3.1. Δυνάμεις μεταξύ ηλεκτρικών φορτίων

Σχετικά έγγραφα
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Φυσική. Λύσεις ασκήσεων B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ

Λύση Α. Σωστή η επιλογή α. Β.

ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ

Γ ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Προτεινόμενα Θέματα Β Λυκείου Μάρτιος Φυσική ΘΕΜΑ A

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ 1. Δύο ακίνητα σημειακά ηλεκτρικά φορτία q 1 = - 2 μc και q 2 = + 3 μc, βρίσκονται αντίστοιχα

Προσοχή : στον τύπο της δυναμικής ενέργειας τα φορτία μπαίνουν με το

ΚΙΝΗΣΕΙΣ ΦΟΡΤΙΩΝ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

φορτισμένου πυκνωτή με διεύθυνση κάθετη στις δυναμικές γραμμές του πεδίου, όπως

Q (όπου Q το φορτίο και V η τάση

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση:

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

Δ2) Να υπολογίσετε την απόσταση ra του σημείου Α από το σημειακό φορτίο Q καθώς και τη τιμή του ηλεκτρικού φορτίου Q. Μονάδες 9

W Bά. Υπενθύμιση από την Α τάξη. Το έργο του βάρους κατά την ανύψωση του κουτιού από τη θέση A στη θέση Γ είναι ίσο με W=-mgh

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΟΥ ΗΛΕΚΤΡΙΣΜΟΥ

ΤΥΠΟΛΟΓΙΟ Ο Ρ Ο Σ Η Μ Ο. Για το κενό ή αέρα στο SI: N m. , Μονάδα στο S.I. 1. Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων:

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

Α3. Να αντιστοιχίσετε τα φυσικά µεγέθη µε τις µονάδες τους. Ένταση ηλεκτρικού πεδίου. υναµική ενέργεια

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ

ΟΡΟΣΗΜΟ. Ηλεκτρικό πεδίο - Δυναμική ενέργεια

4ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Ηλεκτρικό Πεδίο - Πυκνωτές. Ενδεικτικές Λύσεις. Θέµα Α

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

7.1 Τα πρώτα πειράματα της χρονιάς.

Ευθύγραμμη ομαλή κίνηση

Ισχύει όταν κινούνται ; Ισχύει όταν κινείται μόνο το ένα δηλαδή η δύναμη αλληλεπίδρασης περιγράφεται σωστά από το νόμο Coulomb

Ηλεκτρικό φορτίο Ηλεκτρικό Πεδίο

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. Στατικός Ηλεκτρισµός

Λυμένες ασκήσεις. Ηλεκτρική δυναμική ενέργεια

Παραδείγματα στην δυναμική ενέργεια και στην κίνηση σε ανομοιογενές πεδίο.

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ

Α.1. Το μέτρο της δύναμης ανάμεσα σε δύο σημειακά φορτία είναι: α) Ανάλογο του γινομένου του τετραγώνου των φορτίων

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ

ΣΤΑΤΙΚΟΣ ΗΛΕΚΤΡΙΣΜΟΣ

ΔΙΑΓΩΝΙΣΜΑ Β. Θέµα 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Προτεινόμενο Διαγώνισμα Φυσικής B Λυκείου Γενικής Παιδείας

Physics by Chris Simopoulos

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤO HΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΚΑΙ ΣΤΟΥΣ ΠΥΚΝΩΤΕΣ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 3.1 ΝΟΜΟΣ ΤΟΥ COULOMB

k c. ΘΕΜΑ Α Μονάδες 5

α. 16 m/s 2 β. 8 m/s 2 γ. 4 m/s 2 δ. 2 m/s 2

Δυνάμεις μεταξύ ηλεκτρικών φορτίων

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔ. Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/11/2016 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ ÊÏÌÏÔÇÍÇ + +

8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου

Κίνηση σε Ηλεκτρικό Πεδίο.

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

+Q + A) Να επιλέξετε τη σωστή απάντηση.

1. Στατικός Ηλεκτρισµός

ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Ηλεκτρικό Πεδίο - Πυκνωτές

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 26/01/2014

Θέµατα Φυσικής Θετικής Κατεύθυνσης Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

Μονάδα μέτρησης του ηλεκτρικού φορτίου στο Διεθνές Σύστημα (S.I.) είναι το προς τιμήν του Γάλλου φυσικού Charles Augustin de Coulomb.

