Kul Models for beam, plate and shell structures, 07/2016

Σχετικά έγγραφα
Kul Models for beam, plate and shell structures, 10/2016

Kul Models for beam, plate and shell structures, 02/2016

Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, 08/2016

Kul Models for beam, plate and shell structures, MT

Kul Models for beam, plate and shell structures, 09/2016

Chapter 7a. Elements of Elasticity, Thermal Stresses

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Tutorial Note - Week 09 - Solution

Problems in curvilinear coordinates

Curvilinear Systems of Coordinates

Laplace s Equation in Spherical Polar Coördinates

Fundamental Equations of Fluid Mechanics

r = x 2 + y 2 and h = z y = r sin sin ϕ

4.2 Differential Equations in Polar Coordinates

Analytical Expression for Hessian

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Example 1: THE ELECTRIC DIPOLE

ANTENNAS and WAVE PROPAGATION. Solution Manual

Homework 8 Model Solution Section

Matrix Hartree-Fock Equations for a Closed Shell System

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

3.7 Governing Equations and Boundary Conditions for P-Flow

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Matrices and Determinants

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Strain and stress tensors in spherical coordinates

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

The Laplacian in Spherical Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Inverse trigonometric functions & General Solution of Trigonometric Equations

D Alembert s Solution to the Wave Equation

The Friction Stir Welding Process

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Spherical Coordinates

Section 8.3 Trigonometric Equations

Approximation of distance between locations on earth given by latitude and longitude

The Simply Typed Lambda Calculus

Math221: HW# 1 solutions

Srednicki Chapter 55

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

6.3 Forecasting ARMA processes

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

4.6 Autoregressive Moving Average Model ARMA(1,1)

derivation of the Laplacian from rectangular to spherical coordinates

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Answer sheet: Third Midterm for Math 2339

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Second Order Partial Differential Equations

ADVANCED STRUCTURAL MECHANICS

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lecture 26: Circular domains

EE512: Error Control Coding

If we restrict the domain of y = sin x to [ π 2, π 2

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Kul Finite element method I, Exercise 08/2016

Second Order RLC Filters

( y) Partial Differential Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Example Sheet 3 Solutions

Differential equations

Course Reader for CHEN 7100/7106. Transport Phenomena I


MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

C.S. 430 Assignment 6, Sample Solutions

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Model NAST (Separable Type)

Statistical Inference I Locally most powerful tests

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Numerical Analysis FMN011

Concrete Mathematics Exercises from 30 September 2016

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.

ST5224: Advanced Statistical Theory II

PARTIAL NOTES for 6.1 Trigonometric Identities

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Kul Finite element method I, Exercise 07/2016

Module 5. February 14, h 0min

Orbital angular momentum and the spherical harmonics

Every set of first-order formulas is equivalent to an independent set

Homework 3 Solutions

Derivation of Optical-Bloch Equations

Transcript:

Kul-9.5 Models fo beam, plate and shell stuctues, 7/6 Demo poblems. Deive the component foms of the elastic isotopic Kichhoff plate constitutive equations (just bending) in the pola coodinate system. Use the invaiant foms 3 t M = E: w, ee ee ee + ee ee + ee ν φ φ φ φ E E ee = φ φ ν ee + ek+ ke G ek+ ke φ φ φ φ φ φ ν kk kk ke + ek ke + ek and conside the case ν = to shoten the expessions. Answe M w, 3 Et Mφφ = w, / + w, φφ / M ( w / ) φ, φ,. A simply suppoted cicula plate of adius is loaded by a point foce acting at the midpoint as shown in the figue. Detemine the displacement of the plate at the midpoint by using the Kichhoff plate model in the pola coodinate system. Poblem paametes E, ν and t ae constants. Assume that the solution depends on the adial coodinate only. F Answe 3 F ( ν)(3 + ν) w() = 3 Eπt 3. A simply suppoted cicula plate of adius is loaded by its own weight as shown in the figue. Detemine the displacement of the plate at the midpoint by using the Kichhoff plate model in the pola coodinate system. Poblem paametes E, ν, ρ and t ae constants. Assume that the solution depends on the adial coodinate only. g Answe 3 g ( ν)(5 + ν) ρ w() = 6Et he demo poblems ae published in the couse homepage on Fidays. he poblems ae elated to the topic of the next weeks lectue (Wed.5-. hall K3 8). Solutions to the poblems ae explained in the weekly execise sessions (hu.5-. hall K3 8) and will also be available

in the home page of the couse. Please, notice that the poblems of the midtems and the final exam ae of this type.

