DESIGN AND ANALYSIS OF A SIMPLE SUSPENDED CABLE FOOTBRIDGE LOCATED IN A NARROW CANYON CHRISTOS K. DIMOU

Σχετικά έγγραφα
Lifting Entry (continued)

CONSULTING Engineering Calculation Sheet

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

Analysis of a vehicle-bridge-earthquake interactive system under multi-support excitations

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

6.4 Superposition of Linear Plane Progressive Waves

ΠΕΖΟΓΕΦΥΡΕΣ: Vibrato, ma non troppo

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

Εθνικό Μετσόβιο Πολυτεχνείο National Technical University of Athens. Aerodynamics & Aeroelasticity: Applications Σπύρος Βουτσινάς / Spyros Voutsinas

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Answers to practice exercises

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

4.4 Superposition of Linear Plane Progressive Waves

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Magnetically Coupled Circuits

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

, Snowdon. . Frahm.

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

DuPont Suva 95 Refrigerant

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Westfalia Bedienungsanleitung. Nr

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Bulletin 1489 UL489 Circuit Breakers

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

DuPont Suva 95 Refrigerant

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

2013 AF/009b ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ ΦΩΤΟΒΟΛΤΑΙΚΩΝ ΦΟΡΕΩΝ ΣΤΑΘΕΡΟ ΣΥΣΤΗΜΑ ΑΠΛΟ ΤΡΙΓΩΝΟ

Matrices and Determinants

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Applications Water distribution

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

MasterSeries MasterPort Lite Sample Output

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Lowara APPLICATIONS MATERIALS. General Catalogue

Lecture 21: Scattering and FGR

2013 AF/09 ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ ΦΩΤΟΒΟΛΤΑΙΚΩΝ ΦΟΡΕΩΝ ΣΤΑΘΕΡΟ ΣΥΣΤΗΜΑ ΑΠΛΟ ΤΡΙΓΩΝΟ

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Thin Film Chip Resistors

GEEPLUS VM1614. Force (N) vs Displacement (mm) Peak. Max 'ON' time. Force. Model No. VM

Oscillatory Gap Damping

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

Second Order RLC Filters

Replacement Guide. Wilo Circulators for Heating and Secondary Hot Water Circulation. Pioneering for You

Project: Brimsmore, Ye... Job no: C08127 Designed By kristian Checked By Network W Network Design Table for OUTFALL B.SWS

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS. Characteristics. Leakage Current(MAX) I=Leakage Current(µA) C=Nominal Capacitance(µF) V=Rated Voltage(V)

Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική και µη γραµµική συµπεριφορά

2013 AF/009 ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ

MECHANICAL PROPERTIES OF MATERIALS

Υδραυλική Εργαστήριο 4. Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α.

BEHAVIOR OF MASSIVE EARTH RETAINING WALLS UNDER EARTHQUAKE SHAKING Comparisons to EC-8 Provisions

Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα

Lowara SPECIFICATIONS

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

60W AC-DC High Reliability Slim Wall-mounted Adaptor. SGA60E series. File Name:SGA60E-SPEC

Surface Mount Aluminum Electrolytic Capacitors

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

NPI Unshielded Power Inductors

RECIPROCATING COMPRESSOR CALCULATION SHEET

Forced Pendulum Numerical approach

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Τ Ε Χ Ν Ι Κ Η Ε Κ Θ Ε Σ Η

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

5.0 DESIGN CALCULATIONS

+85 C General Purpose Radial Lead Aluminum Electrolytic Capacitors

STATIC ANALYSIS / STRUCTURAL DESIGN GLASSCON SHADOGLASS LOUVERS SYSTEM

ΑΣΥΓΧΡΟΝΕΣ ΜΗΧΑΝΕΣ ΑΣΥΓΧΡΟΝΟΣ ΚΙΝΗΤΗΡΑΣ ΜΕ ΔΑΚΤΥΛΙΟΦΟΡΟ ΡΟΤΟΡΑ. Σύστημα ανύψωσης ψηκτρών. Ρότορας κινητήρα με δακτυλίδια

15W DIN Rail Type DC-DC Converter. DDR-15 s e r i e s. File Name:DDR-15-SPEC

Τιμοκατάλογος λιανικής

Contents MRL HYDRAULIC LIFTS TYPE: HYDRO TOTAL MRL. Version: 3.0 Page: 2/18 Date:

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

Group 30. Contents.

