Βασικές Ιδιότητες των Επιταχυντών Σωµατιδίων

Σχετικά έγγραφα
Μαθηµα Φεβρουαρίου 2011 Tuesday, February 22, 2011

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου)

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 2α: Επιταχυντές

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 1γ: Επιταχυντές (α' μέρος) Λέκτορας Κώστας Κορδάς

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 26/2/2015

Πειραµατική Θεµελίωση της Φυσικής Στοιχειωδών Σωµατιδίων. Μάθηµα 1ο 2/3/2017

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 24/4/2007

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 15/2/2011

+ E=mc 2! Οι επιταχυντές επιλύουν δυο προβλήματα :

Theory Greek (Cyprus) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 μονάδες)

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων

ΕΝΕΡΓΟΣ ΔΙΑΤΟΜΗ ΤΟΥ ΣΩΜΑΤΙΔΙΟΥ W

Cosmotron. Το COSMOTRON ενέργειας 3 GeV ήταν το πρώτο σύγχροτρο πρωτονίων που τέθηκε σε λειτουργία το 1952.

Theory Greek (Greece) Μεγάλος Επιταχυντής Αδρονίων (LHC) (10 Μονάδες)

Μαγνητικό πεδίο.

Φυσική Στοιχειωδών Σωµατιδίων. 8 ου Εξαµήνου ιδ. Αν.Καθ Πετρίδου Χαρά Φεβρουάριος 2006

Μάθημα 9o' 12/5/2014

Επιταχυντϋσ Σωματιδύων

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια

Επιταχυντές και Ανιχνευτές στην Πυρηνική και Σωµατιδιακή Φυσική

Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα, Καταιονισμοί.

Πλησιάζοντας την ταχύτητα του φωτός. Επιταχυντές. Τα πιο ισχυρά μικροσκόπια

Νετρίνα υπερ-υψηλών ενεργειών UHE

Η ΒΑΣΙΚΗ ΕΡΕΥΝΑ ΣΤΗ ΣΩΜΑΤΙΔΙΑΚΗ ΦΥΣΙΚΗ

Κωστής Χαλκιαδάκης, φυσικός. Συσκάκης Γιάννης, φυσικός. 10 Ερωτήσεις και 10 απαντήσεις για το CERN

Αναζητώντας παράξενα σωματίδια στο A LargeIonColliderExperimnent. MasterClasses : Μαθήματα στοιχειωδών σωματιδίων

Εξαιρετικά σπάνια διάσπαση στο CMS, CERN 19 Ιουλίου 2012

Κίνηση φορτισµένου σωµατιδίου σε µαγνητικό πεδίο

Πεδία δυνάμεων. Ηλεκτρισμός και μαγνητισμός διαφορετικές όψεις του ίδιου φαινομένου του ηλεκτρομαγνητισμού. Ενοποίηση των δύο πεδίων μετά το 1819.

To CERN (Ευρωπαϊκός Οργανισµός Πυρηνικών Ερευνών) είναι το µεγαλύτερο σε έκταση (πειραµατικό) κέντρο πυρηνικών ερευνών και ειδικότερα επί της σωµατιδι

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 2β: Πειράματα-Ανιχνευτές

Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα,

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου)

Καλώς Ορίσατε στο CERN

Φυσικά ή τεχνητά ραδιονουκλίδια

Two boson production on Fermilab and LHC. Σκορδά Ελένη Α.Ε.Μ Εξάμηνο 8o

Q2-1. Πού βρίσκεται το νετρίνο; (10 μονάδες) Theory. Μέρος A. Η Φυσική του Ανιχνευτή ATLAS (4.0 μονάδες) Greek (Greece)

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

Το Ισοτοπικό σπιν Μαθηµα 5ο 30/3/2017

n proton = 10N A 18cm 3 (2) cm 2 3 m (3) (β) Η χρονική απόσταση δύο τέτοιων γεγονότων θα είναι 3m msec (4)

Τι ελπίζουµε να δούµε στον Μεγάλο Αδρονικό Συγκρουστή (LHC) Γ.Ι. Γούναρης, Τµήµα Φυσικής, Πανεπιστήµιο Θεσσαλονίκης Μάρτιος 2008

Κεφάλαιο 27 Μαγνητισµός. Copyright 2009 Pearson Education, Inc.

