευσης του Α και b σηµείο. Λέµε ότι η f έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li = ή f b f b αν και µόνο αν, για κάθε
Στοιχεία Θεωρίας Γραφηµάτων (2)
Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (2) 1 / 21 Παράδειγµα (2) s t w x h g
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κλάσεις P, NP NP-πληρότητα 15 Απριλίου 2008 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να περιγράψουμε με
214 ΚΕΦΑΛΑΙΟ 7. ΕΠΙΛΥΣΙΜΟΤΗΤΑ - ΜΗ ΕΠΙΛΥΣΙΜΟΤΗΤΑ 7.1 Το Πρόβλημα του Τερματισμού Θεώρημα 7.1 (Πρόβλημα του Τερματισμού - ημιαπόφαση) Η γλώσσα του Προβ
Κεφάλαιο 7 Επιλυσιμότητα - Μη επιλυσιμότητα Σύνοψη Στα προηγούμενα κεφάλαια επικεντρωθήκαμε σε επιλύσιμα προβλήματα και μελετήσαμε υπολογιστικά μοντέλα με δυνατότητες, που συνεχώς διευρύναμε. Το τελευταίο
K είναι το σύνολο των καταστάσεων. Σ είναι το αλφάβητο των συµβόλων που χρησιµοποιούνται και το οποίο. s K είναι η αρχική κατάσταση της M.
Ισοδυναµία των Μηχανών Turing (TM) Αλέξανδρος Γ. Συγκελάκης 11 Απριλίου 2006 1 Βασική µορφή Μηχανών Turing (BTM) Η ϐασική µορφή της Μηχανής Turing (ΒΤΜ) αποτελείται από ένα σύνολο εντολών, µία ταινία που
Πεπερασμένος έλεγχος καταστάσεων
Κεφάλαιο 6 Μηχανές Turing Σύνοψη Οι Μηχανές Turing (ΜΤ) δεν είναι απλά μία ακόμη μηχανή αναγνώρισης για κάποια ευρύτερη οικογένεια γλωσσών από τις γλώσσες, που γίνονται δεκτές από τα Αυτόματα Στοίβας.
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 10: Συνδυασμοί μηχανών Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing
Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μηχανές Turing (3.1) Τυπικό Ορισμός Παραδείγματα Παραλλαγές Μηχανών Turing (3.2) Πολυταινιακές
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους
Εισαγωγή στην Τοπολογία
Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε
KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
4. Ορισµοί KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Ορισµός 4.. Μία συνάρτηση : µε πεδίο ορισµού το σύνολο των φυσικών αριθµών και τιµές στην πραγµατική ευθεία καλείται ακολουθία πραγµατικών αριθµών.
Στοιχεία Θεωρίας Γραφηµάτων (3)
Στοιχεία Θεωρίας Γραφηµάτων (3) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 1 / 23 Απαρίθµηση Μονοπατιών Εστω
Απαρίθµηση Μονοπατιών. Στοιχεία Θεωρίας Γραφηµάτων (3) Μονοπάτια και Κυκλώµατα Euler. Ορέστης Τελέλης
Απαρίθµηση Μονοπατιών Εστω γράφηµα G(V, E) µε πίνακα γειτνίασης A Στοιχεία Θεωρίας Γραφηµάτων (3) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ως προς µια διάταξη των
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε
Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)
Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε
Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Μέτρο Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
CSC 314: Switching Theory. Chapter 3: Turing Machines
CSC 314: Switching Theory Chapter 3: Turing Machines 28 November 2008 1 1 Υπολογισμοί σε Μηχανές Turing Πως χρησιμοποιούμε μια μηχανή Turing? Για την αναγνώριση μιας γλώσσας? Σύμβαση για την αναγνώριση
Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα
Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς έντρα 1 / 27 έντρα έντρο είναι απλό συνδεδεµένο µη
Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)
Όρια συναρτήσεων 5 Ορισµός Έστω, : Α συνάρτηση συσσώρευσης του Α και b σηµείο Λέµε ότι η έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li ή b b αν και µόνο αν, για κάθε ε > υπάρχει
Mh apofasisimèc gl ssec. A. K. Kapìrhc
Mh apofasisimèc gl ssec A. K. Kapìrhc 15 Maòou 2009 2 Perieqìmena 1 Μη αποφασίσιμες γλώσσες 5 1.1 Ανάγω το πρόβλημα A στο B................................. 5 1.2 Αναγωγές μη επιλυσιμότητας..................................
ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα
ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το
4.3 Παραδείγµατα στην συνέχεια συναρτήσεων
5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA
Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος στη δεύτερη έκδοση
Πρόλογος του επιµελητή xiii Πρόλογος στην πρώτη έκδοση xv Προς τους ϕοιτητές.......................... xv Προς τους διδάσκοντες........................ xvii Ηπρώτηέκδοση........................... xviii
Εισαγωγή στην Τοπολογία
Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου
Κωστόπουλος ηµήτριος Μ.Π.Λ.Α. TAPE COMPRESSION (θεώρηµα 2.3 Παπαδηµητρίου)
Κωστόπουλος ηµήτριος Μ.Π.Λ.Α. TAPE COMPRESSION (θεώρηµα 2.3 Παπαδηµητρίου) Εισαγωγή. Αυτό το φυλλάδιο έχει στόχο να δώσει ένα ανάλογο αποτέλεσµα µε αυτό του linear speedup θεωρήµατος, εάν έχουµε µία µηχανή
Υπολογίσιμες Συναρτήσεις
Υπολογίσιμες Συναρτήσεις Σ Π Υ Ρ Ι Δ Ω Ν Τ Ζ Ι Μ Α Σ Δ Τ Ο Μ Ε Α Σ Τ Μ Η Μ Α Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Σ Χ Ο Λ Η Θ Ε Τ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Ι Ω Α Ν Ν Ι Ν Ω Ν Υπολογίσιμες Συναρτήσεις
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 5 Μαρτίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα