Θεωρία Υπολογισμού. Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας

Σχετικά έγγραφα
Θεωρία Υπολογισμού Αλφάβητα, Γλώσσες, Κανονικές Εκφράσεις

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 9 : Κανονικές Εκφράσεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 11 : Γραμματικές χωρίς συμφραζόμενα. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 10 : Κατασκευή ΝΠΑ. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 8 : Αυτόματα NFA - DFA. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 2 : Σύνολα & Σχέσεις (2/2) Αλέξανδρος Τζάλλας

Περιεχόμενα Συμβολοσειρές Γλώσσες ΘΥ 6: Συμβολοσειρές & γλώσσες Επ. Καθ. Π. Κατσαρός 24/07/2014 Επ. Καθ. Π. Κατσαρός ΘΥ 6: Συμβολοσειρές & γλώσσες

Θεωρία Υπολογισμού. Ενότητα 7 : Ντετερμινιστικά Πεπερασμένα Αυτόματα, Κανονικές Πράξεις. Αλέξανδρος Τζάλλας

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Θέματα υπολογισμού στον πολιτισμό

Λειτουργικά Συστήματα

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

Προγραμματισμός Διαδικτύου

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου

Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου

Πληροφορική II. Ενότητα 5 : Δομές Δεδομένων και αφηρημένοι. τύποι δεδομένων. Δρ. Γκόγκος Χρήστος

Προγραμματισμός Διαδικτύου

Εισαγωγή στους Αλγορίθμους

Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου

Θέματα υπολογισμού στον πολιτισμό

Αντικειμενοστραφής Προγραμματισμός

Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου

Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος

Φωνολογική Ανάπτυξη και Διαταραχές

Εισαγωγή στους Αλγορίθμους

Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Δομές Δεδομένων Ενότητα 1

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Προγραμματισμός Διαδικτύου

Προγραμματισμός Διαδικτύου

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου

Αντικειμενοστραφής Προγραμματισμός

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 7 : Ισορροπία αγοράς Καραμάνης Κωνσταντίνος

Προχωρημένα Θέματα Προγραμματισμού Δικτύων

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Λειτουργικά Συστήματα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Λειτουργικά Συστήματα

Εισαγωγή στους Αλγορίθμους

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Αρχιτεκτονική υπολογιστών

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Αντικειμενοστραφής Προγραμματισμός

Ιστορία της μετάφρασης

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Αντικειμενοστραφής Προγραμματισμός

Προγραμματισμός Διαδικτύου

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μάρκετινγκ Αγροτικών Προϊόντων

Διοικητική Λογιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Αντικειμενοστραφής Προγραμματισμός

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λοιμώδη Νοσήματα Υγιεινή Αγροτικών Ζώων

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Συστήματα Αναμονής. Ενότητα 3: Στοχαστικές Ανελίξεις. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Μοντέρνα Θεωρία Ελέγχου

Διοικητική των επιχειρήσεων

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 9:Παραγωγική διαδικασία Καραμάνης Κωνσταντίνος

Αγροτικός Τουρισμός. Ενότητα 9 η : Εκπαιδευτικές τεχνικές στον τουρισμό. Όλγα Ιακωβίδου Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Νοσηλευτική Σεμινάρια

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Εκκλησιαστικό Δίκαιο

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Μοντέρνα Θεωρία Ελέγχου

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπ

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική

Εισαγωγή στην Πληροφορική

Νοσηλευτική Σεμινάρια

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Πληροφορική ΙΙ Θεματική Ενότητα 5

Συμπεριφορά Καταναλωτή

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Κλασσική Θεωρία Ελέγχου

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

Αρχιτεκτονική υπολογιστών

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Transcript:

1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας

2 Ανοιχτά Ακαδημαϊκά Μαθήματα Τμήμα Μηχανικών Πληροφορικής Τ.Ε Θεωρία Υπολογισμού Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας Καθηγητής Εφαρμογών Άρτα, 2015

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 3 3

4 Θεωρία Υπολογισμού Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2), Τμήμα Μηχανικών Πληροφορικής, ΤΕΙ ΗΠΕΙΡΟΥ - Ανοιχτά Ακαδημαϊκά Μαθήματα Χρηματοδότηση Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο TEI Ηπείρου» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.

