High order interpolation function for surface contact problem

Σχετικά έγγραφα
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Single-value extension property for anti-diagonal operator matrices and their square

Eulerian Simulation of Large Deformations

Prey-Taxis Holling-Tanner

ADVANCED STRUCTURAL MECHANICS

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Congruence Classes of Invertible Matrices of Order 3 over F 2

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

A summation formula ramified with hypergeometric function and involving recurrence relation

Arbitrage Analysis of Futures Market with Frictions

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil


Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

Computing the Gradient

CorV CVAC. CorV TU317. 1

DOI /J. 1SSN

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Numerical Analysis FMN011

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

ER-Tree (Extended R*-Tree)

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

Finite difference method for 2-D heat equation

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers


A research on the influence of dummy activity on float in an AOA network and its amendments

Supporting Information

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Homomorphism in Intuitionistic Fuzzy Automata

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Local Approximation with Kernels

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb


chatzipa

Parametrized Surfaces

Strain gauge and rosettes

ACTA SCIEN TIAE CIRCUMSTAN TIAE

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

Motion analysis and simulation of a stratospheric airship

Homework 8 Model Solution Section

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

,,, (, ) , ;,,, ; -

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

Quick algorithm f or computing core attribute

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Table of Contents 1 Supplementary Data MCD

Spherical Coordinates

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Approximation Expressions for the Temperature Integral

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

1 String with massive end-points

L p approach to free boundary problems of the Navier-Stokes equation

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

SPECIAL FUNCTIONS and POLYNOMIALS

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Probabilistic Approach to Robust Optimization

EE512: Error Control Coding

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

3-dimensional motion simulation of a ship in waves using composite grid method

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Example Sheet 3 Solutions

D Alembert s Solution to the Wave Equation

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Approximation of distance between locations on earth given by latitude and longitude

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Transcript:

3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300 High order interpolation function for surface contact problem FENG Yun-qing 1 HOU Lei 1 1 Department of Mathematics Shanghai University Shanghai 00444 China; Computational Sciences E-institute of Shanghai Universities Shanghai 00030 China Abstract: This paper mainly adopts Lagrange bicubic shape function to construct interpolation function and uses finite element method to solve the coupling equations of surface contact The Lobatto points are used to construct the interpolation nodes to avoid the Runge phenomenon Higher shape functions and two different numerical integration methods are adopted to improve the accuracy of the numerical solution According to the above analysis this article uses Matlab program to simulate the deformation and stress changes in surface contact problem Key words: finite element; Lagrange; orthogonal integration 0 : 015-05 : 117147 : E-mail: yqyzsh@16com : E-mail: houlei@shueducn

10 016 [1-] u t = 1 τ u u ρ τ t = η λ D 1 ελ λ exp τ 11 + τ τ u τ 01 + [ u τ + u τ T ] ξ[d τ + D τ T ] u xy Γ = u Γ u t=t0 = u 0 τ xy Γ = τ Γ τ t=t0 = τ 0 ρ ξ η λ Cauchy τ u P-T/T P-T/T Maxwell [-4] [15-6] Lagrange Lobatto [1] Gauss Gauss-Lobatto Gauss Gauss-Lobatto Gauss Gauss-Lobatto [7] Gauss Gauss-Lobatto 4 4 3 3 4 4 Gauss 4 4 Gauss-Lobatto [8-9] 1

3 : 11 Lobatto Lagrange16 [h h] Lobatto [10] ω 0 = 1 ω 1 = 1 x + 1 σ i = ω i+1 = σ i = i d [Ax] i i 1 dx i+1 1 i! hi 1 Ax = 1 x h [ 1] 4 Lobatto ω 5 = 1 8 7 5x4 6x + 1 5 5 5 5 1 [ 1] [ 1] Lobatto 4 4 11 16 1 [110] Fig11 11 The number of interpolation nodes of element mesh 1 Fig1 The number of interpolation nodes of global mesh Lagrange16