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΛΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

Και τα τρία σωμάτια έχουν σπιν μονάδα.

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ισχυρές Αλληλεπιδράσεις Γκλουόνια και Χρώμα Κβαντική Χρωμοδυναμική Ασυμπτωτική Ελευθερία

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

Αλληλεπίδρασηφορτισµένων σωµατιδίωνµετηνύληκαιεφαρµογές

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ

Η κατακόρυφη τομή...

ΚΙΝΗΣΕΙΣ ΦΟΡΤΙΩΝ ΣΕ Ο.Μ.Π. 1. Στο σχήμα δίνονται δύο ομογενή μαγνητικά πεδία με εντάσεις μέτρων Β 2 =2Β 1

Μεθοδολογίες Ανάλυσης εδοµένων στη Σωµατιδιακή Φυσική

Άσκηση ATLAS Z path Τι θα μετρήσουμε σήμερα και πώς

ΕΙΣΑΓΩΓΗ ΤΙ ΕΙΝΑΙ ΤΟ CERN ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΔΙΑ ΙΣΤΟΡΙΑ ΤΟΥ CERN ΜΕΓΑΛΕΣ ΦΥΣΙΟΓΝΩΜΙΕΣ ΤΟΥ CERN ΚΑΙ ΤΗΣ ΣΩΜΑΤΙΔΙΑΚΗΣ ΦΥΣΙΚΗΣ ΕΠΙΤΑΧΥΝΤΕΣ ΠΕΙΡΑΜΑΤΑ

ΠΕΡΙΕΧΟΜΕΝΑ. Το πείραμα στο CERN και ο σκοπός του. Το «πολυπόθητο» μποζόνιο Higgs. Μηχανισμοί ανίχνευσης του μποζονίου Higgs. και τι περιμένουμε;

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Ευτράπελα σχετικά με τον επιταχυντή LHC και τους ελέφαντες. Μετάφραση του Fun facts about LHC and elephants του Πανεπιστημίου του Birmingham

Αναζητώντας παράξενα σωµατίδια στο ALICE

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16

Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Β Λυκείου Κυριακή 23 Μαρτίου 2014

ΑΝΙΧΝΕΥΤΕΣ ΚΑΒΑΛΑΡΗ ΑΝΝΑ ΟΙΚΟΝΟΜΙΔΟΥ ΙΩΑΝΝΑ ΚΟΥΣΟΥΝΗ ΜΑΡΓΑΡΙΤΑ

Τα ευρήματα δύο ερευνητικών ομάδων συμπίπτουν ως προς τις τιμές μάζας του μποζονίου Χιγκς

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

Yπεύθυνη καθηγήτρια Ομίλου Φυσικής, Γεωργία Ρουμπέα

Κατερίνα Αρώνη Δεκέμβριος 2012

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 12 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ

Νουκλεόνια και ισχυρή αλληλεπίδραση

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Πληροφορίες για την δέσμη Τ9 και τις πειραματικές εγκαταστάσεις

Καλώς Ορίσατε στο CERN

Μάθημα 7 Διαγράμματα Feynman

ΥΤΙΚΗ ΚΑΣΕΤΘΤΝΗ Μ Α Θ Η Μ Α : Ε Π Ω Ν Τ Μ Ο :... Ο Ν Ο Μ Α :... Σελίδα 1 από 5 Ε Π Ι Μ Ε Λ Ε Ι Α Θ Ε Μ Α Σ Ω Ν : ΜΠΑΡΛΙΚΑ ΩΣΗΡΗ

Απώλεια Ενέργειας λόγω Ιονισμού

Γαλβανομέτρο στρεπτού πλαισίου

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 12 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 2β Μέτρηση ορμής σωματιδίου

Κοσμολογία & Αστροσωματιδική Φυσική Μάγδα Λώλα CERN, 28/9/2010

Μιόνιο μ ±. Mass m = ± MeV Mean life τ = ( ± ) 10 6 s τμ+/τ μ = ± cτ = 658.

