Κεφάλαιο 3.1 1. q = C V => q = 48(HiC q = χ e => χ = - e και => χ = 3 ΙΟ 15 ηλεκτρόνια I = -3- => I = 24mA. At 2. I = i=>i= -=>I = e- v=»i = 9,28 1(Γ 4 Α. t Τ 3. Έστω u d η μέση ταχύτητα κίνησης των ελευθέρων ηλεκτρονίων με'σα σ' ένα κυλινδρικό μεταλλικό αγωγό (ταχύτητα διολίσθησης). Τα χ ηλεκτρόνια που διαπερνούν μια διατομή s σε χρόνο At βρίσκονται μέσα σε ένα κύλινδρο με βάση τη διατομή s και ύψος h = u d Δΐ, δηλαδή σε όγκο V = s h = s u d Δί. χ Είναι: n = - => x = n V => χ = π s u. At V Ισχύει: I = -3 => I = => I = At At n s u d At e I => u d = 1.25 10" => u d = 12,5 mm n s e s s At 4. = I = v 2L ( ( = 2 = 2-R 2 =>q = 2ρ- R n s, s, s- = 2 s, => St = 0,4 mm". 5. Υπάρχουν στις απαντήσεις του βιβλίου. 6. R = Ο - m = d V=>m = d- s- =>s = (1). (2) => R = g d e d-e R = 52,5 Ω. (1) (2)
7. Τα δύο σύρματα έχουν ίδιο όγκο, δηλαδή: ν = ν => s-e = s'-e' => s' = (1) Είναι: R = e R; = ί ' s ο R s' ( R'=Q - s' = f ) => ' = c A [^- => c = 4m. R W / V R 8 ρ θ = Q 0 (l + αθ) => 2 Q 0 = Q n (l + αθ) => 2 = 1 + αθ => αθ = 1 => θ = - =» θ = 256,4 C. α Για τους χάλκινους αγωγούς, ναι. Για τους άλλους, όχι. 9. Ι,= V Ri γ = I, _R 2 _I, _R (1 + αθ 2 ) I, Ι 2 Ι 2 R u (l+a0 1 ) I, 1 + αθ, => α = ι grad 1 + αθ, 2480 10. R. = R. + => R, = 20Ω ολ 1 2 ολ I = => I = 5Α Κ,, V, = I => V, = 25V V, = I => V = 75V. 11. 1 +J_=,R (A = R l R 2 => R, = 20Ω R.A R R: R-l + R-2 I = => I = 6A v.
I, = => Ι.=4Α I, = => h = 2A. R2 12. α) R p = R ' + => R P = 2Ω Κολ = ^12 + ^3 ^ R. I, = ^ V, => I, = A ' 3 = I = => I = 10A βολ V Br = I R 3 => V Br = 40V => v 3 = 40V V AB = I R p => V AB = 20V => V, = V, = 20V (ή Vab = 60 - V Br => V AB = 20V) I,=^=> I, = I A " 3 I, = I = 10A. β) R 23 = + => R 23 = 90Ω R R^ (, = => R = 9Ω + R23 I = => I = 10A r, a I, = => I, = 9A R. I 2 = I 3 = => I 2 = I, = 1A R 23 V, = => v, = 90V V Ar = I 2 => ν ΑΓ = 40V => V, = 40V V rb = I 3 R 3 => V rb = 50V => V 3 = 50V. 13. R p = / + = 2Ω,, 12.> = Rp 12 + j = 10Ω R 4, = R 4 + = 10Ω R.17^ ' R45 K, = = 5Ω R 2! + Rl5