1 016 [ 1] Lobatto 4 Lagrange L 1 ξ = 5 ξ 1 ξ 1 8 5 L ξ = 5 5 5 ξ ξ 1 8 5 L 3 ξ = 5 5 5 ξ + ξ 1 8 5 L 4 ξ = 5 ξ 1 ξ + 1 8 5 Lagrange16 : ϕ 1 ξ η = L 1 ξl 1 η ϕ ξ η = L ξl 1 η ϕ 3 ξ η = L 3 ξl 1 η ϕ 4 ξ η = L 4 ξl 1 η ϕ 5 ξ η = L 4 ξl η ϕ 6 ξ η = L 4 ξl 3 η ϕ 7 ξ η = L 4 ξl 4 η ϕ 8 ξ η = L 3 ξl 4 η ϕ 9 ξ η = L ξl 4 η ϕ 10 ξ η = L 1 ξl 4 η ϕ 11 ξ η = L 1 ξl 3 η ϕ 1 ξ η = L 1 ξl η ϕ 13 ξ η = L ξl η ϕ 14 ξ η = L 3 ξl η ϕ 15 ξ η = L 3 ξl 3 η ϕ 16 ξ η = L ξl 3 η L i η Lagrange 16 Lobatto 49 49 Lagrange16 Matlab 01 01 u = iu 1 x y; t+ju x y; t u 1 x y; t u x y; t u x τ11 x y; t τ 1 x y; t y τ= τ 11 x y; t τ 1 x y; t τ 1 x y; t τ x y; t τ 1 x y; t τ x y; t τ τ 1 x y; t = τ 1 x y; t 01 u 1 t u t = 1 ρ = 1 ρ τ11 x + τ 1 u 1 u 1 x + u u 1 1 τ1 x + τ u u 1 x + u u

3 : 13 τ 1 t τ 11 t τ t = η λ = η λ u 1 x 1 λ τ 11 ε τ 11 + τ τ 11 + ξ u 1 x τ 11 + u 1 τ 11 [ ξ u 1 ξ u x u 1 λ τ ε τ 11 + τ τ x + u ] τ 1 u 1 τ + ξ u [ τ + ξ u x ξ u 1 = η u1 λ + u 1 x λ τ 1 ε τ 11 + τ τ 1 [ + 1 ξ u x ξ ] [ u 1 u1 τ 11 + 1 ξ x + [ 1 ξ u1 ξ u x ] τ x + u ] τ 1 u 1 τ 1 τ 11 τ x + u + u ] τ 1 τ 1 3 4 5 u τ u H τ H 01 H V h H : V h = span{ϕ 1 x y ϕ x y ϕ 16 x y} V h ϕ m x ym = 1 16 ϕ m x y ϕ m ξ η H V h ũ V h τ V h Lũ ϕ m = f ϕ m m = 1 16 6 L τ ϕ m = f ϕ m m = 1 16 7 L 01 x y t e = [ 1] [ 1] Lagrange16 1 49 Matlab u 1 x m y m ; t n t = t n x ũ 1 ũ τ 11 τ 1 τ ϕ m : ũ 1 x y; t n = u 1 mϕ m x y τ 11 x y; t n = τ 11 mϕ m x y 8

14 016 : ũ 1 t x y; tn = ũ 1 x x y; tn = τ 11 x y; tn = 16 u 1t mϕ m x y u 1 mϕ mx x y τ 11 mϕ my x y 9 6 7 ũ 1 ũ τ 11 τ 1 τ 8 9 1 5 {A} n 16 16{u 1t } n 16 1 = 1 ρ {B 1} n 16 16{τ 11 } n 16 1 + {B } n 16 16{τ 1 } n 16 1 16 16 u 1 m{e 1 m} n 16 16 u m{e m} n 16 16 {u 1 } n 16 1 {u 1 } n 16 1 {A} n 16 16 {u t} n 16 1 =1 ρ {B 1} n 16 16 {τ 1} n 16 1 + {B } n 16 16 {τ } n 16 1 16 16 u 1 m{e 1 m} n 16 16 u m{e m} n 16 16 {u } n 16 1 {u } n 16 1 10 11 {A} n 16 16 {τ 11t} n 16 1 = η λ {B 1} n 16 16 {u 1} n 16 1 1 λ {A}n 16 16 {τ 11} n 16 1 16 ε τ 11 m + τ m{cm} n 16 16 {τ 11 } n 16 1 16 + ξ + ξ 16 u 1 m{e 1 m} n 16 16 + 16 u 1 m{c 1 m} n 16 16 u m{e m} n 16 16 u 1 m{c m} n 16 16 ξ {τ 11 } n 16 1 {τ 11 } n 16 1 u m{c 1 m} n 16 16 {τ 1 } n 16 1 1