DATA SHEET Surface mount NTC thermistors. BCcomponents

GREECE BULGARIA 6 th JOINT MONITORING

Version: 1.0 Page: 1/15 TYPE: HYDRO SUPERIOR MRL HYDRAULIC LIFTS. Date: Range of Application

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

15W DIN Rail Type DC-DC Converter. DDR-15 series. File Name:DDR-15-SPEC

4 th SE European CODE Workshop 10 th 11 th of March 2011, Thessaloniki, Greece

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κυματομηχανική Κωδικός

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΓΕΦΥΡΑ AKASHI-KAIKYO:

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction


Transcript:

DESIGN AND ANALYSIS OF A SIMPLE SUSPENDED CABLE FOOTBRIDGE LOCATED IN A NARROW CANYON CHRISTOS K. DIMOU DEPARTMENT FOR HYDROELECTRIC PRODUCTION PUBLIC POWER COMPANY S.A. AGHISILAOU 56-58, ATHENS, GR-04 36, GREECE E-MAIL: C.DIMOU@DEI.COM.GR

Outline of Presentation The analysis and design of a slender cable footbridge located in a narrow canyon is presented. The design of the bridge is governed by the Wind Loads The parameters governing the wind profile and their effect on wind speed are identified The wind load distribution and the characteristic Wind Speed are calculated. The resulting Wind Loads are combined with pedestrian, snow, ice and earthquake loads, following the provisions of Eurocodes

Location of Bridge

Location of Bridge

Location of Bridge

Location of Bridge

Location of Bridge

Photorealism

Bridge Parameters - Analysis Μέγεθος l 87.40m El 44.70m max El 40.70m min f min h El El 4.00m b d d max (4 b -h) 6 b d l maxpp min 3.98m.3m @ 55.70m H 398.50m F El f H =9.87m b,max PP min min max PP b H 400.50m min F F El f H =7.87m min F T h T Wl C 8b d T h cos tan 4 T c b d h l T N

Wind Loads Average Wind Speed Vb c dir c season Vb,0 Vb 7.00 m / sec Vm z cr z ct z Vb Vm z cfunnel cr z ct z Vb Funnel Effect Roughness Orography EN 99--4

ENERGY CONSERVATION Wind Loads Funnel Effect dynamic p p static m z c c z c z V funnel r t b

CONSERVATION OF MOMENTUM Wind Loads Funnel Effect V V p R T T p R =8.5375 K

Wind Loads Funnel Effect - Assumptions Assumptions Constant Flow Perfect Liquid c funnel Incompressible flow (constant within a fluid parcel - infinitesimal volume - moving with the flow velocity) No significant change in manometric pressure

Wind Loads Topography

Wind Loads Effect of Water Level 87.4Χ00Χ46.30 z w =375.0m 87.4Χ00Χ46.30 z w =366.0m

Μέγιστη Ταχύτητα Ανέμου 40.0 35.0 30.0 5.0 0.0 5.0 0.0 5.0 Wind Loads Characteristic Length s i N V w V i i w i i b ;0; s i b ;0; s s {/00, /5, /.5, /0, /9, /8, /7, /6, /5, /4, /3, /,,, 5, 0} L b Wind Loads Seasonality Wind Directionality Συσχέτιση Μέγιστης Ταχύτητας Ανέμου και Διεύθυνσης (Άρδασσα Κοζάνης) y = -0.007x + 3.378 R = 0.009 y = 6E-07x 3-0.0006x + 0.43x + 3.063 R = 0.404 0.0 0 45 90 35 80 5 70 35 360 Διεύθυνση Ανέμου i 0 i Max of Max Wind Speed 9 8 N 80 70 60 50 40 30 0 0 0 w 7 i S????? 6 3 5 4 0 Max of Average Wind Speed 5 9 8 0 5 0 5 0 7

Wind Loads Directionality & Water Level.400 Λόγος V/V.400 Λόγος V/V.360.30 North Wind South Wind.360.30 North Wind South Wind.80.80.40.40 V/V.00.60 S=8.74m V/V.00.60.0.080.040.000.0.080.040.000 S=87.40m 0.960 340.00 350.00 360.00 370.00 380.00 390.00 400.00 40.00 Στάθμη Ταμιευτήρα (m) 0.960 340.00 350.00 360.00 370.00 380.00 390.00 400.00 40.00 Στάθμη Ταμιευτήρα (m).400 Λόγος V/V.400 Λόγος V/V.360.30 North Wind South Wind.360.30 North Wind South Wind.80.80.40.40 V/V.00.60 V/V.00.60.0 S=43.70m.0 S=874.0m.080.080.040.040.000.000 0.960 340.00 350.00 360.00 370.00 380.00 390.00 400.00 40.00 Στάθμη Ταμιευτήρα (m) 0.960 340.00 350.00 360.00 370.00 380.00 390.00 400.00 40.00 Στάθμη Ταμιευτήρα (m)