Φυσική Στοιχειωδών Σωματιδίων Ε: Από τί αποτελείται η ύλη σε θεμελειώδες επίπεδο;

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ

Διάσπαση σωµατιδίων. = m C 2 + p 2 = m C 2 + E B 2! m B E C = (E B = (E C. p B. , p), p C. ,- p) = (m A , 0) p A = E B. + m C 2 + E B 2! m B.


Μάθημα 7o Συντονισμοί & Παραγωγή Σωματιδίων στις Υψηλές Ενέργειες 27/4/2017

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση:

Στοιχειώδη Σωματίδια II. Διάλεξη 7η Πετρίδου Χαρά

δ-ray με κινητική ενέργεια T e και ορμή p e παράγεται σε μια γωνία Θ q, p

ΤΟ ΜΟΝΤΕΛΟ ΤΩΝ ΠΑΡΤΟΝΙΩΝ

Πειραµατική Θεµελείωση της Φυσικής


Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου

Εισαγωγή γή στη Φυσική των Επιταχυντών II Γ. Παπαφιλίππου Τμήμα Επιταχυντών -CERN

Δύο Συνταρακτικές Ανακαλύψεις

1 56 παριστάνει : α. διάσπαση β β. διάσπαση γ γ. σύντηξη δ. σχάση. Μονάδες 5

Transcript:

Μαθηµα 2 0 24/4/2007

Βασικές Ιδιότητες των Επιταχυντών Σωµατιδίων Το είδος των σωµατιδίων που επιταχύνονται Η ενέργεια στην οποία επιταχύνονται τα σωµατίδια Το ποσοστό της ενέργειας της δέσµης που είναι διαθέσιµο για την παραγωγή ΝΕΩΝ σωµατιδίων Η φωτεινότητα της δέσµης ( Luminosity)

H ενέργεια της δέσµης Για δέσµες υψηλής ενέργειας Τα σωµατίδια περνούν από υψηλά ηλεκτρικά πεδία => τεχνολογικά όρια Περνούν απο πολλά µικρότερα πεδια=>πολλά πεδία κατά µήκος της τροχιάς τους Περνούν πολλές φορές από τις ίδιες κοιλότητες ραδιοσυχνοτήτων (RF cavities)=>κυκλική τροχιά µε διπολικούς µαγνήτες Αλλά τότε : Αν η ενέργεια της δέσµης αυξάνει πρέπει να αυξάνουν ταυτοχρονα τα ηλεκτρικά και µαγνητικά πεδία (synchronously -> Synchrotron) Τα επιταχυνόµενα σωµατίδια παράγουν ακτινοβολία synchrotron

Ακτινοβολία Synchrotron Απώλεια ενέργειας ανά περιστροφή Παράδειγµα : LEP, 2πR=27Km, E=100 GeV (το 2000) ΔΕ = 2GeV!=> στο LEP χρειάζεται όλο και περισσότερη ενέργεια για να αντισταθµίσει αυτή που χάνεται ΝΒ : για σχετικιστιστικά πρωτόνια (β 1) ΔΕ[p]/ΔΕ[e] = (m e /m p ) 4 = 10-13!! ->HERA : Ee = 27.6 GeV & Ep =920 GeV, ΔΕ[p]/ΔΕ[e] = 10-8

Βασικές Ιδιότητες των Επιταχυντών Σωµατιδίων Τα είδη των σωµατιδίων που επιταχύνονται Η ενέργεια στην οποία επιταχύνονται τα σωµατίδια Το ποσοστό της ενέργειας της δέσµης που είναι διαθέσιµο για την παραγωγή ΝΕΩΝ σωµατιδίων Η φωτεινότητα της δέσµης ( Luminosity)

