ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές"

Transcript

1 ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 16: Αναγωγές

2 Τι θα κάνουμε σήμερα Το Πρόβλημα του Τερματισμού (4.2) Εισαγωγή στις Αναγωγές Ανεπίλυτα Προβλήματα από την Θεωρία των Γλωσσών (5.1) Απεικονιστικές Αναγωγές (5.3) 1

3 Απόδειξη: Πρόβλημα του τερματισμού Έστω ότι η ΑΠΟΔΟΧΗ/ΤΜ είναι διαγνώσιμη Άρα υπάρχει ΤΜ Η που την διαγιγνώσκει Η= Για είσοδο <Μ,w>, όπου Μ μια ΤΜ και w μια λέξη: 1. Προσομοιώνουμε την Μ για είσοδο w. 2. Εάν η Μ μεταβεί ποτέ στην κατάσταση αποδοχής, αποδεχόμαστε. Εάν η Μ δεν αποδέχεται, είτε επειδή έφτασε σε κατάσταση απόρριψης είτε επειδή δεν τερματίζει, απορρίπτουμε. 2

4 Απόδειξη: Πρόβλημα του τερματισμού Δημιουργούμε μια μηχανή Δ που χρησιμοποιεί την Η ως υποπρόγραμμα Η Δ ελέγχει πως συμπεριφέρεται μια ΤΜ Μ αν της δώσουμε ως είσοδο την λέξη που αντιστοιχεί στην κωδικοποίησή της <Μ>. Η Δ απορρίπτει εάν η Μ αποδέχεται την <Μ> Η Δ αποδέχεται εάν η Μ απορρίπτει την <Μ> Δ= Για είσοδο <Μ>, όπου Μ μια ΤΜ: 1. Εκτελούμε την Η για είσοδο <Μ,<Μ>>. 2. Εάν η Η απορρίπτει, αποδεχόμαστε αλλιώς εάν η Η αποδέχεται, απορρίπτουμε. 3

5 Απόδειξη: Πρόβλημα του τερματισμού Άρα η Δ διαγραμματικά δουλεύει ως εξής: Δ(<Μ>) = Τι γίνεται αν τρέξουμε την Δ με τον εαυτό της; Δ(<Δ>) = αποδοχή εάν η Μ δεν αποδέχεται την λέξη <Μ> απόρριψη εάν η Μ αποδέχεται την λέξη <Μ> αποδοχή εάν η Δ δεν αποδέχεται την λέξη <Δ> απόρριψη εάν η Δ αποδέχεται την λέξη <Δ> ΑΤΟΠΟ 4

6 Διαγωνιοποίηση Πίνακας που υποδεικνύει εάν μια μηχανή δέχεται αποδέχεται την κωδικοποίηση μιας μηχανής: Εάν ναι το στοιχείο του πίνακα περιέχει τη λέξη αποδοχή Διαφορετικά, αν απορρίπτει η εάν δεν τερματίζει το στοιχείο του πίνακα είναι κενό <Μ1> <Μ2> <Μ3> Μ1 αποδοχή αποδοχή Μ2 αποδοχή αποδοχή αποδοχή Μ3 5

7 Διαγωνιοποίηση Ο ίδιος πίνακας με τα αποτελέσματα της Η η ΤΜ Η απορρίπτει αν μια μηχανή Mi δεν αποδέχεται μια λέξη <Mj> Είτε Mi απορρίπτει την <Mj> <Μ1> <Μ2> <Μ3> <Δ> Μ1 αποδοχή απόρριψη αποδοχή Μ2 αποδοχή αποδοχή αποδοχή Μ3 απόρριψη απόρριψη απόρριψη Είτε Mi δεν τερματίζει πάνω στην <Mj> Γράφουμε απόρριψη στο αντίστοιχο πεδίο του πίνακα Δ 6

8 Διαγωνιοποίηση Σύμφωνα με τον ορισμό της Δ πρέπει να παίρνει τιμές αντίθετες της διαγωνίου Τι τιμή θα πάρει για τον εαυτό της!!?? <Μ1> <Μ2> <Μ3> <Δ> Μ1 αποδοχή απόρριψη αποδοχή Μ2 αποδοχή αποδοχή αποδοχή Μ3 απόρριψη απόρριψη απόρριψη Αντίθετη του εαυτού της ΑΤΟΠΟ Δ απόρριψη απόρριψη αποδοχή???? 7

9 Μια μη αναγνωρίσιμη γλώσσα Θυμηθείτε: Μια γλώσσα είναι διαγνώσιμη εάν και μόνο εάν είναι αναγνωρίσιμη (αναδρομικά απαριθμήσιμη) και συμπληρωματικά αναγνωρίσιμη (συναναδρομικά απαριθμήσιμη). Το συμπλήρωμα της ΑΠΟΔΟΧΗ/ΤΜ δεν ειναι αναγνωρίσιμη γλώσσα Η ΑΠΟΔΟΧΗ/ΤΜ είναι αναγνωρίσιμη Αν το συμπλήρωμα της ΑΠΟΔΟΧΗ/ΤΜ ήταν αναγνωρίσιμη τότε η ΑΠΟΔΟΧΗ/ΤΜ θα ήταν διαγνώσιμη Αποδείξαμε ότι η ΑΠΟΔΟΧΗ/ΤΜ δεν ειναι διαγνώσιμη 8

10 Μέθοδος Αναγωγής Χρήση: Για να μπορούμε να δείξουμε ότι ένα πρόβλημα είναι υπολογιστικά μη επιλύσιμο. Ορισμός: Αναγωγή είναι η μετατροπή κάποιου προβλήματος σε κάποιο άλλο η οποία γίνεται με τέτοιο τρόπο ώστε η λύση του δεύτερου προβλήματος να μπορεί να χρησιμοποιηθεί για την επίλυση του πρώτου 9

11 Αναγωγές στην Καθημερινότητα Εύρεση μιας τοποθεσίας ανάγεται στην εύρεση χάρτη Ταξίδι από Κύπρο σε Αμερική ανάγεται στην αγορά εισιτηρίου το οποίο ανάγεται στην εύρεση χρημάτων το οποίο ανάγεται στην εύρεση εργασίας Μέτρηση εμβαδού ορθογωνίου ανάγεται στην μέτρηση του μήκους και του πλάτους του Ιδέα: Αν ένα πρόβλημα Α μπορεί να αναχθεί σε ένα πρόβλημα Β τότε η επίλυση του Α αποκλείεται να είναι δυσκολότερη από την επίλυση του Β, αφού κάθε λύση του Β μας δίνει λύση στο Α. Αν Β είναι επιλύσιμο τότε και Α είναι επιλύσιμο Αν Α είναι μη επιλύσιμο τότε και Β είναι μη επιλύσιμο 10

12 Παραδείγματα από Θεωρία Γλωσσών ΠΕΡΑΤΩΣΗ/ΤΜ = {<Μ,w> η Μ είναι μια ΤΜ που τερματίζει για είσοδο w} Ιδέα: ΑΠΟΔΟΧΗ/ΤΜ ανάγεται στην ΠΕΡΑΤΩΣΗ/ΤΜ Έστω ότι υπάρχει μια μηχανή R που διαγιγνώσκει την ΠΕΡΑΤΩΣΗ/ΤΜ. Με την βοήθεια της R μπορούμε να κατασκευάσουμε μια μηχανή S που να διαγιγνώσκει την ΑΠΟΔΟΧΗ/ΤΜ. 11

13 ΠΕΡΑΤΩΣΗ/ΤΜ S = Για είσοδο <Μ,w>, όπου Μ μια ΤΜ και w μια λέξη: 1. Εκτελούμε την R για είσοδο <Μ,w> 2. Εάν R απορρίψει, απορρίπτουμε 3. Εάν η R αποδεχτεί, προσομοιώνουμε την Μ στην w μέχρι η Μ να τερματίσει. 4. Εάν η Μ αποδεχθεί τότε αποδεχόμαστε. Εάν απορρίψει, απορρίπτουμε. Εάν η R διαγιγνώσκει την ΠΕΡΑΤΩΣΗ/ΤΜ => S διαγιγνώσκει την ΑΠΟΔΟΧΗ/ΤΜ Αποδείξαμε όμως ότι η ΑΠΟΔΟΧΗ/ΤΜ είναι μη διαγνώσιμη => η R είναι αδύνατον να υπάρχει Άρα η ΠΕΡΑΤΩΣΗ/ΤΜ είναι μη διαγνώσιμη 12

14 ΚΕΝΟΤΗΤΑ/ΤΜ ΚΕΝΟΤΗΤΑ/ΤΜ={<Μ> η Μ είναι μια ΤΜ και L(M)=;} Ιδέα: ΑΠΟΔΟΧΗ/ΤΜ ανάγεται στην ΚΕΝΟΤΗΤΑ/ΤΜ Έστω ότι R μια ΤΜ που διαγιγνώσκει την ΚΕΝΟΤΗΤΑ/ΤΜ Ιδέα 1: Εκτελούμε την R πάνω στην Μ (<Μ,w> είσοδος της ΑΠΟΔΟΧΗ/ΤΜ) Αν R αποδεχτεί τότε ξέρουμε ότι η w δεν ανήκει στην L(Μ) Αν R απορρίψει δεν γνωρίζουμε σίγουρα αν η w ανήκει L (M) (και άρα η Μ θα αποδεχτεί την w) 13

15 ΚΕΝΟΤΗΤΑ/ΤΜ Ιδέα 2: Κατασκευή ενδιάμεσης ΤΜ που να αποδέχεται μόνο την w αν αυτή γίνεται αποδεχτή από την Μ S= Για είσοδο <Μ,w>,όπου Μ μια ΤΜ και w λέξη: 1. Κατασκευάζουμε την ΤΜ Μ1: Για είσοδο x: 1. Εάν x 66= w απορρίπτουμε. 2. Εάν x = w εκτελούμε την Μ στο w. Αν αποδεχτεί αποδεχόμαστε. 2. Εκτελούμε την R για είσοδο <Μ1>. 3. Αν η R αποδέχεται, απορρίπτουμε, αλλιώς αποδεχόμαστε. Η ΚΕΝΟΤΗΤΑ/ΤΜ είναι μη διαγνώσιμη 14

16 ΙΣΟΔΥΝΑΜΙΑ/ΤΜ ΙΣΟΔΥΝΑΜΙΑ/ΤΜ={<Μ1,Μ2> L(M1)=L(M2)} Ιδέα: KENOTHTA/ΤΜ ανάγεται στην ΙΣΟΔΥΝΑΜΙΑ/ΤΜ Έστω R μια ΤΜ που διαγιγνώσκει την ΙΣΟΔΥΝΑΜΙΑ/ΤΜ S= Για είσοδο <Μ>, όπου Μ μια ΤΜ: 1. Εκτελούμε την R για είσοδο <Μ,Μ0>, όπου Μ0 μια ΤΜ που απορρίπτει όλες τις εισόδους 2. Εάν η R αποδέχεται, αποδεχόμαστε. Εάν η R απορρίπτει, απορρίπτουμε. Αφού ΚΕΝΟΤΗΤΑ/ΤΜ είναι μη διαγνώσιμη => η R δεν υπάρχει και ΙΣΟΔΥΝΑΜΙΑ/ΤΜ είναι μη διαγνώσιμη 15

17 Απεικονιστικές Αναγωγές Πως μπορούμε να περιγράψουμε μαθηματικά ότι ένα πρόβλημα Α ανάγεται σε ένα άλλο πρόβλημα Β? Υπάρχει μια υπολογίσιμη συνάρτηση που μετατρέπει τα στιγμιότυπα του Α σε στιγμιότυπα του Β Ορισμός: Μια συνάρτηση f: Σ* Σ* λέγεται υπολογίσιμη εάν υπάρχει ΤΜ που, για κάθε είσοδο w, τερματίζει έχοντας στην ταινία της μόνο τη λέξη f(w). 16

18 Τυπικός Ορισμός της Απεικονιστικής Αναγωγιμότητας Γνωστή Μη Αναδροµική Γλώσσα L 1 αναδροµική συνάρτηση τ: x2 L 1 αν και µόνο αν τ(x) 2 L 2 (Αναδροµική?) Γλώσσα L 2 Ορισμός. (Απεικονιστική Αναγωγιμότητα) Έστω L 1, L 2 µ Σ * δύο γλώσσες. Η L 1 είναι απεικονιστικά αναγώγιμη στην L 2, L 1 m L 2, εάν υπάρχει υπολογίσιμη συνάρτηση τ: Σ *! Σ * τέτοια ώστε x2 L 1 αν και μόνο αν τ(x) 2 L 2. Χρήση: Για να δείξουμε ότι η L 2 δεν είναι αναδρομική: Προσδιορίζω μια γλώσσα L 1 που είναι γνωστό ότι είναι μη αναδρομική Ανάγω την L 1 στην L 2. 17

19 Χρήση Αναγωγών Θεώρημα 1. Εάν Α m Β και η Β είναι διαγνώσιμη (αναδρομική) τότε και η Α είναι διαγνώσιμη (αναδρομική). Απόδειξη. Υποθέστε ότι Μ διαγνώστης της Β. Ν= Για είσοδο w: ί έ ύ ί έ ς έ έ ς 18 ί έ ς ής ς ί ή ό ή ό ή

20 Χρήση Αναγωγών Θεώρημα 2. Εάν Α m Β και η Α είναι μη διαγνώσιμη τότε και η Β είναι μη διαγνώσιμη. Θεώρημα 3. Εάν Α m Β και η Β είναι αναγνωρίσιμη (αναδρομικά απαριθμήσιμη) τότε και η Α είναι αναγνωρίσιμη (αναδρομικά απαριθμήσιμη). Θεώρημα 4. Εάν Α m Β και η Α δεν είναι αναγνωρίσιμη (μη αναδρομικά απαριθμήσιμη) τότε και η Β δεν είναι αναγνωρίσιμη (μη αναδρομικά απαριθμήσιμη). 19

21 Ερωτήσεις; 20

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ Τι θα κάνουμε σήμερα Επιλύσιμα Προβλήματα σχετικά με Ασυμφραστικές Γλώσσες (4.1.2) Το Πρόβλημα του Τερματισμού

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις

Διαβάστε περισσότερα

Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο;

Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο; Αποφασισιµότητα / Αναγνωρισιµότητα Ορέστης Τελέλης telelis@unipi.gr Μη Επιλύσιµα Προβλήµατα Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 2/12/2015 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/2015

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 12: Μηχανές Turing Τι θα κάνουμε σήμερα Εισαγωγή στις Μηχανές Turing (TM) Τυπικός Ορισμός Μηχανής Turing (3.1.1) 1 Τι είδαμε μέχρι στιγμής Πεπερασμένα

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαγνώσιμες Γλώσσες (4.1) Επιλύσιμα Προβλήματα σχετικά με Κανονικές Γλώσσες Επιλύσιμα Προβλήματα

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα) Τι θα κάνουμε σήμερα Εισαγωγή Επιλύσιμα Προβλήματα σχετικά με τις Κανονικές Γλώσσες (4.1.1) Επιλύσιμα Προβλήματα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Φροντιστήριο 10 Λύσεις

Φροντιστήριο 10 Λύσεις Άσκηση 1 Φροντιστήριο 10 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {0,1} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Mh apofasisimèc gl ssec. A. K. Kapìrhc

Mh apofasisimèc gl ssec. A. K. Kapìrhc Mh apofasisimèc gl ssec A. K. Kapìrhc 15 Maòou 2009 2 Perieqìmena 1 Μη αποφασίσιμες γλώσσες 5 1.1 Ανάγω το πρόβλημα A στο B................................. 5 1.2 Αναγωγές μη επιλυσιμότητας..................................

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές

Διαβάστε περισσότερα

num(m(w 1 ;... ; w k )) = f(num(w 1 ),..., num(w k ))

num(m(w 1 ;... ; w k )) = f(num(w 1 ),..., num(w k )) Υπολογισμοί με Μ.Τ. Εστω M = (K, Σ, δ, s, {y, n}) μια Μ.Τ. Κάθε συνολική κατάσταση τερματισμού της οποίας η κατάσταση τερματισμού είναι το y, θα ονομάζεται συνολική κατάσταση αποδοχής, ενώ αν η κατάσταση

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει την ακόλουθη γλώσσα. { a n b n+2 c n 2 n 2 } Λύση: H ζητούμενη μηχανή Turing μπορεί να

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 12. Θεωρία Υπολογισιμότητας 30Μαρτίου, 17 Απριλίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Θέση Church-Turing Τι μπορεί να υπολογιστεί και τι δεν μπορεί να υπολογιστεί?

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Πιο κάτω υπάρχει ένα σχεδιάγραμμα που τοποθετεί τις κλάσεις των κανονικών, ασυμφραστικών, διαγνώσιμων και αναγνωρίσιμων γλωσσών μέσα στο σύνολο όλων των γλωσσών. Ακολουθούν

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης. Επανάληψη Εαρινό Εξάμηνο 2019 Σελίδα 1

Ασκήσεις Επανάληψης. Επανάληψη Εαρινό Εξάμηνο 2019 Σελίδα 1 Ασκήσεις Επανάληψης Άσκηση 1 (Τελική Εξέταση 5/015) Να δείξετε ότι η πιο κάτω γλώσσα δεν είναι διαγνώσιμη. { Μ L(M) {ΘΕΩΡΙΑ, ΥΠΟΛΟΓΙΣΜΟΥ} και L(M) 3} (Για την αναγωγή μπορείτε να χρησιμοποιήσετε τη γνωστή

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,

Διαβάστε περισσότερα

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E.

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E. Οι γλώσσες των Μηχανών Turing Αποφασισιµότητα / Αναγνωρισιµότητα Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L Αποδέχεται όταν (η είσοδος στην TM) w L. Ορέστης Τελέλης telelis@unipi.gr Τµήµα

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα Τι θα κάνουμε σήμερα Εισαγωγικά Χρονική Πολυπλοκότητα (7) Κλάση P (7.2) Κλάση ΝΡ (7.3) ΝΡ-πληρότητα (7.4) Χωρική

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w w = (ab) 2m b m (ba) m, m 0 } (β) Να διατυπώσετε

Διαβάστε περισσότερα

CSC 314: Switching Theory. Chapter 3: Turing Machines

CSC 314: Switching Theory. Chapter 3: Turing Machines CSC 314: Switching Theory Chapter 3: Turing Machines 28 November 2008 1 1 Υπολογισμοί σε Μηχανές Turing Πως χρησιμοποιούμε μια μηχανή Turing? Για την αναγνώριση μιας γλώσσας? Σύμβαση για την αναγνώριση

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {1010 2 10 3 10 n 1 10 n 1 n 1}. (β) Να διατυπώσετε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { ww rev w {a, b} * και w αποτελεί καρκινική λέξη } (α) H ζητούμενη μηχανή

Διαβάστε περισσότερα

Ασκήσεις από παλιές εξετάσεις

Ασκήσεις από παλιές εξετάσεις Άσκηση 2 - Τελική εξέταση 2012 Ασκήσεις από παλιές εξετάσεις (α) [10 μονάδες] Να μετατρέψετε το πιο κάτω NFA σε ένα ισοδύναμο DFA χρησιμοποιώντας την κατασκευή που μελετήσαμε στο μάθημα. a a q 0 a, ε q

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w#z w, z {a,b}* και η z είναι υπολέξη της w}. Συγκεκριμένα,

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 10. Μηχανές Turing 20,23 Μαρτίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μηχανές Turing: Ένα Γενικό Μοντέλο Υπολογισμού Ποια μοντέλα υπολογισμού μπορούν να δεχθούν γλώσσες

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος στη δεύτερη έκδοση

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος στη δεύτερη έκδοση Πρόλογος του επιµελητή xiii Πρόλογος στην πρώτη έκδοση xv Προς τους ϕοιτητές.......................... xv Προς τους διδάσκοντες........................ xvii Ηπρώτηέκδοση........................... xviii

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {w 1w 2 w 1 {0,1} * και w 2 = 0 k 1 m όπου k και m

Διαβάστε περισσότερα

Λύσεις 4ης Σειράς Ασκήσεων

Λύσεις 4ης Σειράς Ασκήσεων Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 5: Κανονικές Εκφράσεις Τι θα κάνουμε σήμερα Κλειστότητα Κανονικών Πράξεων (1.2.3) Εισαγωγή στις Κανονικές Εκφράσεις Τυπικός ορισμός της κανονικής

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα Τυπικός

Διαβάστε περισσότερα

Φροντιστήριο 11 Λύσεις

Φροντιστήριο 11 Λύσεις Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing

Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing Θεωρία Υπολογισμού και Πολυπλοκότητα To Δόγμα Church-Turing Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μηχανές Turing (3.1) Τυπικό Ορισμός Παραδείγματα Παραλλαγές Μηχανών Turing (3.2) Πολυταινιακές

Διαβάστε περισσότερα

Μη επιλυσιμότητα I. Απόδειξη. Ορίζουμε # # =

Μη επιλυσιμότητα I. Απόδειξη. Ορίζουμε # # = Μη επιλυσιμότητα I Θεώρημα Το TOT (πρόβλημα ολικής συνάρτησης) είναι μη επιλύσιμο, δηλαδή η f δεν είναι αναδρομική όπου: 1, αν φ x είναι ολική f(x) = 0, αλλιώς Απόδειξη. Ορίζουμε h(x) = φ x (x) + 1, αν

Διαβάστε περισσότερα

214 ΚΕΦΑΛΑΙΟ 7. ΕΠΙΛΥΣΙΜΟΤΗΤΑ - ΜΗ ΕΠΙΛΥΣΙΜΟΤΗΤΑ 7.1 Το Πρόβλημα του Τερματισμού Θεώρημα 7.1 (Πρόβλημα του Τερματισμού - ημιαπόφαση) Η γλώσσα του Προβ

214 ΚΕΦΑΛΑΙΟ 7. ΕΠΙΛΥΣΙΜΟΤΗΤΑ - ΜΗ ΕΠΙΛΥΣΙΜΟΤΗΤΑ 7.1 Το Πρόβλημα του Τερματισμού Θεώρημα 7.1 (Πρόβλημα του Τερματισμού - ημιαπόφαση) Η γλώσσα του Προβ Κεφάλαιο 7 Επιλυσιμότητα - Μη επιλυσιμότητα Σύνοψη Στα προηγούμενα κεφάλαια επικεντρωθήκαμε σε επιλύσιμα προβλήματα και μελετήσαμε υπολογιστικά μοντέλα με δυνατότητες, που συνεχώς διευρύναμε. Το τελευταίο

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 24: Μη Ντεντερμινιστικές Μηχανές Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 11: Καθολική μηχανή Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 6: Μη Κανονικές Γλώσσες Τι θα κάνουμε σήμερα Εισαγωγικά Το Λήμμα της Άντλησης για κανονικές γλώσσες Παραδείγματα 1 Πότε μια γλώσσα δεν είναι κανονική;

Διαβάστε περισσότερα

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι

Διαβάστε περισσότερα

Φροντιστήριο 8 Λύσεις

Φροντιστήριο 8 Λύσεις Άσκηση 1 Θεωρήστε την πιο κάτω Μηχανή Turing. Φροντιστήριο 8 Λύσεις Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία των φάσεων τις οποίες διατρέχει η μηχανή όταν δέχεται τη διδόμενη λέξη. (α) 11 (β) 1#1

Διαβάστε περισσότερα

Φροντιστήριο 8 Λύσεις

Φροντιστήριο 8 Λύσεις Άσκηση 1 Φροντιστήριο 8 Λύσεις Θεωρήστε την πιο κάτω Μηχανή Turing όπου όλες οι μεταβάσεις που απουσιάζουν οδηγούν στην κατάσταση απόρριψης (q απόρριψης). Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Ορίζουμε τη συναρμογή δύο γλωσσών Α και Β ως ΑΒ = { uv u A, v B }. (α) Έστω Α = {α,β,γ} και Β =. Να περιγράψετε τη γλώσσα ΑΒ. (β) Θεωρήστε τις γλώσσες L, M και N. Να δείξετε

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Ντετερμινιστικά Πεπερασμένα Αυτόματα 14-Sep-11 Τυπικός Ορισμός Ντετερμινιστικών

Διαβάστε περισσότερα

Διάλεξη 17: Συμφωνία με Βυζαντινά Σφάλματα. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 17: Συμφωνία με Βυζαντινά Σφάλματα. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 17: Συμφωνία με Βυζαντινά Σφάλματα ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Βυζαντινά Σφάλματα Τι θα δούμε σήμερα Κάτω Φράγμα για Αλγόριθμους Συμφωνίας με Βυζαντινά Σφάλματα: n > 3f Αλγόριθμος Συμφωνίας

Διαβάστε περισσότερα

Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Απόστολος Φίλιππας Τµήµα Μηχανικών Η/Υ και Πληροφορικής 19 Μαΐου,

Διαβάστε περισσότερα

Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση

Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αριθμήσιμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κλάσεις P, NP NP-πληρότητα 15 Απριλίου 2008 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να περιγράψουμε με

Διαβάστε περισσότερα

10.1 Υπολογίσιμες συναρτήσεις και αναδρομικά σύνολα

10.1 Υπολογίσιμες συναρτήσεις και αναδρομικά σύνολα Κεφάλαιο 10 Υπολογισιμότητα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 10.1 Υπολογίσιμες συναρτήσεις και αναδρομικά σύνολα Μέχρι στιγμής έχουμε δει ουσιαστικά

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

Recursive and Recursively Enumerable sets I

Recursive and Recursively Enumerable sets I Recursive and Recursively Enumerable sets I Ορισμός Το σύνολο A είναι αναδρομικό ανν η χαρακτηριστική του συνάρτηση X A είναι αναδρομική. Το σύνολο A είναι αναδρομικά αριθμήσιμο (recursively enumerable)

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 8: Ιδιότητες Γραμματικών χωρίς Συμφραζόμενα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Πολλοί τρόποι περιγραφής αλγορίθμων. Όλοι είναι μηχανιστικά ισοδύναμοι και ειδικά ισοδύναμοι με μερικές αναδρομικές συναρτήσεις.