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ Εξεταζόμενη ύλη: Οριζόντια βολή - Ομαλή κυκλική κίνηση Ηλεκτροστατικές αλληλεπιδράσεις 1 2H. (1) g

ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΠΑΝΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ

5 η Εβδομάδα Έργο και κινητική ενέργεια. Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας

. Για τα δύο σωµατίδια Α και Β ισχύει: q Α q, Α, q Β - q, Β 4 και u Α u Β u. Τα δύο σωµατίδια εισέρχονται στο οµογενές µαγνητικό πεδίο, µε ταχύτητες κ

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 2.1 ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΦΥΣΙΚΗ

3ο ιαγώνισµα - Ηλεκτροστατική. Θέµα Α

ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ ΣΗΜΕΙΑΚΟΥ ΦΟΡΤΙΟΥ 2 ΤΟ ΔΥΝΑΜΙΚΟ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ ΣΗΜΕΙΑΚΟΥ ΦΟΡΤΙΟΥ 3

1. B.2 Δύο σφαίρες Α, Β, αμελητέων διαστάσεων φορτίστηκαν με ίση ποσότητα θετικού

ΦΥΣΙΚΗ. Α Λυκείου 14/ 04 / 2019 ΘΕΜΑ Α.

Κίνηση σε Ηλεκτρικό Πεδίο.

Φυσική για Μηχανικούς

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΕΚΦΩΝΗΣΕΙΣ

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο. Θέµα Α. Ενδεικτικές Λύσεις

Θέµατα Φυσικής Γενικής Παιδείας Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ 1ο Στις ερωτήσεις 1.1, 1.2 και 1.3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ Β. συντελεστής απόδοσης δίνεται από τη σχέση e = 1

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

1)Σε ένα πυκνωτή, η σχέση μεταξύ φορτίου Q και τάσης V μεταξύ των οπλισμών του, απεικονίζεται στο διάγραμμα.

(α) 1. (β) Το σύστημα βρίσκεται υπό διαφορά δυναμικού 12 V: U ολ = 1 2 C ολ(δv) 2 = J.

Θέµατα Φυσικής Γενικής Παιδείας Β Λυκείου 1999

ΘΕΜΑ B ΝΟΜΟΣ ΤΟΥ COULOMB

Θέµατα Φυσικής Γεν. Παιδείας Β Λυκείου 2000

ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

4πε Όπου ε ο µια φυσική σταθερά που ονοµάζεται απόλυτη διηλεκτρική σταθερά του κενού. ΚΕΦΑΛΑΙΟ 3.1 ΠΑΡΑΓΡΑΦΟΣ Ο νόµος του Coulomb

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

Κεφάλαιο 1.2. Η ζητούμενη ανάλυση φαίνεται. στην εικόνα 6.

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β' ΛΥΚΕΙΟΥ

Περι-Φυσικής. Θέµα Α. 5ο ιαγώνισµα - Επαναληπτικό ΙΙ. Ονοµατεπώνυµο: Βαθµολογία % Οµάδα Γ. (α) τη δύναµη που ασκείται στο υπόθεµα.

Στις ερωτήσεις 1.1 έως 1.5 επιλέξτε τη σωστή απάντηση.

[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ :ΝΟΕΜΒΡΙΟΣ 2018

ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ 25/12/2016. Νόμος του Coulomb q1 q2 F K. C 8,85 10 N m Ένταση πεδίου Coulomb σε σημείο του Α

Transcript:

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 3.1. Δυνάμεις μεταξύ ηλεκτρικών φορτίων 1. Έστω φορτίο Q περιέχει n ηλεκτρόνια - θα έχουμε Q = n-q e, επομέ- Q νως n =, αρα: (α) n = 0,625 10 19 e (β) n = 0,625 10 16 e (γ) n = 0,625 10 13 e (δ) n = 0,625-10 10 e (ε) n = 0,625 10 7 e 2. Η δύναμη μεταξύ των φορτίων δίνεται από το Νόμο του Coulomb: F = k ^12^2 (Οι δυνάμεις είναι απωθητικές) (α) F! = k ΙΊ => Fi = 16 10* 3 Ν (β) F 2 = k ^ F 2 = 4 10" 3 Ν 3. Από τον,νόμο του Coulomb r = M i r = 2 10" 5 m. 4. Εφόσον δίδεται ότι η δύναμη είναι ελκτική το φορτίο q είναι αρνητικό. Το μέτρο του φορτίου δίνεται από τη σχέση. q = Fd2 k ΙQΙ ==> I q I = 4-10" 9 C

