Πηγές Πηγές Ταχέων Ηλεκτρονίων internal conversion internal conversion

Σχετικά έγγραφα
Η ακτινοβολία γ παράγεται από διεγερμένους πυρήνες κατά τη μετάπτωσή τους σε χαμηλότερα ενεργειακά επίπεδα.

λ Ε Πχ. Ένα σωματίδιο α έχει φορτίο +2 όταν επιταχυνθεί από μια διαφορά Για ακτίνες Χ ή ακτινοβολία γ έχουμε συχνότητα

Air Kerma (για ουδέτερα σωματίδια)

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΤΗΣ ΡΑ ΙΟΧΗΜΕΙΑΣ

ΒΙΟΦΥΣΙΚΗ. Αλληλεπίδραση ιοντίζουσας ακτινοβολίας και ύλης.

ΑΤΟΜΙΚΗ ΦΥΣΙΚΗ κβαντισμένη h.f h = J s f = c/λ h.c/λ

Συμπέρασμα: η Η/Μ ακτινοβολία έχει διπλή φύση, κυματική και σωματιδιακή.

ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης

Διάλεξη 4: Ραδιενέργεια

ΑΤΟΜΙΚΗ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ

ΙΟΝΤΙΖΟΥΣΕΣ ΑΚΤΙΝΟΒΟΛΙΕΣ Μονάδες. Ε.Ν. ΓΑΖΗΣ ΣΕΜΦΕ-Τοµέας Φυσικής 04

Ιατρική Φυσική. Π. Παπαγιάννης Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών Γραφείο

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση. 1.


ΑΡΧΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΠΥΡΗΝΙΚΗΣ ΧΗΜΕΙΑΣ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Ιατρική Φυσική. Π. Παπαγιάννης Επίκ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών Γραφείο

ΜΕΤΑΣΤΟΙΧΕΙΩΣΗ ΠΥΡΗΝΩΝ

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

Ραδιενεργές διασπάσεις. Ραδιονουκλίδια στην ιατρική

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2007 ΕΚΦΩΝΗΣΕΙΣ

ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΤΗΝ ΥΛΗ

Η ΔΟΜΗ ΤΟΥ ΠΥΡΗΝΑ Η ΡΑΔΙΕΝΕΡΓΕΙΑ Η ΒΙΟΛΟΓΙΚΗ ΔΡΑΣΗ ΤΩΝ ΑΚΤΙΝΟΒΟΛΙΩΝ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΤΡΙΤΗ 22 MAIΟΥ 2007 ΕΚΦΩΝΗΣΕΙΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 23 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΓΩΝΙΣΜΑ Α

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

Ε ι σ α γ ω γ ή στo Εργαστήριο Πυρηνικής Φυσικής

Γ. Τσιπολίτης.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 24 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

P = E /c. p γ = E /c. (p) 2 = (p γ ) 2 + (p ) 2-2 p γ p cosθ E γ. (pc) (E γ ) (E ) 2E γ E cosθ E m c Eγ

Εφαρμογές των Ιοντιζουσών Ακτινοβολιών στην Ιατρική & τη Βιολογία

Μια εισαγωγή στις Ακτίνες Χ. Πηγές ακτίνων Χ Φάσματα ακτίνων Χ O νόμος του Moseley Εξασθένηση ακτινοβολίας ακτίνων Χ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015

A3. Δίνονται οι πυρήνες

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΥΓΕΙΟΦΥΣΙΚΗΣ

ΜΟΝΑΔΕΣ ΚΑΙ ΟΡΟΙ ΤΗΣ ΔΟΣΙΜΕΤΡΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΥΓΕΙΟΦΥΣΙΚΗΣ

Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα

ΕΠΙΔΡΑΣΗ ΑΚΤΙΝΟΒΟΛΙΩΝ ΣΤΗΝ ΥΛΗ

Διάλεξη 10: Ακτίνες Χ

Μονάδες Η υπεριώδης ακτινοβολία. α. με πολύ μικρό μήκος κύματος δεν προκαλεί βλάβες στα κύτταρα του δέρματος. β. δεν προκαλεί φθορισμό.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΠΥΡΗΝΑΣ ΑΤΟΜΟΥ Ο όρος πυρήνας (nucleus) εισάγεται το 1912 από τον Rutherford. Κάθε άτομο αποτελείται από μια περιορισμένη περιοχή όπου συγκεντρώνεται

