ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ

Σχετικά έγγραφα
Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Σχολικός Σύµβουλος ΠΕ03

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

Υποομάδα 3 Θέμα: Χρυσός Αριθμός Φ- Χρυσή Τομή

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων.

Ιωάννης Σ. Μιχέλης Μαθηματικός

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

3, ( 4), ( 3),( 2), 2017

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα

Ευκλείδεια Γεωμετρία

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )


ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

Ιωάννης Σ. Μιχέλης Μαθηματικός

1 ΘΕΩΡΙΑΣ...με απάντηση

Το Πυθαγόρειο Θεώρημα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ


ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

Μαθηματικά προσανατολισμού Β Λυκείου

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1

Μαθηματικά A Γυμνασίου

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Βασικές Γεωμετρικές έννοιες

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Ερωτήσεις επί των ρητών αριθµών

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Μουσική και Μαθηματικά!!!

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ )

Ο άρρητος 2=1, και οι αποδείξεις του

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί


ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ»

Project Α Λυκείου. Ομάδα 3 η Θέμα: Μαθηματικά στην Ακρόπολη Χρυσή τομή- ο αριθμός φ

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

1.Μετρώντας τις διαστάσεις του Θεάτρου

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

Τετραγωνική ρίζα πραγματικού αριθμού

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις /

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

Ο χρυσός αριθμός φ. Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών

Ιστορία των Μαθηματικών

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

Μαθηματικά Α Τάξης Γυμνασίου

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας;

Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά.

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

Επαναληπτικές ασκήσεις για το Πάσχα.

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Μαθηματικά Γ Γυμνασίου Εισαγωγή στα Πρότυπα Τεστ. Πειραματικά Λύκεια ΕΠΕΣ Π.Π. ΓΕΛ Βαρβακείου Σχολής Συντάκτης Λυγάτσικας Ζήνων ΠΕ 03 Χρόνος

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

Τι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

Transcript:

Αναστασία Πέτρου Κωνσταντίνος Χρήστου Β 3 ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Ο Πυθαγόρας ο Σάμιος, υπήρξε σημαντικός Έλληνας φιλόσοφος, μαθηματικός, γεω μέτρης και θεωρητικός της μουσικής. Είναι ο κατεξοχήν θεμελιωτής των ελληνικών μαθηματικών και δημιούργησε ένα άρτιο σύστημα για την επιστήμη των ουρανίων σωμάτων, που κατοχύρωσε με όλες τις σχετικές αριθμητικές και γεωμετρικές αποδείξεις. Γεννήθηκε σε χρονολογία που δεν μας είναι γνωστή, αλλά που εικάζεται πως είναι μεταξύ των ετών 580-572 π.χ. και ως επικρατέστερος τόπος γεννήσεως παραδίδεται η νήσος Σάμος. Πέθανε στο Μεταπόντιον της Ιταλικής Λευκανίας σε μεγάλη ηλικία, περί το 500-490 π.χ.

Αι συνέπειαι της ανακαλύψεως των ασύμμετρων μεγεθών. Μετά την ανακάλυψιν ότι υπάρχουν ασύμμετρα γεωμετρικά μεγέθη, οι Πυθαγόρειοι κατενόησαν ότι δεν ήτο δυνατόν να προχωρήσουν εις τας γεωμετρικάς των ερεύνας, χρησιμοποιούντες ακεραίους αριθμούς. Ηναγκάσθησαν να δώσουν εις την άλγεβραν γεωμετρικήν μορφήν. Την εξίσωσιν (α+β). (α+β) =α.α+2βα+β.β την έδειξαν εποπτικώς δια του κατωτέρω σχήματος (Σχ. 10), σχηματίζοντες τετράγωνον, του οποίου η πλευρά είναι το άθροισμα των μηκών α και β και αναλύοντες τούτο εις τετράγωνα και ορθογώνια. Εκ της αναλύσεως του τετραγώνου είναι φανερόν ότι εν τω συνόλω του αποτελείται από εν τετράγωνον έχον πλευράν την α. εν τετράγωνον έχον πλευράν την β και δύο ορθογώνια έκαστον εκ των οποίων έχει ως διαστάσεις του την α και β, ήτοι (α+β).(α+β) = αα + 2βα + β.β. Είναι επίσης φανερόν ότι η διαφορά του (α+β) (α+β) και (α α) είναι το εν είδει γνώμονος σχήμα το συναπάρτιζαμενον εκ 2βα+β-β (ήτοι εκ του μικρού τετραγώνου του έχοντος πλευράν β και εκ δυο ορθογωνίων εκατέρου των οποίων η βάσις είναι η α, ύψος δε η β). Ούτω εδημιουργήθη εν είδος γεωμετρικής άλγεβρας δια της οποίας εκτελείται πρόσθεσις και αφαίρεσις παριστανομένων των ποσοτήτων δια γραμμών και τετραγώνων και ορθογωνίων επιφανειών. Το γινόμενον του πολλαπλασιασμού παρίσταται δι ορθογωνίου του οποίου το ύψος και η βάσις παριστούν τους παράγοντας. Η