I = = 12 Α Ι 3 = = 6Α V rb = I 3 -R 3 => V rb = 48V = ν ΛΓ =! 3 ' Κ 12 =* ν ΑΓ =12Υ ν 3 = 48V > ν, = ν = 12V I. = =>Ι, = 4Α Ι, = Ι«= - Va > Ι 4 = Ι 5 = 6Α R- ν 4Λ = I. R. => ν 4Λ = 42V => V = 42V ΑΔ 4 4 ΑΔ 4 v ab = I 4 R 5 => ν ΔΒ =ΐ8Υ Υ 5 = 18 V. 14. 1,-iV =ια 4Ω 4V h = ΙΑ 4Ω 1 = I, + Ι 3 => Ij = 2Α V, = ϊ 2 Rj => V, = 4V ν = + V 123 ν 1 τ ν 23 V.23 = 8V V = ν => V 45 = 8V ν 45 ν 123 45 Τ = Ι 1 45 " 45 = 0,5Α => Ι Α = 0,5Α Rt5 1 = I. + Ι 45 => I = 2,5Α V. = V-I R => IR =V-V, => R s = 123 χ χ 123 ^ V-VK I R = 0,8Ω. γ ' 15. ΒΓ = 10cm RgP = R* ΒΓ => R Br = 50Ω R BAr = R* (ΒΑ + ΑΓ) => R Br = 70Ω V Jri = 0,28A Rrf 1 RAT RR - = 0,2A. 16. a) R p = R t + R., => R p = 3Ω, 4 = R 3 + R 4 => R 34 = 15Ω 1,2 = V R i I = 10A
V R => I u = 2Α Υ ΓΑ = Τ 12 ' R, => V ra = 2 0 V => Υ Γ - V A = 2 0 V ν ΓΒ - (2)-( Γ 34 R3 => ν ΓΒ = 10V => ν Γ - ν Β 10V ν Α -ν Β = 10-20 =» V AB = -10V. (1) (2) β) Έστω R- η ζητούμενη αντίσταση. R 4 Rs Είναι: R 4 < = - + I'l2 = 1 345 R 345 = R 3 + R 45 V I 12 = 10A V 30 30 1 345 1 345 ^ + R 45 ^ 5 + R 45 R U5 V ra =l'i2- R i V = I R IB 345 3 V ra = 20V => v r - v 4 = 20V V r 5 =* V r - V B = 5 + R 1S 1 B 5 + _ 150 (6), (5) => V A -V F 5 + R 4, -20 0 150-20 5 4- R 45 150 5 + R 45 : 20 50 = 20 R 4, = 2,5Ω 10 Από τη σχέση (3) έχουμε: R 5 = Ω. (3) (4) (5) (6) 17. α) Το κύκλωμα γίνεται ισοδύναμα: Οι τρεις αντιστάσεις είναι συνδεμένες παράλληλα. 1 Αοα, - 1 + 1 + 1 A R R R 1 - => = R => v = 10Ω. Rv. R 3
β) Το κύκλωμα γίνεται ισοδύναμα: ί^αγ R R _R R + R 2 R AB = R AR 4- R = R + R = ^ 2 2 v.= 3R R 3R Rar R = = 3R = 18Q. Rab + R j^r + r 5R 18. Ο κλάδος BZ δε διαρρέεται από ρεύμα Έτσι: I V, + 1 = ΙΑ Είναι: V z = 0 ν Λ - ν ζ = ο => ν Λ = ν ζ => ν Δ = ον ν Λ" ν Β = ν 2 => ο-ν Β =ιο => ν Β = -ιον. ν Α -ν Β = I => ν Α -( 10) = 1 10 => ν Α + 10 = 10 => ν Α = ον ν Β - ν Γ = I R 2 => -10 - ν Γ = 1 10 => ν Γ = -10-10 => ν,- = -20V. 19. Αρχικά, η αντίσταση είναι βραχυκυκλωμένη, άρα δε διαρρέεται από ρεύμα. Έτσι: I = => 1 = 1Α. Τελικά, οι αντιστάσεις και R 3 είναι συνδεμένες παράλληλα και η ισοδύναμη τους συνδεμένη σε σειρά με τη. Άρα: R 23 = = 10Ω +