Niels Bohr ( ) ΘΕΜΑ Α

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΤΙΤΛΟΣ: Ποιοτικός και ποσοτικός προσδιορισμός ραδιοϊσοτόπων με την μέθοδο της γ φασματοσκοπίας. Γιαννούλης Ευάγγελος.

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΛΑ Β) ΔΕΥΤΕΡΑ 20 ΜΑΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Ανακλώμενο ηλεκτρόνιο KE = E γ - E γ = E mc 2

Πυρηνική Φυσική. Η Φυσική των πρωτονίων, νετρονίων και των πυρηνικών δυνάμεων. Ατομικός πυρήνας

α. φ 1. β. φ 2. γ. φ 3. δ. φ 4. Μονάδες 5

Φυσικά ή τεχνητά ραδιονουκλίδια

ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΕΣ ΜΕΤΡΗΣΗΣ ΠΥΡΗΝΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

Βασικές Γνώσεις γιατοεργαστήριοπυρηνικήςφυσικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2011

ΡΑΔΙΟΧΗΜΕΙΑ 2. ΧΡΟΝΟΣ ΥΠΟΔΙΠΛΑΣΙΑΣΜΟΥ ΚΕΦΑΛΑΙΟ 3. ΡΑΔΙΕΝΕΡΓΑ ΣΤΟΙΧΕΙΑ

Πυρηνικές διασπάσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Αλληλεπίδραση των σωματιδίων με την ύλη

ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα, που αντιστοιχεί στη σωστή απάντηση.

ΑλληλεπίδρασηΦωτονίων καιύλης. ηµήτρηςεµφιετζόγλου Εργ. ΙατρικήςΦυσικής Παν/µιοΙωαννίνων

Μονάδες Η υπεριώδης ακτινοβολία. α. με πολύ μικρό μήκος κύματος δεν προκαλεί βλάβες στα κύτταρα του δέρματος. β. δεν προκαλεί φθορισμό.

ΣΤΟΙΧΕΙΑ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ & ΑΚΤΙΝΟΒΟΛΙΩΝ ΦΥΣΙΚΗ & ΤΕΧΝΗΤΗ ΡΑΔΙΕΝΕΡΓΕΙΑ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ

Ιατρική Φυσική. Π. Παπαγιάννης Επίκ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών Γραφείο

ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΛΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

Γενικά χαρακτηριστικά των πυρήνων (Φορτίο, Μάζα, Σταθερότητα) Ισότοπα και Πυρηνικές αντιδράσεις Ραδιενέργεια. Α. Λιόλιος Μάθημα Πυρηνικής Φυσικής

1. ΦΥΣΙΚΕΣ ΑΡΧΕΣ IONTIZOYΣΑΣ ΑΚΤΙΝΟΒΟΛΙΑΣ (ΑΚΤΙΝΕΣ Χ γ) Εργαστήριο Ιατρικής Φυσικής Παν/μιο Αθηνών

p T cosθ B Γ. Τσιπολίτης K - + p K - + p p slow high ionisation Κατά τον ιονισμό το εκπεμπόμενο μ e θα έχει κινητική ενέργεια : 0 T T max

Μονάδες Η θεωρία των κβάντα:

Απορρόφηση ακτινοβολίας-β από την ύλη

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΙΟΥ 2004

Αλληλεπίδρασηφορτισµένων σωµατιδίωνµετηνύληκαιεφαρµογές

ΓΕΩΧΗΜΕΙΑ ΙΣΟΤΟΠΩΝ. Ενότητα 1: Βασικές αρχές γεωχρονολόγησης. Γεωχημεία (Υ 4203) Επικ. Καθ. Χριστίνα Στουραϊτη Τμήμα Γεωλογίας και Γεωπεριβάλλοντος