Λογική (1/3) Έστω p(x) η πρόταση x είναι παραλληλόγραμμο Έστω q(x) = x έχει τουλάχιστον μία κάθετη γωνία. Έστω r(x) = x είναι ορθογώνιο. Έστω s(x) = x είναι τετράγωνο. Έστω t(x) = x είναι ρόμβος Αληθές ή Ψευδές: r(x) ^ s(x) t(x)? Αληθές Μάλιστα: s(x) t(x) 5 5

Λογική (2/3) Οι μεταβλητές x, y, αντιστοιχούν σε πολύγωνα στο επίπεδο Έστω p(x) η πρόταση x είναι παραλληλόγραμμο Έστω q(x) = x έχει τουλάχιστον μία κάθετη γωνία. Έστω r(x) = x είναι ορθογώνιο Έστω s(x) = x είναι τετράγωνο Έστω t(x) = x είναι ρόμβος Αληθές ή Ψευδές: p(x) ^ q(x) r(x)? Αληθές 6

Λογική (3/3) Έστω p(x) η πρόταση x είναι παραλληλόγραμμο Έστω q(x) = x έχει τουλάχιστον μία κάθετη γωνία Έστω r(x) = x είναι ορθογώνιο Έστω s(x) = x είναι τετράγωνο Έστω t(x) = x είναι ρόμβος Αληθές ή Ψευδές: t(x) r(x)? Ψευδές Δεν είναι όλοι οι ρόμβοι ορθογώνιοι, εκτός από μερικούς t(x) r(x) 7

8 Ποσοδείκτες (1/2) Οι ποσοδείκτες πρέπει να χρησιμοποιούνται εκεί που υπάρχει ασάφεια : για κάθε (καθολικός ποσοδείκτης) : υπάρχει (υπαρξιακός ποσοδείκτης) Επομένως, x(t(x) r(x)) είναι Ψευδές Αφού δεν είναι όλοι οι ρόμβοι μη-ορθογώνια Αλλά x(t(x) r(x)) είναι Αληθές Αφού υπάρχουν ρόμβοι που δεν είναι ορθογώνια

9 Ποσοδείκτες (2/2) Η άρνηση της συνεπαγωγής δίνει μία πρόταση με ΚΑΙ (P Q) είναι ίδιο με (P ^ Q) Η άρνηση ενός ποσοδείκτη, απλά τον αλλάζει στον άλλο x (t(x) r(x)) είναι ίδιο με x ( (t(x) r(x))), που είναι ίδιο με x (t(x) ^ r(x))

1 Θεωρία Υπολογισμού Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2), Τμήμα Μηχανικών Πληροφορικής, ΤΕΙ ΗΠΕΙΡΟΥ - Ανοιχτά Ακαδημαϊκά Μαθήματα Πρόβλημα Βρείτε το σφάλμα στην παρακάτω απόδειξη ότι 2=1: 1) Έστω η εξίσωση: α=β 2) Παίρνουμε: α 2 =αβ 3) Έπειτα παίρνουμε: α 2 -β 2 =αβ-β 2 4) Έπειτα έχουμε: (α-β)(α+β)=β(α-β) 5) Από όπου αν απλοποιήσουμε παίρνουμε: α+β=β 6) Αν α=β=1 τότε έχουμε: 2=1