Deive the component foms of the elastic isotopic Kichhoff plate constitutive equations (just bending) in the pola coodinate system. Use the invaiant foms 3 t M = E: w, ee ee ee + ee ee + ee ν φ φ φ φ E E ee = φ φ ν ee + ek+ ke G ek+ ke φ φ φ φ φ φ ν kk kk ke + ek ke + ek and conside the case ν = to shoten the expessions. Solution he (mid-plane) gadient opeato of the pola coodinate system is given by = e + eφ φ and deivatives of the basis vectos e / φ = eφ and eφ / φ = e. Deivatives with espect to the adial coodinate vanish. heefoe w w w= e + eφ φ and w w w= ( e + eφ )( e + eφ ) φ φ w ( w ) w w ee ee w w = + w φ + ee φ φ + ee φ ee φ + ee φ φ φ φ φ φ w w w w w= ee + ee ( ) ( ) ( ) φ + ee φ w + ee φ φ +. φ φ φ By using the invaiant fom of the constitutive equation with the elasticity dyad of isotopic mateial (fomulae collection) 3 t M = E: w and ee ee ee + ee ee + ee ν φ φ φ φ E E ee = φ φ ν ee + ek+ ke G ek+ ke φ φ φ φ φ φ ν kk kk ke + ek ke + ek ee ( / ) 3 ν w, ee φ + ee φ w, φ t E M ( ee = φ φ ν ( w, / + w, )/ + ek+ ke G φφ φ φ ν kk ke + ek

3 t ee E ν w, = ( ( ) ( / ), ee + + ( w, / + w, )/ φ φ φ φ φ ν φφ M ee ee G w ν ee 3 ν w, Et M= ee φ φ ν ( w, / + w, )/ ( ) φφ. ν ee + ee ν φ φ ( w/ ), φ If Poisson s atio ν =, expession simplifies to ee w 3, Et M= ee φ φ ( w, φφ / + w, )/. ee φ + ee φ ( w/ ), φ

A simply suppoted cicula plate of adius is loaded by a point foce acting at the midpoint as shown in the figue. Detemine the displacement of the plate at the midpoint by using the Kichhoff plate model in the pola coodinate system. Poblem paametes E, ν and t ae constants. Assume that the solution depends on the adial coodinate only. F Solution Kichhoff plate equations follow fom the eissne-mindlin bending equations [( Q), + Qφφ, ] / + bz [( M ), + Mφ, φ Mφφ ] / Q + c =, [( Mφ ), + Mφφ, φ + Mφ] / Qφ + cφ M θφ, + νθ ( φ θ, φ)/ Mφφ = D νθφ, + ( θφ θ, φ )/, M ( ν)[( θ + θ ) / θ ] / φ φφ,, Q w, + θφ = Gt Qφ w, φ / θ when otations ae eliminated thee with the Kichhoff constaints (obtained fom the constitutive equations fo the tansvese shea foces). hen shea foces become constaint foces to be solved fom the moment equilibium equations. Afte elimination of the shea foces, foce equilibium equations in the tansvese diection becomes the equilibium equation of the Kichhoff plate model. In a otation symmetic case, all deivatives with espect to φ vanish and θ. Assuming that cφ = c =, moment esultants and equilibium equation take the foms ( θ φ = w, and θ = w, φ / ) = M = D( θφ, + ν θ φ) d d M = D( ) w d +ν d, M = D( νθ + θ ) φφ φ, φ d d Mφφ = D( ν + ) w, d d Q = ( M ), Mφφ d d d Q = D ( ) w d d d, d ( Q ) + b z = d d d d d b ( )( ) w= z. d d d d D Assuming that the distibuted foce is constant, solution to the equilibium equation is obtained by epeated integations