κατασκευή εν δοθείση επιφάνεια σχημάτων προς λύσιν δοθέντος προβλήματος καλείται διαίρεσις, δύναται δε να παραβληθή με την ομώνυμον αριθμητικήν πράξιν. Κατά τας συγκρίσεις ταύτας των γραμμών και επιφανειών εχρησιμοποιήθησαν, ως φαίνεται εξ αξιόπιστων μαρτυριών ήδη υπό των Πυθαγορείων οι όροι παραβολή, υπερβολή και έλλειψις. Ο Πρόκλος, αρυόμενος τας πληροφορίας του από το Εύδημον, γράφει σχετικώς «Ἔστι μὲν ἀρχαῖα φασὶν οἱ περὶ τὸν Εὔδημον καὶ τῆς τῶν Πυθαγορείων Μούσης εὑρήματα ἥ τε παραβολή τῶν χωρίων καὶ ἡ ὑπερβολή καὶ ἡ ἔλλειψις. Ἀπὸ δὲ τούτων καὶ οἱ νεώτεροι τὰ ὀνόματα λαβόντες μετήγαγον αύτὰ καὶ ἐπί τὰς κωνικάς λεγομένας γραμμάς».

ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ - ΠΥΘΑΓΟΡΑΣ Δύο ομοειδή μεγέθη που ο λόγος των μέτρων τους είναι άρρητος αριθμός. Εξετάζοντας δύο ομοειδή μεγέθη, για παράδειγμα δύο ευθύγραμμα τμήματα ΑΒ και ΓΔ, δεν αποκλείεται να υπάρχει για τα δύο αυτά τμήματα ένα κοινό μέτρο, δηλαδή ένα ευθύγραμμο τμήμα τέτοιο ώστε να χωράει έναν ακέραιο αριθμό φορών και στο ΑΒ και στο ΓΔ, όπως στο παρακάτω σχήμα: Στην περίπτωση του σχήματος αυτού λέγεται ότι: ο ρητός αριθμός είναι ο λόγος του ΑΒ προς το ΓΔ και γράφεται Κάθε δύο ομοειδή μεγέθη με κοινό μέτρο ονομάζονται σύμμετρα. Υπάρχουν όμως και ζεύγη μεγεθών που δεν είναι σύμμετρα. Ένα τέτοιο παράδειγμα (το αρχαιότερο ίσως), γνωστό από την εποχή του Πυθαγόρα, είναι εκείνο της διαγωνίου και της πλευράς ενός τετραγώνου, το οποίο συνεχίζει να απασχολεί τους μαθηματικούς. Η διαγώνιος και η πλευρά του ΑΒΓΔ δεν είναι σύμμετρα ευθύγραμμα τμήματα.

ΧΡΥΣΗ ΤΟΜΗ ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Θεωρείται ότι δίνει αρμονικές αναλογίες και για το λόγο αυτό έχει χρησιμοποιηθεί στην αρχιτεκτονική και τη ζωγραφική, τόσο κατά την αρχαία Ελλάδα όσο και κατά την Αναγέννηση. Την χρυσή τομή εισήγαγε και υπολόγισε ο Πυθαγόρας. Η χρυσή τομή ορίζεται ως το πηλίκο των θετικών αριθμών όταν ισχύει που ισούται περίπου με 1,618.