γ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

δ. εξαρτάται µόνο από το υλικό του οπτικού µέσου. Μονάδες 4

# αλλ/σεων με e # αλλ/σεων με πυρήνες

Μελέτη της ακτινοβολίας γ µε τη βοήθεια απαριθµητή Geiger - Muller

ΦΩΣ ΔΙΑΘΛΑΣΗ. 8. Ο δείκτης διάθλασης του τετραχλωράνθρακα είναι η=1,46. Yπολογίστε: Α. Την ταχύτητα διάδοσης του φωτός στον τετραχλωράνθρακα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

Το φως διαδίδεται σε όλα τα οπτικά υλικά μέσα με ταχύτητα περίπου 3x10 8 m/s.

Η ΕΝΕΡΓΕΙΑ ΤΟΥ ΑΤΟΜΟΥ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

Μάθημα 18 Αλληλεπίδραση ακτινοβολίας με την ύλη.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 23 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ακτίνες Χ - Lasers Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Transcript:

Πηγές Ταχέων Ηλεκτρονίων internal conversion Ένας πυρήνας σε διεγερμένη κατάσταση (πχ μετα από β-διάσπαση) που για διάφορους λόγους δεν μπορεί να διασπασθεί μέσω εκπομπής γ ακτινοβολίας. Η ενέργεια διέγερσης του πυρήνα μεταφέρεται σε ένα από τα ατομικά ηλεκτρόνια που ελευθερώνεται. Η ενέργεια του ηλεκτρονίου είναι: E E E e ex b 1

Πηγές Ταχέων Ηλεκτρονίων internal conversion 2

Πηγές Ταχέων Ηλεκτρονίων ηλεκτρόνια Auger Το φαινόμενο Auger είναι αναλογο με την «internal conversion» με τη διαφορά ότι η ενέργεια διέγερσης προέρχεται από το άτομο αντί από τον πυρήνα. Αν για παράδειγμα είχαμε σύλληψη ηλεκτρονίου (electron capture) τότε το άτομο έχει ένα κενό σε μια στοιβάδα που συνήθως είναι πλήρης. Αυτό το κενό συμπληρώνεται από ένα ηλεκτρόνιο που βρίσκεται στις εξωτερικές στοιβάδες με σύγχρονη εκπομπή μιας χαρακτηρηστικής ακτίνας Χ. Τα ηλεκτρόνια Auger έχουν διακριτό φάσμα και η ενέργεια τους εξαρτάται από τη διαφορά μεταξύ της αρχικής διέγερσης και της ενέργειας δέσμευσης της στοιβάδας από την οποία προέρχεται το ηλεκτρόνιο. Η ενέργεια των ηλεκτρονίων Auger είναι σχετικά μικρή σε σχέση με την ενέργεια των β και είναι της τάξης του kev. Το φαινόμενο Auger είναι πιο συχνό στα υλικά με μικρό Ζ. 3

Παράδειγμα Ποιο είναι το μικρότερο μήκος κύματος ακτινών-χ που εκπέμπονται από «tube» που δουλεύει σε διαφορά δυναμικού 195 KV; Απάντηση: c hc E hv h λ λ E 15 8 m 4135 4.135 10 ev s 3 10 s λ 6.36pm 3 195 10 ev 4

Πηγές βαρέων φορτισμένων σωματιδίων α δάσπαση Βαρείς πυρήνες είναι ενεργητικά ασταθής και μπορούν να διασπασθούν με την εκπομπή ενός πυρήνα 4 He. Ο χρόνος ημιζωής μπορεί να είναι από μερικές ημέρες μέχρι πολλες χιλιάδες χρόνια. A Z A4 4 Z 2 2 X Y He 5