d d d d b ( )( ) w= z d d d d D d d d d b ( w) = z d d d d D d d d b ( ) z a w = + d d d D 3 d d bz w = + a ln + b d d D d d d bz w= + a d d d D d d bz w= + aln + b d d D d bz w= + a( + ln ) + b + c d D 6 3 d bz w= + a( + ln ) + b + c d D 6 bz w= + a ( ln ) + b + cln + d. D 6 he geneic solution contains paametes abcd,,, to be detemined fom the bounday conditions. It is notewothy that ln is not bounded when wheeas ln and ln ae (limit values ae zeos). heefoe if oigin belongs to the solution domain, a bounded solution equies that c =. o find the solution to plate unde concentated foce without distibuted foce i.e. b z =, one may conside an annulus with the inne adius = ε and oute adius =. he plate is simply suppoted at the oute edge i.e. W( ) = M( ) =. At the inne edge, the plate is loaded by shea foce Q( ε ) = F / ( πε ) of esultant F. Solution needs to be bounded when ε and theefoe c =. nq Q = d ( d )( d ) w+ F = d d d D πε a F ε + D πε = a = D F π, M ( ) = d w dw + = d d a [3 + ln + b +ν a [ + ] + ν b = ν ( )] ( ln ) a 3+ ν F 3+ ν b= ( + ln ) = ( + ln ), + ν D π + ν w ( ) = a ( ln ) + b + d = d = a ( ln ) b d = F 3 3 ( ln ) F ) ( + ln F + D ν + D + = ν π π ν D π + ν. Displacement at the centepoint F 3 + ν 3 F w() = d = = ( 3+ ν )( ν ). D π + ν 3 Et π

A simply suppoted cicula plate of adius is loaded by its own weight as shown in the figue. Detemine the displacement of the plate at the midpoint by using the Kichhoff plate model in the pola coodinate system. Poblem paametes E, ν, ρ and t ae constants. Assume that the solution depends on the adial coodinate only. g Solution he geneic solution to Kichhoff plate model equilibium equation in pola coodinates assuming otation symmety bz w= + a ( ln ) + b + cln + d D 6 contains paametes abcd,,, to be detemined fom the bounday conditions. As oigin belongs to the solution domain and only the distibuted load is acting on the plate, all deivatives should be continuous at the oigin which implies that a = c =. he plate is simply suppoted at the oute edge giving w ( ) = M ( ) =. z b ( ) z b M = 3 b b D 6 + + ν D 6 + ν = 3 bz + ν b = D 8 + ν, b ( ) z w = + b + d= D 6 d = 5 bz + ν D 6 + ν. Displacement at the centepoint with bz = ρ gt b 5 3 () z + ν ρg w = = (5 + ν)( ν). D 6 + ν 6 Et

Kul-9.5 Models fo beam, plate and shell stuctues INDEX NOAION (Othonomal basis) ab = ab = ab + a b + + a b i i i I i i n n a / x a i j ij, δ ij ei ej {,} ( e i e j = δ ij ) ε ijk e i ( e j e k ) {,,} ( e i e j = ε ijk e k ) εijkεimn = δ jmδkn δ jnδ km ε det( a) = ε a a a ijk lmn il jm kn GENEAL a = ae i i a= a ij ee i j a = aijklee i je ke l... I a = a I = a a ( I = ii + jj + kk ) I : a = a: I = a a ( I = iiii + jjjj + kkkk + ijji + jiij + ikki + kiik + kjjk + jkkj ) a= a ee a = aee ij i a = a c j c ij j i a b = a b b IDENIIES a ( b c) = ( a b) c a ( b c) = bac ( ) cab ( ) a:( b) = ( a b) ( a) b c CYLINDICAL φ z SYSEM = cosφi + sinφ j + zk e cφ sφ i e e eφ = sφ cφ j eφ= eφ φ ez k ez ez = e + eφ + ez φ z SPHEICAL θφ SYSEM ( θφ,, ) = (s θ c φ i + s θ s φ j + c θ k)

