4.2 Differential Equations in Polar Coordinates

Σχετικά έγγραφα
21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Chapter 7a. Elements of Elasticity, Thermal Stresses

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Fundamental Equations of Fluid Mechanics

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Laplace s Equation in Spherical Polar Coördinates

ANTENNAS and WAVE PROPAGATION. Solution Manual

Curvilinear Systems of Coordinates

Matrix Hartree-Fock Equations for a Closed Shell System

The Laplacian in Spherical Polar Coordinates

Analytical Expression for Hessian

ECON 381 SC ASSIGNMENT 2

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Section 8.3 Trigonometric Equations

Strain and stress tensors in spherical coordinates

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Tutorial Note - Week 09 - Solution

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 8 Model Solution Section

2 Composition. Invertible Mappings

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Finite Field Problems: Solutions

Homework 3 Solutions

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Areas and Lengths in Polar Coordinates

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

C.S. 430 Assignment 6, Sample Solutions

Approximation of distance between locations on earth given by latitude and longitude

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

1 3D Helmholtz Equation

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Areas and Lengths in Polar Coordinates

Derivation of Optical-Bloch Equations

1 String with massive end-points

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Example 1: THE ELECTRIC DIPOLE

EE512: Error Control Coding

Dr. D. Dinev, Department of Structural Mechanics, UACEG

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

[1] P Q. Fig. 3.1

Example Sheet 3 Solutions

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Second Order RLC Filters

A Note on Intuitionistic Fuzzy. Equivalence Relation

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

The Friction Stir Welding Process

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Srednicki Chapter 55

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

( y) Partial Differential Equations

Section 7.6 Double and Half Angle Formulas

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

On a four-dimensional hyperbolic manifold with finite volume

An Inventory of Continuous Distributions

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

derivation of the Laplacian from rectangular to spherical coordinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

Math 6 SL Probability Distributions Practice Test Mark Scheme

Answer sheet: Third Midterm for Math 2339

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Spherical Coordinates

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

D Alembert s Solution to the Wave Equation

Tridiagonal matrices. Gérard MEURANT. October, 2008

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

Solutions to Exercise Sheet 5

Statistical Inference I Locally most powerful tests

Other Test Constructions: Likelihood Ratio & Bayes Tests

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Strain gauge and rosettes


Parametrized Surfaces

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Lecture 6 Mohr s Circle for Plane Stress

Solutions Ph 236a Week 2

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Mechanics of Materials Lab

Orbital angular momentum and the spherical harmonics

Démographie spatiale/spatial Demography

Section 8.2 Graphs of Polar Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

r = x 2 + y 2 and h = z y = r sin sin ϕ

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Transcript:

Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations of eqilibim in pola coodinates is to appl a change of coodinates diectl to the D Catesian vesion qns...8 as otlined in the Appendi to this section 4..6. Altenativel the eqations can be deived fom fist pinciples b consideing an element of mateial sbjected to stesses and as shown in Fig. 4... The dimensions of the element ae Δ in the adial diection and Δ (inne sface) and ( Δ) Δ (ote sface) in the tangential diection. Δ Δ Δ Δ Δ Fige 4..: an element of mateial Smming the foces in the adial diection leads to F Δ ( Δ) Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ( ) Δ ( ) Δ 0 (4..) Fo a small element and so dividing thogh b Δ Δ Δ ( Δ) 0 (4..) A simila calclation can be caied ot fo foces in the tangential diection { Poblem }. In the limit as Δ Δ 0 one then has the two-dimensional eqilibim eqations in pola coodinates: Solid Mechanics Pat II 60 Kell

Section 4. ( ) 0 0 qilibim qations (4..3) 4.. Stain Displacement Relations and Hooke s Law The two-dimensional stain-displacement elations can be deived fom fist pinciples b consideing line elements initiall ling in the and diections. Altenativel as detailed in the Appendi to this section 4..6 the can be deived diectl fom the Catesian vesion qns...5 -D Stain-Displacement pessions (4..4) The stess-stain elations in pola coodinates ae completel analogos to those in Catesian coodinates the aes thogh a small mateial element ae simpl labelled with diffeent lettes. Ths Hooke s law is now [ ] [ ] zz ( ) Hooke s Law (Plane Stess) (4..5a) Hooke s Law (Plane Stain) (4..5b) [( ) ] [ ( ) ] 4..3 Stess Fnction Relations In ode to solve poblems in pola coodinates g the stess fnction method qns. 3.. elating the stess components to the Ai stess fnction can be tansfomed g the elations in the Appendi to this section 4..6: φ φ φ φ φ φ (4..6) It can be veified that these eqations atomaticall satisf the eqilibim eqations 4..3 { Poblem }. Solid Mechanics Pat II 6 Kell

Section 4. Solid Mechanics Pat II Kell 6 The bihamonic eqation 3..3 becomes 0 φ (4..7) 4..4 The Compatibilit Relation The compatibilit elation epessed in pola coodinates is (see the Appendi to this section 4..6) 0 (4..8) 4..5 Poblems. Deive the eqilibim eqation 4..3b. Veif that the stess fnction elations 4..6 satisf the eqilibim eqations 4..3. 3. Veif that the stains as given b 4..4 satisf the compatibilit elations 4..8. 4..6 Appendi to 4. Fom Catesian Coodinates to Pola Coodinates To tansfom eqations fom Catesian to pola coodinates fist note the elations ) / actan( (4..9) Then the Catesian patial deivatives become (4..0) The second patial deivatives ae then

Section 4. Solid Mechanics Pat II Kell 63 (4..) Similal (4..) qilibim qations The Catesian stess components can be epessed in tems of pola components g the stess tansfomation fomlae Pat I qns. 3.4.7. Ug a negative otation (see Fig. 4..) one has ( ) (4..3) Appling these and 4..0 to the D Catesian eqilibim eqations 3..3a-b lead to ( ) ( ) 0 0 (4..4) which then give qns. 4..3. Fige 4..: otation of aes

Section 4. The Stain-Displacement Relations Noting that (4..5) the stains in pola coodinates can be obtained diectl fom qns...5: ( ) (4..6) One obtains simila epessions fo the stains and. Sbstitting the eslts into the stain tansfomation eqations Pat I qns. 3.8. ( ) (4..7) then leads to the eqations given above qns. 4..4. The Stess Stess Fnction Relations The stesses in pola coodinates ae elated to the stesses in Catesian coodinates thogh the stess tansfomation eqations (this time a positive otation; compae with qns. 4..3 and Fig. 4..) ( ) (4..8) Ug the Catesian stess stess fnction elations 3.. one has φ φ φ (4..9) and similal fo. Ug 4..- then leads to 4..6. Solid Mechanics Pat II 64 Kell

Section 4. Solid Mechanics Pat II Kell 65 The Compatibilit Relation Beginning with the Catesian elation.3. each tem can be tansfomed g 4..- and the stain tansfomation elations fo eample ( ) (4..0) Afte some length calclations one aives at 4..8.