α - διάσπαση 6

α - διάσπαση Ενέργειες μεταξύ 4 6 MeV Συσχετισμός μεταξύ ενέργειας του α και χρόνου ημιζωής μεγαλύτερες ενέργειες μικρότερος χρόνος ημιζωής. Πάνω από ~6,5 MeV χρόνος ημιζωής αναμένεται να είναι μερικές μρ ςμρς μέρες ενώ αν η ενέργεια είναι κάτω από 4 MeV o χρόνος ημιζωής είναι παρα πολύ μεγάλος. 7

Τυχαία Σχάση Η σχάση είναι η μόνη πηγή από βαριά φορτισμένα σωματίδια άλλα από το α. Όλοι οι βαρείς πυρήνες είναι, κατά κανόνα, ασταθείς στην τυχαία σχάση σε 2 ελαφρύτερους πυρήνες. Η πιο διαδεδομένη πηγή τυχαίας σχάσης είναι το 252 Cf το οποίο έχει χρόνο ημιζωής για τυχαία σχάση 85 y. Το 252 Cf έχει και α-διάσπαση με χρόνο ημιζωής 2,65 y. πχ. 1 μgr 252 Cf δίνει 1,92 10 192 10 7 σωματίδια α το δευτερόλεπτο ενώ θα έχει 6,14 10 5 τυχαίες σχάσεις το δευτερόλεπτο. 8

Τυχαία Σχάση 9

Παράδειγμα Να βρείτε την ενέργεια που απελευθερώνεται από τη σχάση του 235 U σε δυο όμοιους πυρήνες: 235 117 118 Απάντηση: Γνωρίσουμε από πίνακες ότι: U Sn Sn 117 118 235 M( Sn) 116.9029amu, M( Sn) 117.9016amu, M( U) 235.0439amu U Sn Sn 235 117 118 235 2 117 2 118 2 Q M( U) c M( Sn) c M( Sn) c Q 223MeV 1 12 2 όπου 1amu (μάζας του ατόμου C) 931.5MeV / c 12 10

Η/Μ ακτινοβολία ακτίνες γ Η ακτινοβολία γ παράγεται από διεγερμένους πυρήνες κατά τη μετάπτωσή τους σε χαμηλότερα ενεργειακά επίπεδα. 11

Η/Μ ακτινοβολία ακτίνες γ Οι β διάσπαση είναι αργή διαδικασία με χρόνο ημιζωής μερικές εκατοντάδες ημέρες ή και περισσότερο ενώ οι διεγερμένες πυρηνικές καταστάσεις έχουν χρόνο ημιζωής <ps. Άρα οι ακτίνες γ παρουσιάζονται με χρόνο ημιζωής που είναι της β-διάσπασης. Λόγω του ότι οι πυρηνικές στάθμες έχουν πολύ καλά καθορισμένες ενέργειες Οι συνήθεις πηγές έχουν ενέργειες <2,8 MeV. 12

Ακτινοβολία από εξαΰλωση Όταν ένας πυρήνας διασπάται μέσω β + διάσπασης τότε το β + μπορεί να κάνει ένα positronium με κάποιο ηλεκτρόνιο από το υλικό που περιβάλει την πηγή. Το positronium διασπάται κατά κανόνα σε 2 φωτόνια ενέργειας 511 kev που κατευθύνονται σε αντίθετες ατ τς κατευθύνσεις. Τα φωτόνια των 511 kev εμφανίζονται μαζί με ότι άλλες ακτίνες γ προέρχονται από την πηγή. πχ. το 22 Να δίνει φωτόνια 511 kev και 1274 kev 13

Bremsstrahlung Όταν γρήγορα ηλεκτρόνια αλληλεπιδρούν με την ύλη τότε μέρος της ενέργειας τους μετατρέπετε σε Η/Μ ακτινοβολία με την μορφή της ακτινοβολίας πέδησης (bremsstrahlung). Το ποσοστό της ακτινοβολίας πέδησης αυξάνει με την ενέργεια του ηλεκτρονίου και είναι μέγιστη σε υλικά με μεγάλο ατομικό αριθμό. Αυτή η διαδικασία είναι σημαντική στην παραγωγή ακτίνων Χ. 14