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 5. Η δύναμη που δέχεται το δοκιμαστικό φορτίο q είναι η συνισταμένη των δυνάμεων Ft και F 2 από τα φορτία και Q 2 αντίστοιχα. Επομένως: Fi = k - ^ (r/2γ όμοια F 2 = k - ί7^γ ΤΪ2Υ F! = 43,2Ν > F 2 = 28,8Ν άρα ZF = F r F 2 => ZF = (43,2-28,8)Ν ZF = 14,4Ν και έχει τη φορά της F^ 6. (ΒΓ) = (ΑΓ)-(ΑΒ) (ΒΓ) = 0,8m F a = k IQI-Q 2 (AB)< F a 0,34N ρ lr ί Q3"Q4 ι hb ~ k (BO 2 F B = 0,21N Επειδή οι δυνάμεις F A, F r είναι ομόρροπες η δύναμη που δέχεται το φορτίο Q 2 είναι: ZF = F A +F B ZF = 0,55Ν και έχει την ίδια κατεύθυνση με τις F A, F Γ

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3 1 7. Q Θ < Ε Το μέτρο της έντασης του πεδίου είναι: F και από το Ν. του Coulomb F = k -ft q r 2 Q έχουμε: Ε = k 'ρ άρα Ε = 2-10 7 N/C και έχει φορά προς το φορτίο πηγή Q. 8. Όπως γνωρίζουμε στο μέτρο της έντασης δίνεται από τη σχέση, Ε = k Q =*> r = K Q r = 100m 9. Ε = k IQI = E-r 2 Q = 4-10 22, 10. Επειδή οι εντάσεις είναι αντίθετες η ένταση στο μέσο θα υπολογισθεί από τη διαφορά των εντάσεων Ε! και Ε 2. Ε - k JQiL E, - k (r/2) 2 E, = 86-10 5 N/C Eo = k QJ (r/2 Υ E 2 = 16-10 5 N/C

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 άρα: Ε ολ = E r E 2 =* Ε ολ = 20-10 5 N/C και κατεύθυνση της Ε^ 11. α) Η ένταση στο σημείο Σ έχει μέτρο: Ετ = I ~ ι =* Ε Σ = 10 3 N/C I άι ι και κατεύθυνση την θετική του άξονα χ. β) Το φορτίο q 2 θα δεχτεί δύναμη μέτρου: και κατεύθυνση αντίθετη της Ε. F' = Ε Iq 2 1 =* F' = 4 10" 3 Ν 12. Έστω σημείο Σ της ευθείας, όπου η ένταση θεωρείται μηδέν, και το σημείο απέχει απόσταση χ από το Α. Πρέπει επομένως η ένταση από το φορτίο +2μΟ και η αντίθετης φοράς ένταση από το φορτίο +8μΟ, να έχουν ίσα μέτρα (ώστε η συνισταμένη τους να είναι μηδέν). Ε 2 ή k 2 = k Q? (d-xy η d-x Q 2 QI - d Λ η = 1: ' χ Q 2 q7 X = 1± Q2 Q1 x t = 0,1 m δεκτή όταν q^2 > 0 x 2 = -0,3m δεκτή όταν q-,q 2 < 0 (ή x 2 = 0,3m το σημείο (Α) εκτός της (AB)).

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 13. Η ένταση στο σημείο Σ υ- πολογίζεται από τη συνισταμένη των δύο εντάσεων που δημιουργούν τα ςϊ και q 2 τα οποία επειδή είναι ίσα δημιουργούν ίσου μέρου εντάσεις στο Σ, (ΑΣ) = (ΒΣ)=Λ/?8ΓΤΙ. Τ ο μέτρο των εντάσεων είναι: Ε! = Ε 2 = k LCLL (ΑΣ) 2 ΕΖ< \ Ε ολ Χ d/2.α/ \ Β + d/2 Μ ; Ρ1=2μο ς 2 =2μο Ε, = Ε 2 = 2-10 3 N/C. Ε ολ = Ε -ι + Ε 2 άρα το μέτρο της συνισταμένης είναι: Ε ολ = Ve!+e1 ή Ε ολ = V2E 2 ή Ε ολ = Ε, V2 επειδή Ε, και Ε 2 είναι κάθετες μεταξύ τους. Άρα: Ε ολ = 2000 V2 N/C και σχηματίζει γωνία 45 με κάθε μία από τις Ε : και Ε 2. 14. Το ηλεκτρικό φορτίο του δίσκου θα είναι αρνητικό ώστε η δύναμη που θα δέχεται από το ηλεκτρικό πεδίο να έχει φορά αντίθετη του βάρους και έτσι ο δίσκος να ισορροπεί.