1 Αλφάβητο & Γλώσσες (1/9) Αλφάβητο Σ είναι ένα πεπερασμένο σύνολο συμβόλων. Συμβολοσειρά ενός αλφαβήτου είναι μια πεπερασμένη ακολουθία συμβόλων του αλφαβήτου. Αντί να γράφουμε την ακολουθία με παρενθέσεις όπως στις προηγούμενες διαφάνειες, απλά παραθέτουμε σύμβολα. Αν μία συμβολοσειρά δεν έχει καθόλου σύμβολα τότε αυτή λέγεται κενή συμβολοσειρά και γράφεται με e ή ε. Το σύνολο όλων των συμβολοσειρών, συμπεριλαμβανομένης και της κενής, ενός αλφαβήτου Σ συμβολίζεται με Σ*. Το μήκος μιας συμβολοσειράς είναι το μήκος της ως ακολουθία. Για μια συμβολοσειρά w το μήκος της συμβολίζεται με w.

Αλφάβητο & Γλώσσες (2/9) Δύο συμβολοσειρές ενός αλφαβήτου μπορούν να συνδυαστούν για να σχηματίσουν μία τρίτη, με την πράξη της παράθεσης Η παράθεση δύο συμβολοσειρών x και y που γράφεται απλά ως xy είναι η συμβολοσειρά x ακολουθούμενη από την y Τυπικά γράφουμε w=xy αν και μόνο αν w = x + y και w(j) = x(j) για j = 1,..., x και w( x +j) = y(j) για j = 1,..., y 1

1 Αλφάβητο & Γλώσσες (3/9) ΙΔΙΟΤΗΤΕΣ ΠΑΡΑΘΕΣΗΣ - w e = e w = w απορροφητικό στοιχείο - (w x) y = w (x y) προσεταιριστικότητα Μία συμβολοσειρά v είναι υποσυμβολοσειρά μιας συμβολοσειράς w αν και μόνο αν υπάρχουν συμβολοσειρές x και y τέτοιες ώστε w = xvy Κάθε συμβολοσειρά είναι υποσυμβολοσειρά του εαυτού της και το e είναι υποσυμβολοσειρά κάθε συμβολοσειράς

1 Αλφάβητο & Γλώσσες (4/9) Αν w = xv για κάποιο x, τότε το v λέγεται κατάληξη του w Αν w = vy για κάποιο y, τότε το v λέγεται πρόθεμα του w Για κάθε συμβολοσειρά w και κάθε φυσικό αριθμό i, η συμβολοσειρά w i ορίζεται ως w 0 = e w i+1 = w i w για κάθε i 0 Η αντίστροφη μιας συμβολοσειράς w συμβολίζεται με w R και είναι η συμβολοσειρά διαβασμένη από το τέλος προς την αρχή

1 Αλφάβητο & Γλώσσες (5/9) Τυπικά γράφουμε Αν w είναι συμβολοσειρά μήκους 0, τότε w R = w = e Αν w είναι συμβολοσειρά μήκους n+1 >0 τότε w = ua για κάποιο a Σ και w R =au R Αποδεικνύεται με επαγωγή ότι (wx) R = x R w R Κάθε σύνολο από συμβολοσειρές ενός αλφαβήτου Σ δηλαδή κάθε υποσύνολο του Σ* θα ονομάζεται γλώσσα

Αλφάβητο & Γλώσσες (6/9) Το Σ*, το και το Σ είναι και αυτά γλώσσες Μία πεπερασμένη γλώσσα μπορεί να ορισθεί παραθέτοντας όλες τις συμβολοσειρές που την απαρτίζουν Οι πιο πολλές γλώσσες από αυτές που συνήθως μελετάμε είναι άπειρες. ΠΑΡΑΔΕΙΓΜΑΤΑ: {0, 01, 011, 0111,... } {w Σ*: η w έχει ίσο πλήθος 1 και 0} {w Σ*: η w = w R } Ένας τρόπος για να ορίζουμε άπειρες γλώσσες: L={w Σ*: η w έχει την ιδιότητα P} 1