R a = Rj + R 2, = 20Ω I = = 0,5A r a Vj = I RJ = 5V V 2 = V, = I R 23 = 5V V, 1 2 = = 0,25 A R 2 1 3 = = 0,25A. R3 20. α) Έστω R η αντίσταση του αγωγού. τ-,. ρ _ R ρ 3R Είναι: Κ ΛΒ %αι Κ ΑΓΒ = 4 4 Τι, = v ab ->. ι = 60 => τ ι, = 240 RAB R R ι = => => \ 240 4 Rai B j R 3 R 4 Είναι: R Ar = 2 Έτσι: V Ar = I 2 R Ar => V Ar = => V Ar - 40V. β) ν Δ = 0 Είναι: R. R vr r = 4 V. ">40 R r = I? R Ar => V Ar = - => V Ar = 20V => Δ1 2 ΔΓ ΔΙ ^ ΔΓ => ν Δ - ν Γ = 20V => 0 - ν Γ = 20V => ν Γ = -20V. 21. Τις Rj και R 4 σε σειρά, ώστε R 4 = 10Ω, τις και σε σειρά, ώστε R 2, = 10Ω και τις R 4 και R 1? παράλληλα, ώστε R )? = 5Ω. Είναι: V, = I, R 3 => V_, = 2 6 => V, = 12V V 2 = I, R 2 => v 2 = 2 4 => V, = 8V Άρα: V. = V, + V, => V. = 20V ^ ολ 2 3 ο/. Οπότε: 1= Yv => I = 2Α. 4 R
22. Ο κλάδος ΒΔΓ δε διαρρε'εται από ρεύμα. Έτσι: I = V => I = 2Α + Είναι: V = Vν ΔΓ Ar = V, ti. = I R = 2 10 = 20V c ΔΓ lii 3 Άρα: q =C V => q = 400μ0. 23. Είναι: I = (1) (i) V 5V V AB-=-I 5R =* V AB = 5R => V AR = (2) c i, = c i v AB ^ q t = c, ~ (3) (1) V W Υ ΓΔ I' 3R => V fa =?R 3R =* V ra = (4) q =C 2 2- V ra ^12 = C 2 γ < 5 ) c Εχουμε: q, = q!ir 5V 3V c. _3 2 => C, = c 2 y => - - 24. Έστω R η τιμή κάθε αντίστασης. Είναι: = R + R => = 2R R R R και = => R: = R + R 2 Οπότε: Ρ, = => Ρ, = 2R n και Ρ, V : => I' - 2V : ~ R 2 ~ R Άρα: > Ρ Γ 25. α) Είναι: Ρ f = I 2 ρ, = I 2 R 2 Αφού > R είναι Ρ, > Ρ,. β) Είναι: Ρ, = Αφού > R είναι Ρ, < Ρ,.
26. R P = = 5Ω + R : R m = R 12 + R 3 = 10Ω RPI ' RJ 4 R P., 4 = 23 + R 4 = 9 Ω R x = R.234 + R 5 = 20Ω I = v. = 9A V. = I = 99V V,234 = 1 * R.234 = * 1 V I 4 = RJ = 0,9 A I, = =8,1A R.23 V 3 = 13 R 3 = 40,5V V 12 = I, 1 R 12 = 40,5V V, I, = - = 4.05A I 2 = = 4,05 A Q i = I" Rj t = 9.841,5J 0 2 = I 2 R 2 t = 9.841,5J Q 3 = I 3 R 3 t = 19.683J Q 4 - I4' R 4 " t = 4.374J Q = I, R t = 53.46J. 27. -77 80 V 2, t = m c AQ ΔΘ => 100 R. YL t = d V c ΔΘ => 100 R 22 1 t = 115_ 20 10" 3 1 80 => t = 1727,27s => t = 0.48h 100 10 10-" 10~ 3 PHA = => P H a = 4,84KW