Κατασκευή με κανόνα και διαβήτη Σύμφωνα με το παραπάνω σχήμα: 1. Κατασκευάζουμε τετράγωνο πλευράς 1 (κόκκινο). 2. Φέρουμε ευθεία παράλληλη προς τη μια βάση και χωρίζουμε το τετράγωνο σε δύο ίσα ορθογώνια (πλευρών 1 και 1/2) και φέρνουμε μία διαγώνιο (γκρι). 3. Κατασκευάζουμε κύκλο με κέντρο το μέσο της μίας πλευράς του τετραγώνου και ακτίνα τη διαγώνιο του ορθογωνίου. 4. Προεκτείνουμε την πλευρά του τετραγώνου στην οποία έχουμε ορίσει το κέντρο του κύκλου έως το σημείο του κύκλου που τελειώνει η διάμετρος Το ευθύγραμμο τμήμα που αποτελείται από την πλευρά του τετραγώνου μαζί με την προέκταση έχει μήκος φ.

Τον κανόνα της χρυσής τομής εκμεταλλεύτηκαν για να κατασκευάσουν κτίσματα ή να δημιουργήσουν μορφές με τέτοιες αναλογίες που προκαλούν έντονα την αίσθηση της αρμονίας και του ωραίου. Ένα ιδιαίτερα γνωστό κτίσμα της αρχαιότητας φημισμένο για την αρμονία των αναλογιών του είναι ο Παρθενώνας. Οι αρχαίοι Έλληνες κατασκεύαζαν σχεδόν όλα τους τα κτίσματα αλλά και τις διακοσμήσεις τους, με τον κανόνα της χρυσής τομής. Ίσως ο Παρθενώνας είναι το πιο χαρακτηριστικό και αρμονικό παράδειγμα.

Οι αρχαίοι Έλληνες είχαν κάποια σχετική δυσκολία στο να χειριστούν τους άρρητους αριθμούς. Γι αυτό και το Πυθαγόρειο Θεώρημα αποτελεί σταθμό στη μαθηματική σκέψη. Ονόμαζαν λοιπόν τους ρητούς αριθμούς (τα κλάσματα των φυσικών) σύμμετρα μεγέθη, ενώ τους άρρητους όταν πλέον τους αποδέχτηκαν τους ονόμασαν ασύμμετρα μεγέθη. ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Το Πυθαγόρειο θεώρημα είναι σχέση της ευκλείδειας γεωμετρίας ανάμεσα στις πλευρές ενός ορθογώνιου τριγώνου. Συνεπώς αποτελεί θεώρημα της επίπεδης γεωμετρίας. Σύμφωνα με το Πυθαγόρειο Θεώρημα, που εξ ονόματος αποδίδεται στον αρχαίο Έλληνα φιλόσοφο Πυθαγόρα: «Εν τοις ορθογωνίοις τριγώνοις το από της την ορθήν γωνίαν υποτεινούσης πλευράς τετράγωνον ίσον εστί τοις από των την ορθήν γωνίαν περιεχουσών πλευρών τετραγώνοις». Δηλαδή: «το τετράγωνο της υποτείνουσας ενός ορθογώνιου τριγώνου ισούται με το άθροισμα των τετραγώνων των δύο κάθετων πλευρών». Η παραπάνω πρόταση εκφράζεται με τον ακόλουθο τύπο: α 2 = β 2 + γ 2. - (όπου α = το μήκος της υποτείνουσας και β και γ = τα μήκη των δύο άλλων πλευρών)

Τη παραπάνω αρχαία διατύπωση της πρότασης του εν λόγω θεωρήματος παρέχει ο Ευκλείδης στο πρώτο βιβλίο των Στοιχείων Γεωμετρίας του (47η πρόταση) με σχετική απόδειξη που κατά παράδοση οφείλεται στον Πυθαγόρα, ο οποίος κατ' άλλη, επίσης αρχαία, παράδοση, μετά την ανακάλυψή του αυτή θυσίασε προς τους θεούς εκατόμβη, γι' αυτό και το θεώρημα αυτό ονομάσθηκε «Εκατόμβη» ή «Θεώρημα εκατόμβης». Ισχύει και το αντίστροφο Πυθαγόρειο Θεώρημα: ότι δηλαδή, αν ισχύει η παραπάνω σχέση μεταξύ των πλευρών ενός τριγώνου, τότε το τρίγωνο είναι ορθογώνιο.