Wind Loads Average Speed Ταχύτητες Ανέμου και Στάθμη z (Άνεμος από ανάντι) Ταχύτητες Ανέμου και Στάθμη z (Άνεμος από κατάντι) 60.00 50.00 60.00 50.00 50.00 s=87.4m 45.00 40.00 50.00 s=87.4m 45.00 40.00 Ταχύτητα (m/sec) 40.00 35.00 z w =366.0m 30.00 30.00 5.00 0.00 0.00 5.00 cr x ct x Vb 0.00 Vm 0.00 z 5.00 0.00 0.00 0 0 0 30 40 50 60 70 80 90 00 Απόσταση Χ του Άξονα της Γέφυρας Στάθμη z (m) Ταχύτητα (m/sec) 40.00 30.00 0.00 0.00 cr x ct x Vb Vm z z w =366.0m 0.00 0.00 0 0 0 30 40 50 60 70 80 90 00 Απόσταση Χ του Άξονα της Γέφυρας 35.00 30.00 5.00 0.00 5.00 0.00 5.00 Στάθμη z (m) V m NL c z c z c V l c z c z l r, i t, i funnel b i r, i t, i i c NL funnel Vb NL l i NL l i

Wind Loads Average Speed Μέση Ταχύτητα Vm Μέση Ταχύτητα Vm 50.000 50.000 Vm (m/sec) 46.000 4.000 38.000 34.000 S=0.874m S=5.86m S=6.99m S=8.74m S=9.7m S=0.95m S=.485m S=4.566m S=7.48m S=.85m S=9.33m S=43.7m S=87.4m S=74.8m S=437m S=874m Vm (m/sec) 46.000 4.000 38.000 34.000 S=0.964m S=6.47m S=7.7m S=9.640m S=0.7m S=.05m S=3.77m S=6.07m S=9.8m S=4.0m S=3.3m S=48.0m S=96.40m S=9.8m S=964.0m S=48.0m 30.000 345.000 355.000 365.000 375.000 385.000 395.000 405.000 Στάθμη Ταμιευτήρα (z) (m) Vm 73.0 kmh 30.000 345.000 355.000 365.000 375.000 385.000 395.000 405.000 Στάθμη Ταμιευτήρα (z) (m) 5.00 V k,m (Φόρτιση από Βόρρα - Ανάντι του ποταμού) @z w =366.0m 5.00 V k,m (Φόρτιση από Νότο - Κατάντι του ποταμού) Ταχύτητα Ανέμου (m/sec) 48.00 44.00 40.00 36.00 Ταχύτητα Ανέμου (m/sec) 48.00 44.00 40.00 36.00 3.00 3.00 345.00 355.00 365.00 375.00 385.00 395.00 405.00 345.00 355.00 365.00 375.00 385.00 395.00 405.00 Στάθμη Ταμιευτήρα (m) Στάθμη Ταμιευτήρα (m)

Wind Loads Wind Pressure Μέσo Φορτίο q m Μέσo Φορτίο q m 3500.0 3500.0 q m (N/m ) 3000.0 500.0 000.0 500.0 000.0 500.0 S=0.874m S=5.86m S=6.99m S=8.74m S=9.7m S=0.95m S=.485m S=4.566m S=7.48m S=.85m S=9.33m S=43.7m S=87.4m S=74.8m S=437m S=874m q m (N/m ) 3000.0 500.0 000.0 500.0 000.0 500.0 S=0.874m S=5.86m S=6.99m S=8.74m S=9.7m S=0.95m S=.485m S=4.566m S=7.48m S=.85m S=9.33m S=43.7m S=87.4m S=74.8m S=437m S=874m 0.0 345.000 355.000 365.000 375.000 385.000 395.000 405.000 Στάθμη Ταμιευτήρα (z) (m) q k,m (Φόρτιση από Βόρρα - Ανάντι του ποταμού) 3500.0 qk 849.3 Ν/m @z w =366.0m 0.0 345.000 355.000 365.000 375.000 385.000 395.000 405.000 Στάθμη Ταμιευτήρα (z) (m) q k,m (Φόρτιση από Νότο - Κατάντι του ποταμού) 3500.0 3000.0 3000.0 Ανεμοφορτίο (q(n/m )) 500.0 000.0 500.0 000.0 Ανεμοφορτίο (q(n/m )) 500.0 000.0 500.0 000.0 500.0 500.0 0.0 345.00 355.00 365.00 375.00 385.00 395.00 405.00 Στάθμη Ταμιευτήρα (m) 0.0 345.00 355.00 365.00 375.00 385.00 395.00 405.00 Στάθμη Ταμιευτήρα (m)