3 : 15 {A} n 16 16{τ t } n 16 1 = η λ 1 λ {A}n 16 16{τ } n 16 1 16 ε τ 11 m + τ m{cm} n 16 16 {τ } n 16 1 16 + ξ + ξ u 1 m{e 1 m} n 16 16 + 16 16 u m{c m} n 16 16 u m{e m} n 16 16 u m{c 1 m} n 16 16 ξ {τ } n 16 1 {τ } n 16 1 u 1 m{c m} n 16 16 {τ 1 } n 16 1 13 {A} n 16 16{τ 1t } n 16 1 = η λ {B } n 16 16{u 1 } n 16 1 + {B 1 } n 16 16{u } n 16 1 1 λ {A}n 16 16{τ 1 } n 16 1 16 ε τ 11 m + τ m{cm} n 16 16 {τ } n 16 1 + 16 u 1 m{e 1 m} n 16 16 + 1 ξ + 1 ξ + u m{c 1 m} n 16 16 ξ u 1 m{c 1 m} n 16 16 + 1 ξ u 1 m{c m} n 16 16 ξ {A} 16 16 = {B 1 } 16 16 = ϕ 1 ϕ 1 dxdy ϕ 1 ϕ 16 dxdy ϕ 1x ϕ 1 dxdy ϕ 1x ϕ 16 dxdy u m{e m} n 16 16 {τ 1 } n 16 1 u 1 m{c m} n 16 16 u m{c m} n 16 16 u m{c 1 m} n 16 16 ϕ 16 ϕ 1 dxdy ϕ 16 ϕ 16 dxdy ϕ 16x ϕ 1 dxdy ϕ 16x ϕ 16 dxdy {τ 11 } n 16 1 {τ 1 } n 16 1 {τ } n 16 1 14

16 016 {B } 16 16 = {E 1 m} 16 16 = {E m} 16 16 = ϕ 1y ϕ 1 dxdy {Cm} 16 16 = {C 1 m} 16 16 = {C m} 16 16 = ϕ 1y ϕ 16 dxdy ϕ m ϕ 1x ϕ 1 dxdy ϕ m ϕ 1x ϕ 16 dxdy ϕ m ϕ 1y ϕ 1 dxdy ϕ m ϕ 1y ϕ 16 dxdy ϕ m ϕ 1 ϕ 1 dxdy ϕ m ϕ 1 ϕ 16 dxdy ϕ mx ϕ 1 ϕ 1 dxdy ϕ mx ϕ 1 ϕ 16 dxdy ϕ my ϕ 1 ϕ 1 dxdy ϕ my ϕ 1 ϕ 16 dxdy ϕ 16y ϕ 1 dxdy ϕ 16y ϕ 16 dxdy ϕ m ϕ 16x ϕ 1 dxdy ϕ m ϕ 16x ϕ 16 dxdy ϕ m ϕ 16y ϕ 1 dxdy ϕ m ϕ 16y ϕ 16 dxdy ϕ m ϕ 16 ϕ 1 dxdy ϕ m ϕ 16 ϕ 16 dxdy ϕ mx ϕ 16 ϕ 1 dxdy ϕ mx ϕ 16 ϕ 16 dxdy ϕ my ϕ 16 ϕ 1 dxdy ϕ my ϕ 16 ϕ 16 dxdy ϕ mx ϕ my ϕ m x y 10 14 1 5 [15] 1 10 10 {A} n 16 16 Euler { } n u1 = {Fτ 11 τ 1 } n 16 1 t {Gu 1 u } n 16 16 {u 1} n 16 1 15 16 1 1 t {A}n 16 16 {u 1} n+1 16 1 1 t {A}n 16 16 {u 1} n 16 1 = {Fτ 11 τ 1 } n 16 1 {Gu 1 u } n 16 16 {u 1} n 16 1 16