w = Ρ 1t => W = 2 32KWh ΗΛ Γ ΗΛ ^ ΗΛ Ώ,^Ζ-ΛΥΝΙΙ Άρα, κόστος = 2,33KWh 25 KWh = 58,1δρχ. 28. Κουζίνα: Ρ, = V, I, => Ij = 6,81Α Θερμοσίφωνας: P., = V 2 I, => Ι 2 = 9,09Α Ψυγείο: Ρ 3 = V 3 I, => Ι 3 = 4,54Α Λαμπτήρες: Ρ 4 = V 4 Ι 4 => Ι 4 = 2,21 Α ΙοΧ= Ι +. Ι 2 + Ι 3 + Ι 4 =* U = 2 2 > 7 1 A Άρα, ασφάλεια των 25Α. Είναι: Ρ ολ = + P., + Ρ 4 => Ρ ολ = 5KW. W HA = Ρ,' 1 => W HA = 50KWh. Κόστος = 50KWh 25δρχ./Κ\νΐι = 1.250δρχ. 29. α) R, = + R 2 =» R o, = 60Ω ν I = => Ι = 2Α R* Άρα: Ρ Λ = I 2 => Ρ Λ = 160W R R β) R., = - = 20Ω R\ = R., + R-, => R - = 40Ω V).3 R ] + R } ο- 13 2 V I = => 1 = 3Α R Α V 13 = I' R 13 => V 13 = 60V V 13 I, = => I, = 1,5Α Ρ' = \] => ρ' = 90W A l l Α Ρ'λ-ΡΛ 90-160 α(%) = 100% => α(%) = 60- % => α(%) - -43,75%. 30. Οι Rj και συνδέονται σε σειρά, ώστε R 12 =Rj + R 2 = 6Ω. Οι R r και R.2 R 3 συνδέονται παράλληλα, ώστε R p3 = 3Ω. Οι R 123 και R 4 συνδέονται 2 + Ri σε σειρά ώστε R ox = R 123 + R 4 = 11Ω. v 3 V 3 Είναι: P 3 = -J- => V 3 = 12V, I, = -1 = 2A R 3 R 3
V P = 12V, Ι 12 = : =» Ι 12 = 2Α Άρα: Ι 4 = I p + I, => Ι 4 = 4Α Οπότε: Ρ = Γ => Ρ = 128W. 4 4 4 4 31. Η αντίσταση των γραμμών μεταφοράς είναι: Κ D = ρ ^ => R D = 1,8 10 in- 10 8 100 ΙΟ 3 => O R = ιο 180Ω ηο s 10 10 10 Ρ, => I 2 R = Ρ, => 100 100 ι 2. 180 = 10 720 - ΙΟ 3 => I = 20Α 100 Ρ, = V, I => V, = => V, = 36.000V I Ρ, Ρ, = ν, ι => Vo = => V 2 = 32.400V. I 32. Είναι Ρ κ = 2000W και V K = 200V. V 2 V 2 Αρα: Ρ Κ = - => R = - => R = 20Ω R' Ρκ και Ρ Κ = V K Ι κ => Ι κ = P K /V K => Ι κ = 10Α Αν συνδεθεί σε δίκτυο τάσης 160V, θα είναι: ^ ρ Ρ = => Ρ, = 160 2 => Ρ = 1280W R 20, = V ^ i ι = 160^I = 8A. R 20 33. Είναι Ρ Κ = 1000W και V K = 100V. Αρα: Ρ Κ = V K I R => Ι κ = ^ => Ι κ = 10Α Πρέπει: V K + I R = 220 => 100 + V R = 220 => V R = 120V Είναι: I R = 10A Αρα: I R = => R = => R = 12Ω. R I K
34. Είναι: Ρ.. MB) = 100W και V,,, Κ.(Η) H. = 200V Ρ Ν 2 Άρα: Ι Κ(Θ) = Κ( '" = 0,5Α και = Λ = 400Ω ^Κ(β) RR(0) Είναι: Ρ Κ(Λ) = 24V και V K(A) = 12V Άρα: Ι Κ(Λι = ^Κ(Λ) = 2Α και R A = ^Κ(Λ) = 6Ω *Κ(Λ) Για το σύστημα έχουμε: Ρ = R N + R. => R. = 406Ω Ολ θ /. Ολ Τ_ V - - - => I = 0.49Α ^Κ(Λ) Αφού Ι Κ(Λ) > I, ο λαμπτήρας υπολειτουργεί. 