1 Αλφάβητο & Γλώσσες (7/9) Αν Σ είναι ένα πεπερασμένο αλφάβητο, τότε το Σ* είναι σίγουρα άπειρο, αλλά είναι ένα μετρήσιμα άπειρο σύνολο Μπορούμε να κατασκευάσουμε μία αμφιμονοσήμαντη αντιστοιχία f: N Σ*: πρέπει πρώτα να διατάξουμε το αλφάβητο, έστω Σ={a 1,..., a n }, όπου τα a 1,..., a n είναι διαφορετικά. Τα στοιχεία του Σ* μπορούν να απαριθμηθούν με τον εξής τρόπο: (1) για κάθε k 0, όλες οι συμβολοσειρές μήκους k απαριθμούνται πριν από όλες τις συμβολοσειρές που έχουν μήκος k+1 (2) οι n k συμβολοσειρές μήκους ακριβώς k απαριθμούνται λεξικογραφικά, δηλαδή η a i1...a ik προηγείται της a j1...a jk υπό την προϋπόθεση ότι για κάποιο m, 0 m k-1, i l = j l για l = 1,..., m και i m+1 < j m+1

Αλφάβητο & Γλώσσες (8/9) ΠΑΡΑΔΕΙΓΜΑΤΑ: Αν Σ = {0, 1} η σειρά θα ήταν ως εξής: e, 0, 1, 00, 01, 10, 000, 001, 010, 011,....... Εφόσον οι γλώσσες είναι σύνολα μπορούν να συνδυαστούν με τις πράξεις συνόλων, ένωση, τομή και διαφορά Όταν κάποιο αλφάβητο γίνεται κατανοητό από τα συμφραζόμενα τότε θα γράφουμε το συμπλήρωμα του Α, αντί για τη διαφορά Σ*-Α 1

1 Αλφάβητο & Γλώσσες (9/9) Παράθεση γλωσσών L 1 και L 2 είναι η γλώσσα L = L 1 L 2 = {w Σ*: η w = xy για κάποιο x L 1 και y L 2 } Kleene star μιας γλώσσας L συμβολίζεται με L* είναι το σύνολο όλων των συμβολοσειρών που προκύπτουν από την παράθεση 0 ή περισσοτέρων συμβολοσειρών της L: L* = {w Σ*: η w = w 1... w k για κάποιο k 0 και w 1,.. w k L} Ισχύει * = e Συμβολίζουμε με L+ = LL*

Πεπερασμένη Αναπαράσταση γλωσσών (1/5) ΠΑΡΑΔΕΙΓΜΑ: L = {w {0,1}*: η w έχει δύο ή τρεις εμφανίσεις του 1, εκ των οποίων η πρώτη και η δεύτερη δεν είναι συνεχόμενες} L = 0*10*010*(10* *) Μία κανονική έκφραση περιγράφει μία γλώσσα χρησιμοποιώντας αποκλειστικά απλά σύμβολα και το συνδυασμένα με τα σύμβολα και *, ίσως με τη βοήθεια παρενθέσεων. Κανονικές εκφράσεις είναι όλες οι συμβολοσειρές του αλφαβήτου Σ {(, ),,, *} που μπορούν να κατασκευαστούν ως ακολούθως: και κάθε στοιχείο του Σ είναι κανονική έκφραση αν α και β είναι κανονικές εκφράσεις, τότε είναι επίσης και η (αβ) αν α και β είναι κανονικές εκφράσεις και η (α β) είναι επίσης αν α είναι κανονική έκφραση και η α* είναι επίσης τίποτα δεν είναι κανονική έκφραση, εκτός και αν προκύπτει από τα παραπάνω 2