Design Loads (Static & Dynamic) q f, k Static Loads 0.0 kn/m L 30 (Eq. 5. par. 5.3.. EN-99-).5 5.0 kn/m q f, k Q b q 0.70 3.0=.6kN/m f, k Dynamic Loads Stoyanoff, S., Haskett, T., Pridham, B., Hunter, M. and Zoli, T. (007). Pedestrian-induced vibrations on footbridges: advanced response analysis, Bridge Structures, 3:3, 9-45

Wind Loads (Q w ) q b V m, eq q [ 7 I ] V k V m, eq Q q max A 0.3 A, 0.3 A A W k p, equiv, Y p, equiv, Z p, equiv, Y p, equiv, Z A c A A c A p, equiv, Y f, s, Y real, Y p, equiv, Z f, s, Z real, Z Q w 3.800kN/m Note: Increased likelihood of the maximum Wind Speed coinciding with low water level of the reservoir

Snow Loads (Q s ) s k, A sk,0 A 97 A 500m Q S b s k, A QS, esl cesl b sk, A Q s 0.76kN/m Q s, ecl.453kn/m

Ice Loads (Q k,ice ) Wind on Ice (Q k,w ) Q W q k max A 0.3 A, p, equiv, Y, ice p, equiv, Z, ice 0.3 A A p, equiv, Y, ice p, equiv, Z, ice Q k, ice 0.848kN/m Ap, equiv, Y, ice cf, s, Y, ice Areal, Y, ice Ap, equiv, Z, ice cf, s, Z, ice Areal, Z, ice Q kw, 3.875kN/m ISO 494:00 Atmospheric icing of structures

Load Combinations (EN 990, EN 997) LC# γ G G+γ Q Q+ψ w γ w Q w LC# γ G G+ ψ Q,w γ Q Q+γ w Q w LC#3 γ G G+ ψ w γ w Q w +γ S Q S,ecl LC#4 γ G G+ γ w Q w + ψ S γ S Q S LC#5 γ G G+ γ k,ice Q k,ice + k k,w ψ k,w γ k,w Q k,w LC#6 γ G G+ ψ k,ice γ k,ice Q k,ice + k k,w γ k,w Q k,w LC#7 G+A Ed,Y LC#8 LC#9 G A Ed,Y G+A Ed,Z A Ed 0.94kN/m LC#0 G A Ed,Z

Design Loads q D (kν/m) Value LC # 6.05 LC # 8.37 LC #3 5.374 LC #4 8.056 LC #5 4.065 LC #6 4.736 LC #7.065 LC #8 0.35 LC #9.065 LC #0 0.35

Dynamic Response Max Acceleration Human Load Max Acceleration (EN99) a 0.5 fh a 0.70 (m/sec ) Max Bridge Acceleration a N N w c N a p 0.5 R m deck l N ln C C C N C 0.75 C 0.0 Rmin Rmax R R max R min C exp N N R max N max Non associated mass m add N N w c N p a g R Stoyanoff, S., Haskett, T., Pridham, B., Hunter, M. and Zoli, T. (007). Pedestrian-induced vibrations on footbridges: advanced response analysis, Bridge Structures, 3:3, 9-45

Free Vibration of Cables dx u u t T m s ds s t dy t T m mg s ds s t w w t T m s s t n Th, n,,..., l m t n l, a, n n l T h m n,,..., 3 4 8bd l bd tan l l l L 8 e l l ThL l e E c Ac Irvine H.M., Caughey T.K. (974). The linear Theory of Free Vibrations of a Suspended Bridge. Proc. R. Soc. Lond A., 34, 99-35.

Bridge Dynamic Characteristics ω trans =4.80 Hz f 0,h = f t = 0.764 Hz ω l,a =9.60 Hz f l,a =.58 Hz ω l,s =8.99 Hz f l,s = f 0,V =.430 Hz λ =09.9 Irvine H.M., Caughey T.K. (974). The linear Theory of Free Vibrations of a Suspended Bridge. Proc. R. Soc. Lond A., 34, 99-35.

Dynamic Excitation Various Scenarios c a N c f, f, f, f, res, fac 0 res, fac 0, v, v 0 N w c N a f p R 0.5 m f, f, f f deck l f 0 0 a 0.4 f 0.95 a 0.56.0 f.8 Hz a 0.065,0.00, h ζ=0.5%, wp=700n (basic scenario) ζ=.0%, wp=700n (optimistic scenario) ζ=0.5%, wp=850n (pessimistic scenario) see «Zivanovic, S., Pavic, A. and Reynolds, P. (005) Review vibration serviceability of footbridges under human-induced excitation: a literature review. J. Sound Vibrat., 79, 74», for P. Young, Improved floor vibration prediction methodologies, ARUP Vibration Seminar, October 4, 00 f

Results Accelerations (no Windguys) Κατακόρυφες Επιταχύνσεις Πεζογέφυρας Εγκάρσιες Επιταχύνσεις Πεζογέφυρας 4.0 7.0.0 ζ=0.5%, wp=700n N= N= 6.0 ζ=0.5%, wp=700n N= N= 0.0 N=3 N=4 N=5 N=0 5.0 N=3 N=4 N=5 N=0 a v (m/sec ) 8.0 6.0 N=5 N=0 N=30 N=40 N=50 N=60 a h (m/sec ) 4.0 3.0 N=5 N=0 N=30 N=40 N=50 N=60 4.0 N=70 N=80.0 N=70 N=80.0.0 0.0.00.5.50.75.00.5.50 (f) Συχνότητα Βάδισης (Hz) 0.0.00.5.50.75.00.5.50 (f) Συχνότητα Βάδισης (Hz)

Results Dynamic Characteristics (no windguys) Δυναμικά Χαρακτηριστικά Πεζογέφυρας 0.0 000 Κυκλική Ιδιοσυχνότητα (Hz) 8.0 6.0 4.0.0 λ ω,v ω,t ω,v,s <ω,v,a 800 600 400 00 Τιμή λ 0.0 0 500 000 500 000 500 Οριζόντια Δύναμη Καλωδίων (kn) 0

Results Accelerations (no Windguys) Κατακόρυφες Επιταχύνσεις Πεζογέφυρας Εγκάρσιες Επιταχύνσεις Πεζογέφυρας.6E+0.0E+0 ζ=0.5%, wp=700n N= N= N= N=.E+0 N=3 N=4 N=5 N=0 8.0E+00 N=3 N=4 N=5 N=0 a v (m/sec ) 8.0E+00 N=5 N=0 N=30 N=40 N=50 N=60 N=70 N=80 a h (m/sec ) 6.0E+00 4.0E+00 N=5 N=0 N=30 N=40 N=50 N=60 4.0E+00.0E+00 N=70 N=80 ζ=0.5%, wp=700n 0.0E+00.00.5.50.75.00.5.50 (f) Συχνότητα Βάδισης (Hz) 0.0E+00.00.5.50.75.00.5.50 (f) Συχνότητα Βάδισης (Hz)

Effects of Windguys Additional Rigidity in lateral and vertical axes of the Bridge Vibrational decoupling for the lateral and vertical direction Combination of cables with different dynamic characteristics deamplification of dynamic motion Added safety (increase of number of elements contributing to the dynamic stability of the bridge) More complexity Complex Geometry Final Geometry dictated by the topography and geo-technical characteristics of the site.

Conclusions The analysis and design of a slender cable footbridge located in a narrow canyon is presented. The effect of the narrow canyon is also considered in the analysis. A complex wind profile is expected. Wind intensity is expected to vary considerably along the axis of the bridge. Wind Loads (with or without ice) are governing the design. Windguys are needed to increase rigidity, induce vibrational de-coupling and de-amplification of stresses/strains and increase the bridge s safety and usability. Windguys increase the complexity of the design and for the particular problem dictated the design shape of the bridge.

Thank you for your Attention