Πολλοί τρόποι περιγραφής αλγορίθμων. Όλοι είναι μηχανιστικά ισοδύναμοι και ειδικά ισοδύναμοι με μερικές αναδρομικές συναρτήσεις. Θέση Church-Turing I Πολλοί τρόποι περιγραφής αλγορίθμων. Όλοι είναι μηχανιστικά ισοδύναμοι και ειδικά ισοδύναμοι με μερικές αναδρομικές συναρτήσεις Θέση Church-Turing: Όλες οι υπολογίσιμες συναρτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα Τι παρατηρήσατε στο video; 1η δραστηριότητα (Φύλλο Εφαρμογής (1) Στο ορθογώνιο τρίγωνο ΑΒΓ

Διαβάστε περισσότερα

244 ΚΕΦ ΑΛΑΙΟ 8. ΥΠΟΛΟΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Η f είναι μία μερική συνάρτηση στο πεδίο X, αν και μόνο αν η συνάρτηση ορίζεται για μηδέν ή περισσότερα στοι

244 ΚΕΦ ΑΛΑΙΟ 8. ΥΠΟΛΟΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Η f είναι μία μερική συνάρτηση στο πεδίο X, αν και μόνο αν η συνάρτηση ορίζεται για μηδέν ή περισσότερα στοι Κεφάλαιο 8 Υπολογίσιμες Συναρτήσεις Σύνοψη Εχοντας αναπτύξει τη θεωρία γύρω από τις Μηχανές Turing (ΜΤ) δεν περιοριζόμαστε πλέον μόνο στην ανάλυση προβλημάτων απόφασης γλωσσών (βλ. Ενότητα 1.2.3). Οι ΜΤ

Διαβάστε περισσότερα

Διάλεξη 5: Κάτω Φράγμα για Αλγόριθμους Εκλογής Προέδρου. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 5: Κάτω Φράγμα για Αλγόριθμους Εκλογής Προέδρου. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 5: Κάτω Φράγμα για Αλγόριθμους Εκλογής Προέδρου ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Κάτω Φράγμα στον Αριθμό Μηνυμάτων Ένας οποιοσδήποτε αλγόριθμος εκλογής προέδρου Α ο οποίος 1. Δουλεύει σε ασύγχρονο

Διαβάστε περισσότερα

Chapter 7, 8 : Time, Space Complexity

Chapter 7, 8 : Time, Space Complexity CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

Chapter 7, 8 : Completeness

Chapter 7, 8 : Completeness CSC 314: Switching Theory Chapter 7, 8 : Completeness 19 December 2008 1 1 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β.

Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β. Ενότητα 1 Εξισώσεις Ανισώσεις α βαθμού Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, με βάση τη γραφική παράσταση της ευθείας y = ax + β. Να επιλύουμε την ανίσωση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Παρασκευή, 17 Μαρτίου 2017 Διάρκεια : 9.00 10.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation Διδάσκων: Στάθης Ζάχος Επιμέλεια Διαφανειών: Μάκης Αρσένης CoReLab ΣΗΜΜΥ - Ε.Μ.Π. Φεβρουάριος 2017 Διδάσκων: Στάθης Ζάχος ( CoReLab

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 14. Χρονική Πολυπλοκότητα 17, 20, 24 Απριλίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 12: Μη ντετερμινιστικές μηχανές Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑ Α. Α1. Σχολικό βιβλίο σελίδα 217. Α2. Σχολικό βιβλίο σελίδα 273. Α3. Σχολικό βιβλίο σελίδα 92 Α4. Λ - Σ - Σ - Λ - Σ ΘΕΜΑ Β. B1.

ΛΥΣΕΙΣ ΘΕΜΑ Α. Α1. Σχολικό βιβλίο σελίδα 217. Α2. Σχολικό βιβλίο σελίδα 273. Α3. Σχολικό βιβλίο σελίδα 92 Α4. Λ - Σ - Σ - Λ - Σ ΘΕΜΑ Β. B1. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελίδα 7 Α Σχολικό βιβλίο σελίδα 73 Α3 Σχολικό βιβλίο σελίδα 9 Α Λ - Σ - Σ - Λ - Σ ΘΕΜΑ Β B ) 655

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Γιώργος Δημητρίου Μάθημα 2 ο Αλφάβητα και Γλώσσες Αλφάβητο: Ένα μη κενό και πεπερασμένο σύνολο συμβόλων Γλώσσα: Ένα οποιοδήποτε υποσύνολο των συμβολοσειρών ενός αλφαβήτου (οι προτάσεις της γλώσσας, πχ.