Τι ποσοστό της ενέργειας της δέσµης διατίθεται για την παραγωγή νέων σωµατιδίων? Σε συγκρουστήρες e+eπρακτικά όλη Αλλά: ακτινοβολία γ στην αρχική κατάσταση : Initial State Radiation (ISR) αλλάζει την Εcm Πλεονέκτηµα : η ενέργεια µπορεί να ρυθµιστεί µε ακρίβεια στον ζητούµενο συντονισµό ώστε η ενεργός διατοµή να είναι µέγιστη(π.χ. Ζ: 91GeV, Upsilon : 9.46 GeV) Μειονέκτηµα : όταν ψάχνουµε για νέα σωµατίδια µε άγνωστη µάζα : ΠΡΕΠΕΙ να αλλάζουµε την ενέργεια της δέσµης ώστε να ερευνήσουµε µια περιοχή

Τι ποσοστό της ενέργειας της δέσµης διατίθεται για την παραγωγή νέων σωµατιδίων? Σε συγκρουστήρες αδρονίων: Η hard interaction οφείλεται στα παρτόνια (q,g) x a, x b <<1 Πλεονεκτήµατα : σε κάθε σύγκρουση είναι τυχαία τα x a, x b διερευνούµε µια περιοχή της Εcm: καλό για ανακάλυψη άγνωστων/νεων σωµατιδίων Μειονεκτήµατα : η Εcm ΔΕΝ ειναι γνωστή εκ των προτέρων! Χρειάζονται δέσµες µεγαλύτερης ενέργειας. x a x b =>c.m. boosted w.r.t. lab frame. Δεν είναι γνωστό ποιά σωµατίδια αλληλεπέδρασαν

Βασικές Ιδιότητες των Επιταχυντών Σωµατιδίων Το είδος των σωµατιδίων που επιταχύνονται Η ενέργεια στην οποία επιταχύνονται τα σωµατίδια Το ποσοστό της ενέργειας της δέσµης που είναι διαθέσιµο για την παραγωγή ΝΕΩΝ σωµατιδίων Η φωτεινότητα της δέσµης ( Luminosity)

Φωτεινότητα Φωτεινότητα : Luminosity (L) = πλήθος των αλληλεπιδράσεων ανα µονάδα ενεργού διατοµής Ν= αριθµός γεγονότων dn/dt = σ L

Τυπικές τιµές : Φωτεινότητα Συνήθως τα δεδοµένα που παίρνονται εκφράζονται σε [pb -1 ] integrated luminosity L int = Ldt Το πλήθος των δεδοµένων σε περίοδο Τ : Ν = σ L in = σ L T Μονάδες : 1 barn = 10-24 cm 2, 1 pb (= pico-barn) = 10-12 barn To LEP µπορούσε να παράγει 3 pb -1 σε µια µέρα σ (e + e - hadrons) = 30 nb => 90000 hadronic events/day

Γιατί είναι σηµαντικό να έχουµε µεγάλη φωτεινότητα? Διοτι :Περισσότερα δεδοµένα µικρότερο στατιστικό σφάλµα Διότι : Τα ενδιαφέροντα γεγονότα ειναι σπανια! (µικρή ενεργό διατοµή)

Παραδείγµατα LEP TEVATRON HERA LHC

LHC : Γιατί πρωτόνιο-πρωτόνιο? Σωµάτιο-αντισωµάτιο µπορούν να χρησιµοποιήσουν τον ίδιο σωλήνα δέσµης και τις ίδιες κοιλότητες επιτάχυνσης Πρωτόνιο-πρωτόνιο χρειάζονται δύο σωλήνες δέσµης Χρειαζόµαστε µεγάλη φωτεινότητα (L N particles ) Δύσκολο να πάρουµε πολλα αντιπρωτόνια Εύκολο να πάρουµε πολλα πρωτόνια Εξαύλωση : τα πρωτόνια έχουν κυρίως κουάρκ σθένους Χρειαζόµαστε αντιπρωτόνια για κουάρκ-αντικουάρκ αλληλεπιδράσεις Αλλα : σε υψηλό Q2 έχουµε περισσότερα sea quarks => τα αντιπρωτόνια δεν έχουν πια πλεονεκτήµατα σε σχέση µε τα πρωτόνια

Αναφορικά : υπάρχοντες επιταχυντές

Αναφορικά : προτεινόµενοι ή υπο κατασκευή επιταχυντές