35. α) Για τη συσκευή είναι: Ρ κ = ν κ 'κ => Ι κ = ^ V Κ => Ι κ =!' 5Α V 2 Ρ,. = => = V 2 - => R = 40Ω Rj Ρ κ R T 40 40 R = => Y = - => _ = 20Ω 2Σ 2Σ 2Σ Κ 2 +Κ Σ 40 + 40 R ι2σ = R I + Κ 2Σ => Κ 12Σ 40 + 20 => R J22 = 60Ω I = => I = =» I = 2Α R 122: 60 Ν 2Σ = I R 2i => ν 2Σ = 2 20 => ν 2Σ = 40Ω 40 Ι Σ = - => Ι = => Ι = ΙΑ. Σ 1 Ο Σ 40 1Χ Σ Αφού V 2T < V K (ή Ι Σ < Ι κ ), η συσκευή δε λειτουργεί κανονικά. β) Αφού η συσκευή λειτουργεί κανονικά, είναι V 22 = 60V και Ι Σ = 1,5Α. V 2 50 Έτσι έχουμε: I = - => I = - => I = 1,5Α. 2 2 R 40 Άρα: I, = Ι 2 + Ι Σ => Ι 3 = 3Α. Επίσης: V = V 2Z + V 3 => 120 = 60 + V, => V 3 = 60V. V 3 V, Άρα: I, = - => R 3 = => R 3 = 20Ω. R 3 I 3
ί 36. I, - => % = I, (R. + r) (1) 1 + r ι V 1 W I, = D =* ϊ = I,( + r) (2) + r - Από (1) και (2) έχουμε: % = 10V και r = 1Ω. % 37. V,= I, => V, = R ' R! (1) V, = Ι 2 => V, = * - (2) -τ Γ Από τις (1) και (2) έχουμε: % = 30V και r = 2Ω. % % 38. 1 = => 1, => I = 2Α. + + r Είναι: V = V, = I R = 2 3 = 6V. C 2 2 Άρα: q = C V c => q = 4μΕ 6V => q = 24μ(1 % % 39. α) I = => I - => I = 2A. ; v + R : + r β) v n = % -1 r =» V n = 10V. γ) Ρ ΠΗΓ = % I => Ρ ΠΗΓ = 24W. δ) Ρ Γ = I 2 r => P r = 4W. ε) ρ = V I => p t = 20W. 7 ες Π ες στ) Ρ, = I 2 => Ρ, = 8W. Ρ, = I 2 => ρ 2 = 12W. 40. Είναι: % = 24V. Επίσης: V n = % - I r => 20 = 24-2 r => r = 2Ω. % % 41. I = - => I = => I = 2A. R 0 ). + R 2 + r Είναι: V r = 0
V A -V r =I- => V A -0 = 2-17 => V a = 34V ν Γ - ν Β = I R 2 => Ο - ν Β = 2 8 => V B = -16V. 42. = => = 4Ω 1 1 4 = 3R => = 12Ω 4 RL R; 4 12 R n = =$ R ]9 = => R 1? = 3Ω 12 12 12 + 4+12 R. = + r => R ολ 12 ΟΛ % I = r* => I = 1A V = % - ι Γ => V = 3V I, = => I. = 0,75A 1 R h = ^ => l 2 = 0 ' 25Α = 4Ω 43. α) Όταν ο ανεμιστήρας δε στρέφεται, παρεμβάλλεται στο κύκλωμα ως ωμική αντίσταση. Έτσι, έχουμε: 1= % => I = % => r = 2Ω. R* r + R + r' β) Ρ Η = I~(R + Γ + Γ') => Ρ θ = 24W. γ) Όταν ο ανεμιστήρας στρέφεται, έχουμε: Ρ Π ΗΓ = * * \ => Ρ ΠΗΓ = 48W Είναι: Ρ ΠΗΓ = Ρ () + Ρ ΜΗχ => 48 = 24 + Ρ ΜΗχ => Ρ ΜΗχ = 24W. δ) Η παρεχόμενη ισχύς στον ανεμιστήρα είναι: Ρ =Ρ - ρ - ρ => ΑΝΕΜ ΠΗΓ r R Ρ Δ Κ! Γ Μ ΑΝΕΜ = ^ I-, 2-2 I, Γ - 2 I 2 R Ρ ΛΝΕΜ = 32W ΑΝΕΜ Αρα, η απόδοση του ανεμιστήρα είναι: Ρ 24 α(%) = ιοο% => α(%) = 100% => α(%) = 75%. ΡΑΝΕΜ 32
44. α) Οταν ο ανεμιστήρας δε στρέφεται, παρεμβάλλεται στο κύκλωμα ως ωμική αντίσταση. Έτσι, έχουμε: Vj = %-\ r => Ij = 4Α % I, = r => γ' = 2Ω. 1 Γ + Γ β) Ρ = Ι 2 2(Γ + Γ') => ρ θ = 12W. γ) Όταν ο ανεμιστήρας στρέφεται, έχουμε: V, = % -1 2 r => I, = 2Α Ρ Π Η Γ = ^ Ι 2 = > Ρ Π Η Γ = 2 4 W Είναι: Ρ ΠΗΓ = Ρ + Ρ ΜΗχ => 24 = 12 + Ρ ΜΗχ => Ρ ΜΗχ = 12W. δ) Η απόδοση του κυκλιόματος είναι: α(%) = 100% => α(%) = f-100% => α(%) = 50%. ΡΠΗΓ ^4 45. Έστω I, I, και I, οι εντάσεις των ρευμάτων που διαρρέουν τους κλάδους ΔΑΒ, ΒΓΔ και ΒΔ αντίστοιχα. Εφαρμόζοντας τους κανόνες του Kirchhoff έχουμε: Ι, + Ι 2 = Ι 3 (!) - Ii Γ, -1, -1 3 R 3 = 0 (2) <S 2 -l 2 -r 2 -l 2 R2-I 3 R 3 = 0 ( 3 ) Η λύση του συστήματος των (1), (2) και (3) δίνει: I, = ΙΑ, I, = 0,25Α και I, = 0,75Α Ακόμη έχουμε: V A - I, Rj -Ι 2 R 2 = V r => V A = Ij + I, => V ν Ar = 4 t,-> 5V ν. 46. Έστω I,, Ι, και I, οι εντάσεις των ρευμάτων που διαρρέουν τους κλάδους του κυκλώματος. Εφαρμόζοντας τους κανόνες του Kirchhoff έχουμε: I, ΙΑ, Ι 2 = ΙΑ, Ι 3 = 2Α και V AB = 12V. 47. Υπάρχουν στις απαντήσεις του βιβλίου.
Με απόφαση της Ελληνικής Κυβέρνησης τα διδακτικά βιβλία του Δημοτικού, του Γυμνασίου και του Λυκείου τυπώνονται από τον Οργανισμό Εκδόσεως Διδακτικών Βιβλίων και διανέμονται δωρεάν στα Δημόσια Σχολεία. Τα βιβλία μπορεί να διατίθενται προς πώληση, όταν φέρουν βιβλιόσημο προς απόδειξη της γνησιότητάς τους. Κάθε αντίτυπο που διατίθεται προς πώληση και δε φέρει βιβλιόσημο θεωρείται κλεψίτυπο και ο παραβάτης διώκεται σύμφωνα με τις διατάξεις του άρθρου 7 του Νόμου 1129 της 15/21 Μαρτίου 1946 (ΦΕΚ 1946, 108, Α ). Απαγορεύεται η αναπαραγωγή οποιουδήποτε τμήματος αυτού του βιβλίου, που καλύπτεται από δικαιώματα (copyright), ή η χρήση του σε οποιαδήποτε μορφή, χωρίς τη γραπτή άδεια του Παιδαγωγικού Ινστιτούτου. ΕΚΔΟΣΗ 2011 - ΑΝΤΙΤΥΠΑ: 128.000 ΑΡ. ΣΥΜΒΑΣΗΣ 68 13-7-11 ΕΚΤΥΠΩΣΗ : ΤΖΙΑΦΑΛΙΑ ΕΥΘΥΜΙΑ ΒΙΒΛΙΟΔΕΣΙΑ: Α. ΠΑΠΑΔΑΚΗΣ & ΣΙΑ EE