ΠΑΡΑΔΕΙΓΜΑ: Ποια είναι η ((α b)*α) ; ((α b)*α) = ((α b)*) (α) σύμφωνα με τη (2) = ((α b)*) {α} σύμφωνα με τη (1) = (α b)*{α} σύμφωνα με την (4) = ( (α) (b) )*{α} σύμφωνα με την (3) = ({α} {b} )*{α} σύμφωνα με την (1) = {w {α, b}*: w τελειώνει σε α} 2 Θεωρία Υπολογισμού Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2), Τμήμα Μηχανικών Πληροφορικής, ΤΕΙ ΗΠΕΙΡΟΥ - Ανοιχτά Ακαδημαϊκά Μαθήματα Πεπερασμένη Αναπαράσταση γλωσσών (2/5) Η σχέση ανάμεσα στις κανονικές εκφράσεις και τις γλώσσες που αναπαριστούν ορίζεται από μία συνάρτηση, τέτοια ώστε αν α είναι μια οποιαδήποτε κανονική έκφραση, τότε (α) να είναι η γλώσσα που αναπαριστάται από το α. Δηλαδή, η είναι μία συνάρτηση από συμβολοσειρές σε γλώσσες. Η συνάρτηση ορίζεται ως εξής: (1) ( ) = και (α) = {α} για κάθε α Σ (2) Αν α και β είναι κανονικές εκφράσεις, τότε (αβ) = (α) (β) (3) Αν α και β είναι κανονικές εκφράσεις, τότε (α β) = (α) (β) (4) Αν α είναι κανονική έκφραση, τότε (α*) = (α)*

Πεπερασμένη Αναπαράσταση γλωσσών (3/5) Η κλάση των κανονικών γλωσσών ενός αλφαβήτου Σ ορίζεται να αποτελείται από όλες τις γλώσσες L έτσι ώστε L = (α) για κάποια κανονική έκφραση α του Σ Η κλάση των κανονικών γλωσσών του Σ είναι ακριβώς η κλειστότητα του συνόλου γλωσσών {{σ}: σ Σ} { } ως προς τις πράξεις ένωσης, παράθεσης και Kleene star. - ΠΑΡΑΔΕΙΓΜΑ ΜΗ ΚΑΝΟΝΙΚΗΣ ΓΛΩΣΣΑΣ: {0 n 1 n : n 0} - ΟΙ ΚΑΝΟΝΙΚΕΣ ΕΚΦΡΑΣΕΙΣ ΕΙΝΑΙ ΓΕΝΙΚΑ ΜΙΑ ΑΝΕΠΑΡΚΗΣ ΜΕΘΟΔΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ. 2

Πεπερασμένη Αναπαράσταση γλωσσών (4/5) ΕΡΩΤΗΜΑ: ΥΠΑΡΧΕΙ ΑΛΓΟΡΙΘΜΟΣ ΠΟΥ ΝΑ ΑΠΟΦΑΣΙΖΕΙ ΕΑΝ ΜΙΑ ΔΕΔΟΜΕΝΗ ΣΥΜΒΟΛΟΣΕΙΡΑ ΑΝΗΚΕΙ ΣΕ ΜΙΑ ΓΛΩΣΣΑ; Ένας αλγόριθμος ειδικά σχεδιασμένος, για κάποια γλώσσα L, που απαντάει σε ερωτήσεις του τύπου «Ανήκει η συμβολοσειρά w στην L;» ονομάζεται μηχανή αναγνώρισης γλώσσας ΠΑΡΑΔΕΙΓΜΑ: Μία μηχανή αναγνώρισης της γλώσσας L = {w {0, 1}*: η w δεν περιέχει τη συμβολοσειρά 111} η οποία διαβάζει συμβολοσειρές, ένα σύμβολο τη φορά, από αριστερά προς τα δεξιά, θα μπορούσε να λειτουργήσει ως εξής: «Κράτα ένα μετρητή, που ξεκινά από το μηδέν και μηδενίζεται κάθε φορά που ένα 0 εμφανίζεται στην είσοδο. Να προσθέτεις μία μονάδα κάθε φορά που ένα 1 εμφανίζεται στην είσοδο. Τερμάτισε με αρνητική απάντηση αν κάποτε ο μετρητής φτάσει στο τρία και με θετική απάντηση αν διαβαστεί όλη η συμβολοσειρά χωρίς ο μετρητής να φτάσει στο τρία» 2