eθ cθφ c cθφ s sθ i eφ = sφ cφ j e sθφ c sθφ s cθ k eθ cθ eφ eφ= sθe cθeθ φ e sθeφ eθ e eφ =, θ e eθ = eθ + eφ + e θ sinθ φ HIN BODY snb SYSEM FO PLANA BEAMS (, s n) = () s + ne () s es, s /, s, s = = e n ess, / ess, ess, = es + en n s n n es en / = s en es / OHONOMAL CUVILINEA COODINAES eα eα eα i e = ( i[ F])[ F] e = [ D] () i e e = D e en en en β β β i j ijk k eα α eα α = e F H = e D e e β [ ] [ ] β β [ ] β = ed i ij j = ed i i n n n n Γ = e e e = e = ( e e ) D D ( e e ) ijk i j k k i s s jl l k a= ( dae ) i a= ( da + a Γ ) ee i i j k ikj i j a= da +Γ a i i iji j a= ( da +Γ a +Γ a ) e i ij kik ij ikj ik j a= ( a) = dda i i +Γjijda i Γ ijk = D i D jk PLAE GEOMEY ( φ n) (, φ, n) = [ i cosφ+ j sin φ ] + nen e cosφ sinφ i eφ = sinφ cosφ j en k e eφ eφ = e φ e n d = d = d = φ φ n n

Γ = Γ = φφ φφ dv = dndω BEAM GEOMEY ( snb ) ( s, n, b) = [ ( s)] + nen + beb es, s es κb es κben en= ess, / ess, en= κb κs en= κseb κbes s eb es en eb κs eb κsen d s = n b) ( s + sb n sn b ( κ κ κ ) d n = n d b = b ssn sns ( n b) b Γ = Γ = κ κ dv = ( nκ ) dads b snb Γ sbn = ( nκb ) κs Γ = CYLINDICAL SHELL GEOMEY ( zφ n) ( z, φ, n) = [ i cosφ+ jsin φ + kz] + nen ez i ez eφ = sinφ cosφ j eφ = en φ en cos φ sinφ k en eφ d = z z φ = ( ) φ d n = n d n Γ φφn = Γ φnφ = ( n) dv = ( n ) dn( dφ ) dz = ( n ) dndω LINEA ISOOPIC ELASICIY σ = E: ε = E: u (mino and majo symmeties of the elasticity dyad assumed) ε = [ u + ( u )] c ii ν ν ii ij + ji G ij + ji E = jj E ν ν jj + jk + kj G jk + kj kk ν ν kk ki + ik G ki + ik ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj jk + kj (plane stess) ν kk kk ki + ik ki + ik

ii E ii ij + ji G ij + ji E = jj jj + jk + kj G jk + kj (beam) kk kk ki + ik G ki + ik ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj G jk + kj (plate) ν kk kk ki + ik G ki + ik ii E ii ij + ji ij + ji E = jj jj + jk + kj jk + kj (uni-axial) kk kk ki + ik ki + ik G = E ( +ν ) 3 Et D = ( ν ) PINCIPLE OF VIUAL WOK ext int δw = δw + δw = δ u U (a function set) δw = ( σ : δε ) dv + ( f δu) dv + ( t δ u) da V c V A BEAM EQUAIONS F + b F σ = = da M + i F + c M ρ σ F σ E E ρ u + i θ = da = da M ρ σ ρ E ρ E ρ θ IMOSHENKO BEAM ( xyz ) E = Eii + Gjj + Gkk N + bx Q y + by= Qz + bz + cx M y Qz + cy= Mz + Qy + cz N EAu ESzψ + ES yθ Qy= GA( v ψ) GS yφ Q z GA( w + θ) + GSzφ IMOSHENKO BEAM ( snb ) GS y( v ψ) + GSz( w + θ) + GIφ M y = ES yu EIzyψ + EI yyθ M z ESzu + EIzzψ EI yzθ