3 : 17 Crank-Nicolson 1 t {A}n 16 16 {u 1} n+1 16 1 1 t {A}n 16 16 {u 1} n 16 1 = {Fτ 11 τ 1 } n 16 1 1 {Gu 1 u } n 16 16 {u 1} n+1 16 1 + 1 {u 1} n 16 1 17 Adams : {A} n 16 16{u 1 } n+1 16 1 = {A}n 16 16{u 1 } n 16 1 + 3 t {Fτ 11 τ 1 } n 16 1 {Gu 1 u } n 16 16 {u 1} n 16 1 t {Fτ 11 τ 1 } n 16 1 {Gu 1 u } n 16 16 {u 1} n 16 1 18 1 4 3 Gauss-Lobatto Gauss Gauss-Lobatto Gauss-Lobatto Gauss [81] Lagrange16 3 3 4 4 Gauss 4 4 Gauss-Lobatto 4 01 Matlab [0 ] [0 ] Dyna h = 05 41 9 Gauss t u 10 u 0 9 Gauss 4 ; Lagrange-Euler Lagrange-Crank-Nicolson Lagrange-Adams t = 1 t = 43 16 Gauss 44 16 Gauss

18 016 t = 1 t = t = 3 41 9 Gauss t = 1 u 10 = 01 u 0 = 0 Fig 41 Gauss integration with 9 points t = 1 u 10 = 01 u 0 = 0 Fig 4 4 9 Gauss The stress distribution calculated by Gauss integration with 9 points of three kinds of mesh 43 16 Gauss t = 1 u 10 = 01 u 0 = 0 Fig 43 Gauss integration with 16 points t = 1 u 10 = 01 u 0 = 0 45 16 Gauss-Lobatto 46 Lagrange-Euler Lagrange-Crank-Nicolson Lagrange- Adams 16 Gauss-Lobatto Lagrange- Euler Lagrange-Adams t = 1 t = Lagrange-Crank-Nicolson t = 1 t = t = 3

13Ï ¾ : Ep ¼ê L ÀÂ-E K 19 ã 44 16 : Gauss È éan«ª AåCzã Fig 44 The stress distribution calculated by Gauss integration with 16 points of three kinds of mesh ã 45 Fig 45 16 : Gauss-Lobatto È t = 1 u10 = 01 u0 = 0 Gauss-Lobatto integration with 16 points t = 1 u10 = 01 u0 = 0 ã 46 16 : Gauss-Lobatto È éan«ª AåCzã Fig 46 The stress distribution calculated by Gauss-Lobatto integration with 16 points of three kinds of mesh 5 Ø æ^k {é mcþ?1lñ Ì $^ Lagrange 16 :Vng/¼ê E ¼ê Ün«ØÓ k é mcþ?1lñ ª ÍÜ 01 ê éfýý ê È æ^øóa Èúª?1ê [ ª uy 9 : Gauss È Ú 16 : Gauss-Lobatto È J Ø ; 16 : Gauss È Ð

0 016 Lagrange16 6 [ ] [ 1 ] [D] : 014 [ ] PHAN-THIEN N A nonlinear network viscoelastic model [J] Journal of Rheology 1978 3: 59-83 [ 3 ] TANNER R I Engineering Rheology [M] London: Oxford University Press 000 [ 4 ] THIEN N P TANNER R I A new constitutive equation derived from network theory [J] Journal of Non Newtonian Fluid Mechanics 1977: 353-365 [ 5 ] [M] : 1999 [ 6 ] LIN Q ZHOU J Superconvergence in high order galerkin finite element methods [J] Computer Methods in Applied Mechanics and Engineering 1999 1963: 3779-3784 [ 7 ] [M] : 1997 [ 8 ] HELENBROOK B T On the existence of explicit hp-finite element methods using Gauss-Lobatto integration on the triangle [J] SIAM Journal on Numerical Analysis 009 47: 1304-1318 [ 9 ] XU Y On Gauss-Lobatto integration on the triangle [J] SIAM Journal on Numerical Analysis 011 49: 541-548 [10] [M] : 006 [11] HOU L NASSEHI V Evaluation of stress-effective flow in rubber mixing [J] Nonlinear Analysis Theory Methods and Applications 001 473: 1809-180 [1] BOYD J P A numerical comparison of seven grids for polynomial interpolation on the interval [J] Computers and Mathematics with Applications 1999 383: 35-50 :