Synchrotron Radiation Όταν μια δέσμη ηλεκτρονίων μεγαλης ενέργειας κάμπυλώνεται τότε ακτινοβολείται η ακτινοβολία σύγχροτρον. Τα φωτόνια βγαίνουν κυρίως κατά την εφαπτομένη της δέσμης και μπορούν να έχουν ενέργειες από μερικα ev (οπτικό φάσμα) μέχρι MeV. Σε πολλούς επιταχυντές παράγονται φωτόνια από ακτινοβολία σύγχροτρον. 15

Παράδειγμα Τα ενεργειακά φάσματα των ιορτιζουσών ακτινοβολιών μπορούν να διαχωριστούν σε δυο βασικές κατηγορίες, αυτά με διακριτές ενεργειακές καταστάσεις (γραμμικά φάσματα) και αυτά με συνεχή κατανομή ενεργειών (συνεχή φάσματα). Για τις κάτωθι πηγές ακτινοβολιών να καταγράψετε σε ποια κατηγορία φασμάτων ανήκουν Ακτινοβολία Γραμμικά Συνεχή Σωματίδια α Σωματίδια β Σωματίδια γ Ακτίνες Χ Θραύσματα σχάσης Ακτινοβολία πέδησης Ακτινοβολία εξαΰλωσης Ηλεκτρόνια Auger Χ Χ Χ Χ Χ Χ Χ Χ 16

Μονάδες δοσιμετρίας Η αλληλεπίδραση της ακτινοβολίας με την ύλη επιφέρει ιονισμό ή διέγερση των ατόμων και μορίων. Οι μονάδες οσιμετρίας αποτελούν μέτρηση της ποσότητας ιονισμού που προκαλείται ή του ποσού της ενέργειας που έχει εναποτεθεί στην ύλη. 1 Roentgen = ποσότητα ακτινών-χ που προκαλούν ιονισμό 1esu/cm 3 στον αέρα Υ.Κ.Σ.) -10 1 esu = 3,34 10 C Το Roentgen έχει να κάνει με ακτίνες-χ στον αέρα. εν είναι βολικό για βιολογικούς οργανισμούς! 17

Ιονισμός ανά μονάδα χρόνου ή ρυθμός έκθεσης που οφείλεται σε μια πηγή A 137 Γ 2, Γ=σταθερά ρυθμού έκθεσης 57 d Α= ενεργότητα της πηγής 22 d = απόσταση Cs 3.3 Co 13.2 Na 12.0 ------------------------ 2 πηγή ( Rcm ) /( hrmci ) Απορροφούμενη όση: Ολική ενέργεια που απορροφάται ανά μονάδα μάζας: 1 rad = 100 erg/g 1Gray (Gy) = 1 J/kg=100 rad H απορροφούμενη όση δεν γνωρίζει τιποτε για το ρυθμό της ακτινοβολίας και τον τύπο της ακτινοβολίας. 18

Παράδειγμα Ποιος είναι ο ρυθμός έκθεσης σε απόσταση 5 m από μια πηγή Co ενεργότητας 1Ci; 3 2 ΓΑ Rcm 10 mci mr Ρύθμος έκθεσης = 13.2 52.8 2 2 2 d hrmci 500 cm hr 19

Παράδειγμα Έστω ένας βιολογικός οργανισμός απορροφά ~93 erg/g για 1 R ακτίνων γαπό 22 Να. Ποιος είναι ο ρυθμός δόσης αν δουλεύει σε απόσταση 50 cm από μια πηγή 100 μci; 2 ΓΑ Rcm 0.1 mci mr Ρύθμος έκθεσης = 12 0.48 2 2 2 d hrmci 50 cm hr erg Ρύθμος δόσης = 93 0.48 10 gr 3 R hr erg mrad 0.447 4.47 hr g hr rad 20

Παράδειγμα Na υπολογιστεί ο ρυθμός αύξησης της θερμοκρασίας ρ ενός δείγματος νερού το οποίο εκτίθεται σε ακτινοβολία με ρυθμό δόσης 10 mrad/h; E J E mc T T, C 4.187 p p o mc p g C E 3 rad erg 7 J 10 10 100 10 m hr g rad erg o 8 C T 2.39 10 hr 1 rad = 100 erg/g 21

Ισοδύναμη όση Ισοδύναμη δόση D q είναι το μέτρο της επίδρασης των ιοντιζουσών ακτινοβολιών επάνω στο ανθρώπινο σώμα. 1 rem (Roentgen equivalent mass) = Q 1 rad Q: ποιοτικός παράγοντας επίδρασης των διαφόρων τύπων ιοντιζουσών ακτινοβολιών πάνω στο βιολογικό ιστό 10 Q 20 10 3 1 για γ & β για p για 4 2 He για ταχέα n για θερμικά n Στο S.I.: 1Sv (Sievert) = Q 1Gy = Q 100 rad 22

Παράδειγμα Γραμμικός επιταχυντής παράγει φωτόνια ισοδύναμα μονοενεργειακής δέσμης 2 MeV. Να βρεθεί το πάχος Pb το οποίο απαιτείται για την ελάττωση του ρυθμού δόσης από 2 Gy/min σε 10-5 Gy/hr. Απάντηση: Γνωρίσουμε ότι ο ρυθμός δόσης είναι ανάλογος του ρυθμού έκθεσης που είναι ανάλογος της έντασης της ακτινοβολίας. Άρα ο εκθετικός νόμος μείωσης της έντασης εφαρμόζεται ανάλογα και στο ρυθμό δόσης. Επίσης γνωρίσουμε ότι ο γραμμικός συντελεστής εξασθένησης του Pb στα 2 MeV είναι μ=1/λ=0.5182 cm -1 και επομένως θα έχουμε: x /λ D D De x λln o Do 5 1 10 Gy / 60min x ln 31.46 cm 0.5182 2Gy / min 23

Νόμος των ραδιενεργών διασπάσεων Βρέθηκε πειραματικά από τους Rutherford & Soddy ότι η ενεργότητα μιας πηγής πέφτει εκθετικά. Για Ν πυρήνες, ο μέσος αριθμός διασπάσεων σε χρόνο dt θα είναι: (διαφορικός νόμος των ραδιενεργών διασπάσεων) dn λ λ Ndt σταθερά διάσπασης λ N t N t Noe λ τ m μέσος χρόνος ζωής t N tdt 0 1 N t dt λ 0 N e m t / t o N t N e N t o N t m ενεργότητα N ln2 N e T 1/2 τ ln2 2 λ o λt T 1/2 (χρόνος ημιζωής) : No e T τm 24

Μεταβλητότητα Ραδιενεργών ιασπάσεων ιασπάσεις Στατιστική διαδικασία Η πιθανότητα παρατήρησης n διασπάσεων σε χρόνο t ακολουθεί κατανομή Poisson: n m P n, t e n! m m: μέσος αριθμός διασπάσεων σε χρόνο t σ= m: τυπική απόκλιση Παράδειγμα 1: Από μια πηγή μετρούνται m=900 cnts σε t=5 s Η τυπική απόκλιση θα είναι: σ m 30 Ο ρυθμός καταγραφής/s θα είναι: 900 30 / 5s 180 6 Παράδειγμα 2: Μια πηγή έχει μέσο ρυθμό εκπομπής 1cnt/s. Ποια η πιθανότητα να ΜΗΝ παρατηρηθούν διασπάσεις σε χρόνο 4s; Ποια η πιθανότητα να παρατηρηθεί θί 1 διάσπαση σε χρόνο 4 s; Για 4s m=4 cnt P P 0 4 e 4 0, 4 1.8% 0! 1 4 e 4 1, 4 7.3% 1! Hz 25