2 Θεωρία Υπολογισμού Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2), Τμήμα Μηχανικών Πληροφορικής, ΤΕΙ ΗΠΕΙΡΟΥ - Ανοιχτά Ακαδημαϊκά Μαθήματα Πεπερασμένη Αναπαράσταση γλωσσών (5/5) ΠΑΡΑΔΕΙΓΜΑ ΠΑΡΑΓΩΓΟΥ ΓΛΩΣΣΑΣ: (e b bb)(α αb αbb)* «Για να παράγεις ένα στοιχείο της γλώσσας L, αρχικά γράψε τίποτα ή b ή bb. Στη συνέχεια γράψε α ή αb ή αbb και κάνε το ίδιο για οποιονδήποτε αριθμό επαναλήψεων, συμπεριλαμβανομένου και του μηδέν. Όλα τα στοιχεία της L και μόνον αυτά μπορούν να παραχθούν με τον τρόπο αυτό» Δεν είναι σχεδιασμένοι για να απαντούν σε ερωτήσεις Δεν είναι ντεντερμινιστικοί και άρα δεν προγραμματίζονται Τελικά δεν είναι αλγόριθμοι

2 Θεωρία Υπολογισμού Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2), Τμήμα Μηχανικών Πληροφορικής, ΤΕΙ ΗΠΕΙΡΟΥ - Ανοιχτά Ακαδημαϊκά Μαθήματα Βιβλιογραφία H.R. Lewis, Χ. Παπαδημητρίου, "Στοιχεία θεωρίας υπολογισμού", 1η έκδοση/2005, Εκδόσεις Κριτική, ISBN: 978-960-218-397-7 Κωδικός Βιβλίου στον Εύδοξο: 11776 2. M. Sipser, "Εισαγωγή στη Θεωρία Υπολογισμού", 1η έκδοση/2009, Εκδόσεις ΙΤΕ-Πανεπιστημιακές Εκδόσεις Κρήτης, ISBN: 978-960-524-243-5 Κωδικός Βιβλίου στον Εύδοξο: 257 Επιπλέον συνιστώμενη βιβλιογραφία E. Rich, "Automata, Computability and Complexity: Theory and Applications", 1st edition/2007, Prentice Hall, ISBN: 978-0132288064 J. E. Hopcroft, R. Motwani, J. D. Ullman, "Introduction to Automata Theory, Languages, and Computation", 3rd edition/2006, Prentice Hall, ISBN: 978-0321455369 J. Hopcroft, R. Motwani, J. Ullman, Intoduction to Automata Theory, Languages and Computation, 2nd ed., Pearson - Addison Wesley, 2003 M. Sipser, Εισαγωγή στη Θεωρία Υπολογισμού, Πανεπιστημιακές Εκδόσεις Κρήτης, 2007

2 26 Θεωρία Υπολογισμού Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2), Τμήμα Μηχανικών Πληροφορικής, ΤΕΙ ΗΠΕΙΡΟΥ - Ανοιχτά Ακαδημαϊκά Μαθήματα Σημείωμα Αναφοράς Copyright Τεχνολογικό Ίδρυμα Ηπείρου. Αλέξανδρος Τζάλλας. Θεωρία Υπολογισμού. Έκδοση: 1.0 Άρτα, 2015. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.teiep.gr/courses/comp112/

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 4.0 Διεθνές [1] ή μεταγενέστερη. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, Διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-nc-nd/4.0/deed.el 2

2 Θεωρία Υπολογισμού Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2), Τμήμα Μηχανικών Πληροφορικής, ΤΕΙ ΗΠΕΙΡΟΥ - Ανοιχτά Ακαδημαϊκά Μαθήματα Τέλος Ενότητας Επεξεργασία: Ευάγγελος Καρβούνης Άρτα, 2015

2 Τέλος Ενότητας Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2)