N Qnκ b + bs Qn + Nκb Qbκs + bn= Qb + Qnκ s + bb Mnκb + cs Mn + κb Mbκs Qb + cn= Mb + Mnκ s + Qn + cb N EA( u vκ b) + ESn( θ + φκb ψκ s) ESb( ψ + θκ s) Qn= GA( v + uκ b wκ s ψ ) GSn( φ θκb) Q b GA( w + vκ s + θ ) + GSb( φ θκb) GSb( w + vκ s + θ ) + GI( φ θκb) GSn( v + uκ b wκ s ψ ) Mn = ESn( u vκ b) + EInn( θ + φκb ψκ s) EIbn( ψ + θκ s) M b ESb( u vκ b) EInb( θ + φκb ψκ s) + EIbb( ψ + θκ s) PLAE EQUAIONS F + b = ( M Q+ c) k = F = σ dz = iin + ijn + jin + jjn + ( ki + ik ) Q + ( kj + jk ) Q xx xy yx yy x y M = σ zdz = iim + ijm + jim + jjm + ( ki + ik ) + ( kj + jk ) xx xy yx yy x y EISSNE-MINDLIN PLAE ( xyz ) Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Qxx, + Qyy, + bz Mxx, x + Myx, y Qx + cx = Myy, y + Mxy, x Qy + cy Qx w, x + θ = Gtk Q w φ y, y Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x M xx θ, x νφ, y Myy = D φ, y + νθ, x M ( ν)( θ φ ) / xy, y, x Qn Q o w w n Nnn Nn o un un = M ns M s o θn θn = N ns Ns o us u s M nn M n o θs θs KICHHOFF PLAE ( xyz ) Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Mxx, xx + Mxy, xy + Myy, yy + bz ( Mxx, x + Myx, y Qx + cx ) = ( Myy, y + Mxy, x Qy + cy )

Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x Mxx w, xx + ν w, yy Myy = D w, yy + ν w, xx M ( ν ) w xy, xy Nnn Nn o un un = N ns Ns o us us EISSNE-MINDLIN PLAE ( φ z) Q + M Q M o w w M nn M n o w, n + θ s n nss, ss, = [( N ) + N N ] / + b [( Nφ ), + Nφφ, φ + Nφ] / + bφ, φ, φ φφ = N u, + ν ( u + uφφ, )/ Et Nφφ = u ν, + ( u+ uφ, φ )/ ν N ( ν )[( u u ) / + u ] / φ, φ φ φ, [( Q), + Qφφ, ] / + bz [( M ), + Mφ, φ Mφφ ] / Q + c = [( Mφ ), + Mφφ, φ + Mφ] / Qφ + cφ M θφ, + νθ ( φ θ, φ)/ Mφφ = D νθφ, + ( θφ θ, φ )/ M ( ν)[( θ + θ ) / θ ] / φ φφ,, Q w, + θ φ = Gt Q w θ φ, φ / OAION SYMMEIC KICHHOFF PLAE D w+ b z = d d = ( ) d d ( ) b ( ) z w = + a ln + b + cln + d D 6 MEMBANE EQUAIONS IN CYLINDICAL GEOMEY ( zφ n) Nφz, φ + Nzz, z bz Nzφ, z + Nφφ, φ + bφ = b n Nφφ te [ u zz, + ν ( u φφ, u n)] Nzz ν te Nφφ = [ ( u φ, φ un) + νuzz, ] ν Nzφ tg( uz, φ + uφ, z) MEMBANE EQUAIONS IN SPHEICAL GEOMEY ( φθ n ) cscθnφφ, φ + Nθφ, θ + cot θ( Nθφ + Nφθ ) bφ csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ ) + bθ = Nφφ + Nθθ b n

te [ csc θ(cosθu θ + ν sin θuθθ, + uφφ, ) ( + ν) un] N φφ ν te Nθθ = [ csc θ ( ν cosθu sin u θ + θ θθ, + νuφφ, ) ( + ν) un] ν Nφθ tg( cscθuθφ, co tθuφ + uφθ, ) SHELL EQUAIONS IN CYLINDICAL GEOMEY ( zφ n) κ Nφz, φ + Nzz, z + bz Nzφ, z + κnφφ, φ κqφ + bφ = κqφ, φ + Qzz, + κnφφ + bn Mzφ, z + κmφφ, φ κmφn Qφ + cφ M + κm Q + c = zz, z φz, φ z z Nzz uz, z + νκ( uφφ, un) Et Nφφ = u ν z, z + κ( uφφ, un) ν Nzφ ( ν)( uφ, z + κuz, φ) / Mzz ωzz, + κνωφφ, κuzz, Mφφ νω zz, + κωφφ, + κ ( uφφ, un) M zφ D ( ν )( ωφ, z κωz, φ κuφ, z) / = + Mφz ( ν)( ωφ, z + κωz, φ + κ uz, φ) / M ( νκκ ) ( u + κu + ω) / φn n, φ φ φ Qz unz, + ωz = tg Q ω + κ( u + u ) φ φ n, φ φ ωz θ φ = ωφ θz