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 Άρα: F nx = Β ή E.q = Β q = - - ή q = 32.10" 5 C 15. Στη θέση ισορροπίας ασκούνται οι δυνάμεις όπως στο σχήμα. Λόγω ισορροπίας ισχύουν: ZFx = 0 <=> F c = Τ χ ΣΡ y = 0 <=> Β = Ty Επειδή θ = 45 => εφθ = 1 (2), Iq-QI Επομένως k ρ = Β Τ, Β Τ χ F c (1) = Ι Ι =.Γ^Γ- (3) ομως η απόσταση r 2 = (ΑΒ) 2 = 2 2 (4) από τις (3) και (4) έχουμε: IQI = και Q = 2-10~ 6 C. 16. Οι εντάσεις λόγω των τεσσάρων φορτίων στο κέντρο του τετραγώνου έχουν μέτρα: F fc I Ql I C A ~ Κ ψ

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 άρα Ε α = 18-10 7 N/C E R = k ι Q? r 2 ά ρ α E b = 36-10 7 N/C Er = k ^ - ά ρ α Ε Γ = 17,46-10 7 N/C E A = k IQ 4 1 Η Δ (+)Γ άρα Ε Δ = 35,28-10 7 N/C Υπολογίζουμε τη συνισταμένη με διεύθυνση (ΑΓ): Ε αγ = Ε α -ΕΓ = 0,54-10 7 N/C Υπολογίζουμε τη συνισταμένη με διεύθυνση (ΒΔ): Ε ΒΔ = Ε Β -Ε δ = 0,72-10 7 N/C Και επομένως η συνισταμένη ένταση έχει μέτρο: Ε ολ = ή Ε ολ = 9-10 6 N/C και εφθ = ή εφθ = 0,75. ΒΔ 17. α) Η μετατόπιση δίνεται από τη σχέση: χ = ~ at 2 (1) Η επιτάχυνση που δέχεται είναι: α = (2) Η δύναμη από το ηλ. πεδίο είναι: F = E-q (3)

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 (3) => F = 12-10 β Ν (2) =* α = 1,2m/s 2 από την (1) έχουμε: χ = 0,6 m. β) Η κινητική ενέργεια του φορτίου είναι: k '= mu 2 ^, k = ma 2 t 2 άρα k = 7,2-10" 6 Joule. υ = at a 18. Έστω F η δύναμη από το αρχικό πεδίο, F η αντίστοιχη από το αντίρροπο πεδίο και υ 0 η ταχύτητα που απέκτησε από την προηγούμενη κίνηση. Ο χρόνος που χρειάζεται μέχρι να μηδενιστεί η ταχύτητα του φορτίου δίνεται από τη σχέση t = από την οποία προκύπτει: a' =-^aή α' = 1-2m/s 2 (1) Επίσης από το νόμο του Νεύτωνα έχουμε: F-F' =-m-a => gq-g'q =-ma g" = ma + 5 %' = 24N/C 19. Η δυναμική ενέργεια του συστήματος δίνεται από τη σχέση: U = k QlQ2 άρα U = -0,54 Joule

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 20. Από τη σχέση U = k => r = k και βρίσκουμε ότι: r = 0,4 m. 21. Από τη σχέση U = k έχουμε U = -10,8-10 4 Joule. 22. Από τη σχέση του δυναμικού έχουμε: V = k ή V = 6-10 4 V. 23. Από τη σχέση V = k -y- => r = και r = 0,45m. 24. α) Από τη σχέση του δυναμικού: U = q-v βρίσκουμε U = -20-10 6 J. β) Εφόσον η δυναμική του ενέργεια είναι αρνητική πρέπει να του προσφερθεί ενέργεια ίση με +20-10 6 Joule για τη μεταφορά του φορτίου στο άπειρο. 25. Έστω = +2μΟ και Q 2 = + 18μΟ που βρίσκονται στις θέσεις Α και Β αντίστοιχα και απέχουν απόσταση d = 16cm. (α) Έστω ότι η ένταση μηδενίζεται στη θέση Μ που απέχει απόσταση χ από το Α. Η ένταση στο σημείο Μ οφείλεται σε δύο πεδία που δημιουργούνται από τα φορτία και Q 2. Εφόσον η ένταση στο Μ υποτέθηκε μηδενική θα πρέπει γ- r- ' ι Qi ι Qp ' I d-x \ 2 Ει = Ε Ξ η k ^ η Q2 Qi

10 ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 _ι Επομένως χ = τ 2- οπότε χ, = 0,04m η λύση χ 2 = -0,8m απορρίπτεται. "V Qi (β) Στο σημείο Μ το δυναμικό θα είναι V M = V-ι + V 2 (1) V! = k-^- =* V 1 = 4,5-10 6 V (2) V 2 = k => V 2 = 13,5 10 5 V (3) ^ d-x από τη σχέση (1) λόγω των (2) και (3) έχουμε: V M = 18-10 5 V. 26. α) Για n = 2m: V, = k ή = 9-10 3 V r 1 Για r 2 = 4m: V 2 = k r 2 ή V 2 = 4,5-10 3 V β)^ = q-v 1 ή U, = 9-10" 3 J γ) W F = q^-va) ή W F = 9-10 3 J. 27. α) Η δυναμική ενέργεια του ηλεκτρονίου είναι: U = k από αυτή βρίσκουμε: U = -1,1-10~ 24 J. β) Η κινητική ενέργεια του ηλεκτρονίου είναι: Κ = mu 2 (1) η δύναμη Coulomb είναι κεντρομόλος και επομένως: κ-%- = (2) Γ 2 Γ 2

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 11 από τη (1) λόγω της (2) έχουμε: Κ = k-^- και επομένως: Κ = 0,55-10~ 24 J. γ) Η ολική ενέργεια Ε = U+Κ βρίσκουμε: Ε = -0,55-10 24 J. 28. α) Το δυναμικό στο σημείο Μ είναι: VM = V1+V2+V3+V4 ή ν Qi ι ι, Q2, Μ (AM) (MB) +k +k ή 1 (ΜΓ) (ΔΜ) VM Μ (AM) k (MO (Q-,- Q 2 ) + (Q3-IQ4I) από την οποία βρίσκουμε: β) V K = V 1 +V 2 +V 3 +V 4 ή V M = -111,24 10 3 V V K = k +k -^2- +k +k -- 4 - r r r r από την οποία βρίσκουμε V K =-108-10 3 V. Q A 1 Η Q 2 Β >\ * \ '/»\ ' \ / \ / x /' \ ' \ / 1. Λ ' \ '. χ \ /,--K\ \ /' '/ \» X, * ' ' r * \ \ χ Q4 '/' \ '/ \j \ Q 3 Δ Γ 4 29. α) Το έργο κατά τη μετακίνηση του φορτίου από το Μ στο άπειρο είναι: \Ν λ = ς^-ν^) ή W, = q-v M ή Wt = 111,24-10 _3 J β) Όμοια W 2 = q(v K -V x ) ή W 2 = q-v K ή W 2 = 108-10 _3 J.

12 ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 30. Από το θεώρημα της κινητικής ενέργειας έχουμε: Κ Τ -Κ Α = W F ή Κ Τ -Κ Α = q-v ή Λ- mu 2-0 = q-v ή υ = / άρα υ = 11 10 5 m/s. 31. α) Η ηλεκτρική ενέργεια που ελευθερώθηκε κατά τη διάρκεια του κεραυνού, είναι ίση με τη μεταβολή δυναμικής ενέργειας του φορτίου. Ε ηλ = ΔΙΙ = q-v ή Ε ηλ = -1,25-10 9 J β) Η μέση ισχύς από τη σχέση Ρ = ή Ρ = -1,25-10 9 watt. 32. α) C = -γ- άρα V = ή V = 50-10~ 3 V ή 50mV. β) Η ενέργεια του πυκνωτή είναι Ε ηλ = QV από τον τύπο βρίσκουμε: Ε ηλ = 25-10 6 J 33. Το εμβαδόν κάθε οπλισμού είναι S = 200cm 2 ή 2 10 2 m 2 το μήκος = 5-10~ 4 m. β) Χωρητικότητα του πυκνωτή είναι: C = εε 0 - - Επειδή ε = 1 έχουμε C = ε 0 ~ και από αυτή έχουμε: C = 3,54-10~ 10 F.

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 13 s 0 * S 34. Από την C = ε 0 -γ έχουμε: = ^ από όπου βρίσκουμε =1mm. 35. α) Η χωρητικότητα του πυκνωτή είναι: C = ε 0 γ από όπου βρίσκουμε: C = 4,43-10" 10 F. β) Το φορτίο του πυκνωτή είναι: Q = CV από όπου Q = 886 10" 10 C. 36. ΠΡΙΝ (ΤΟ ΔΙΠΛΑΣΙΑΣΜΟ) ΜΕΤΑ (TO ΔΙΠΑΑΣΙΑΣΜΟΣ) C = 2-10" 6 F C ' = e o "^ = 10 " 6F Q = CV = 300-10" 6 C V = -~7~ = 300V V = 150V Ε = V/ = 7-500 V/m 3 Ε' = = 0,75-10 4 V/M Ε ηλ = ^- Q-V = 225-10^ Ε ηλ = ^-0 ν = 450-10- 4 J 37. Η ένταση δίνεται από την Ε = γ από την οποία βρίσκουμε: Ε = 160 V/m 38. Η απόσταση μεταξύ των οπλισμών είναι ί = από την οποία βρίσκουμε = 0,2m.

14 ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3 1 39. α) Για την μετακίνηση του θετικού φορτίου από την αρνητική στη θετική πλάκα απαιτείται έργο εξωτερικής δύναμης ίσο με το αρνητικό έργο της δύναμης του πεδίου. Άρα: W F = q-v = 18-10 6 Joule β) Σ' αυτή τη περίπτωση το πεδίο μετακινεί το φορτίο αυθόρμητα και επομένως θα πρέπει να ασκηθεί στο φορτίο εξωτερική δύναμη ώστε να μετακινηθεί με σταθερή κινητική ενέργεια. Το έργο αυτό θα είναι αντίθετο του έργου της δύναμης του πεδίου, άρα: νν Ρεξ = 9-V = -18-10" 6 J 40. + t 1 F Lu 0 Ε F (Η τάση V να ληφθεί ίση με 90 Volt). T, άξονας χ: κίνηση ευθύγραμμη ομαλή d = u 0 t => t = t - 2,5-10" 9 sec d u 0 =ΐ> άξονας y: κίνηση ευθύγραμμη ομαλά επιταχυνόμενη lf y = m e -a y <» Ε q e = m e -a y

ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 15 α ν = V I qg J = 16-10 14 m/s y m e - μετά από χρόνο t: u y = a y -t => u y = 4 10 6 m/s Η ταχύτητα επομένως κατά την έξοδο είναι: υ = Vuo+u y => υ = 2,04-10 7 m/s. και η διεύθυνση της: εφθ = => εφθ = 0.2. Uy 41. α) Κ = q-v βρίσκουμε Κ = 3,2 10 15 J. β) Κ = mu 2 άρα: υ = m βρίσκουμε: υ = 8,4-10 7 m/s. 42. Εφ'όσον αιωρείται η σταγόνα IF = 0 ή F nx = Β (1) V αλλα η F n = E-q η F na = ~γ -q (2) B-e από τις (1) και (2) q = ν βρίσκουμε: q = 6,4-10 19 C 43. IF y = 0 ή T y = Β IF X = 0 ή T x = F Τ ν Β - Β χ- = - <φ εφθ = (1) F = E-q = -γ q (2) από τις (1) και (2) έχουμε:

16 ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 V = πη 9^^Φ 30 βρίσκουμε: V = 9,43V. 44. α) Η ένταση του ηλεκτρικού πεδίου βρίσκεται από τη σχέση: Ε = άρα Ε = 200-^β) VKA = V K -V A =* V A = VK-VKA => V A = -800V. 45. Η ένταση του πεδίου δίνεται από τη σχέση: V ^ V Ε = -γ- και επομένως Ε = 20 - c m άρα μεταξύ των σημείων (ΚΑ) η διαφορά δυναμικού V«A βρίσκεται από την αντίστοιχη σχέση: Ε = <-ΚΛ άρα V«A = Ε'^ΚΛ άρα: V«A = 1200V α) Επομένως το έργο της δύναμης του πεδίου είναι: Wka = q-v«a άρα = 12-10" 4 J. β) Το έργο W MK είναι μηδενικό διότι η δύναμη του πεδίου είναι κάθετη στη μετατόπιση Μ Κ (ή διότι η V MK = 0). γ) Το έργο WK/WK είναι μηδενικό γιατί το ηλεκτροστατικό πεδίο είναι συντηρητικό (ή VKA MK = 0).