Διαβάστε περισσότερα

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις

Διαβάστε περισσότερα

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή. Μη ντετερµινιστικές Μηχανές Turing - NTMs (1/6) Μηχανές Turing: Μη ντετερµινισµός, Επιλύσιµα Προβλήµατα Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 10 εκεµβρίου 2016

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες Τι θα κάνουμε σήμερα Εισαγωγικά (2.3) Το Λήμμα της Άντλησης για ασυμφραστικές γλώσσες (2.3.1) Παραδείγματα 1 Πότε μια

Διαβάστε περισσότερα

Κεφάλαιο 10. Ερωτήσεις ανάπτυξης

Κεφάλαιο 10. Ερωτήσεις ανάπτυξης Κεφάλαιο 10 Ερωτήσεις ανάπτυξης 1. Τι ονομάζουμε τμηματικό προγραμματισμό; 2. Τι ονομάζουμε υποπρόγραμμα; 3. Ποια τα χαρακτηριστικά των υποπρογραμμάτων; 4. Ποια τα πλεονεκτήματα του τμηματικού προγραμματισμού;

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπ Θεωρία Υπολογισμού Ενότητα 11: Κλειστότητα, ΠΑ & καν. εκφράσεις Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Σχεδιασμός Ασυμφραστικών Γραμματικών

Διαβάστε περισσότερα

Πολλοί τρόποι περιγραφής αλγορίθμων. Όλοι είναι μηχανιστικά ισοδύναμοι και ειδικά ισοδύναμοι με μερικές αναδρομικές συναρτήσεις

Πολλοί τρόποι περιγραφής αλγορίθμων. Όλοι είναι μηχανιστικά ισοδύναμοι και ειδικά ισοδύναμοι με μερικές αναδρομικές συναρτήσεις Θέση Church-Turing Κανονική μορφή Kleene Θέση Church-Turing I Πολλοί τρόποι περιγραφής αλγορίθμων Όλοι είναι μηχανιστικά ισοδύναμοι και ειδικά ισοδύναμοι με μερικές αναδρομικές συναρτήσεις Θέση Church-Turing:

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 4. Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα 9,19 Φεβρουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μοντέλα Υπολογισμού Μη Ντετερμινιστικό Πεπερασμένα Αυτόματα: Διαφορά

Διαβάστε περισσότερα

4.3 Ορθότητα και Πληρότητα

4.3 Ορθότητα και Πληρότητα 4.3 Ορθότητα και Πληρότητα Συστήματα αποδείξεων όπως η μορφολογική παραγωγή και η κατασκευή μοντέλων χρησιμοποιούνται για να δείξουμε την εγκυρότητα εξαγωγών συμπερασμάτων. Ένα σύστημα αποδείξεων μπορεί

Διαβάστε περισσότερα

(18 ο ) ΚΛΑΣΜΑΤΙΚΗ ΑΝΑΓΩΓΗ - ΙI: «διάμεσος &θεσιακή επιλογή στοιχείου»

(18 ο ) ΚΛΑΣΜΑΤΙΚΗ ΑΝΑΓΩΓΗ - ΙI: «διάμεσος &θεσιακή επιλογή στοιχείου» (8 ο ) ΚΛΑΣΜΑΤΙΚΗ ΑΑΓΩΓΗ - ΙI: «διάμεσος &θεσιακή επιλογή στοιχείου» Το πρόβλημα του διαμέσου στοιχείου: ένα θεμελιακό πρόβλημα Συναντήσαμε ήδη αρκετές φορές το πρόβλημα του να «κόψουμε» ένα σύνολο στοιχείων

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 1: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Εισαγωγικά (0.1) Σύνολα (0.2.1, 0.2.2) Συναρτήσεις & Σχέσεις (;;) (0.2.3) 1 Περιοχές που θα μελετήσουμε

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Συναίνεση χωρίς την παρουσία σφαλμάτων Κατανεμημένα Συστήματα Ι 4η Διάλεξη 27 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 4η Διάλεξη 1 Συναίνεση χωρίς την παρουσία σφαλμάτων Προηγούμενη

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα