ATLAS Tau Working Group Meeting CERN. Ryan D. Reece and Brig Williams. March 25, 2009

Σχετικά έγγραφα
Hadronic Tau Decays at BaBar

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Math221: HW# 1 solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

LIGHT UNFLAVORED MESONS (S = C = B = 0)

[1] P Q. Fig. 3.1

Section 8.3 Trigonometric Equations

EE512: Error Control Coding

Approximation of distance between locations on earth given by latitude and longitude

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ST5224: Advanced Statistical Theory II

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

PARTIAL NOTES for 6.1 Trigonometric Identities

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Example Sheet 3 Solutions

the total number of electrons passing through the lamp.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

derivation of the Laplacian from rectangular to spherical coordinates

Lifting Entry (continued)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

TMA4115 Matematikk 3

1 String with massive end-points

Solar Neutrinos: Fluxes

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Μηχανική Μάθηση Hypothesis Testing

Repeated measures Επαναληπτικές μετρήσεις

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Statistical Inference I Locally most powerful tests

Lecture 34 Bootstrap confidence intervals

Assalamu `alaikum wr. wb.

Strain gauge and rosettes

Numerical Analysis FMN011

The Simply Typed Lambda Calculus

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Solutions to Exercise Sheet 5

Lecture 2. Soundness and completeness of propositional logic

Math 6 SL Probability Distributions Practice Test Mark Scheme

2 Composition. Invertible Mappings

Higher Derivative Gravity Theories

Sampling Basics (1B) Young Won Lim 9/21/13

MSM Men who have Sex with Men HIV -

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου


Right Rear Door. Let's now finish the door hinge saga with the right rear door

Homework 3 Solutions

Aluminum Electrolytic Capacitors (Large Can Type)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Section 9.2 Polar Equations and Graphs

Durbin-Levinson recursive method

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Srednicki Chapter 55

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

An Inventory of Continuous Distributions

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Areas and Lengths in Polar Coordinates

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ

Homework for 1/27 Due 2/5

Differential equations

Partial Trace and Partial Transpose

Spectrum Representation (5A) Young Won Lim 11/3/16

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

C.S. 430 Assignment 6, Sample Solutions

ECE 468: Digital Image Processing. Lecture 8

Finite Field Problems: Solutions

Homework 8 Model Solution Section

Aluminum Electrolytic Capacitors

Instruction Execution Times

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Advanced Subsidiary Unit 1: Understanding and Written Response

Transcript:

Z ττ µτ ATLAS Tau Working Group Meeting CERN Ryan D. Reece and Brig Williams University of Pennsylvania Marc 25, 29 Ryan D. Reece (Penn) Z ττ µτ reece@cern.c / 25

Outline Introduction and Selection 2 Dijet Background b b Background 4 Cut Flow and Results Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 2 / 25

Introduction and Selection Ryan D. Reece (Penn) Z ττ µτ reece@cern.c / 25

Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 4 / 25

Preface Goal: to observe Z ττ µτ in early data (- pb ), to gain experience wit and evaluate tau reconstruction. We sow b b production is a dominant QCD background. We use a fake-rate scaling tecnique for getting sape and normalization of te b ackground. In tis Monte Carlo analysis, we use only fully simulated samples. We do not use b-tagging. We do not use te collinear approximation to reconstruce Z mass in order to accept more signal by avoiding te necessary cos(φ µ φ τ ) >.9 cut. Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 5 / 25

Preselection I produced my own ntuples directly from AODs using EventView. EventView does overlap removal based on selection precedence and R. All Muons η < 2.5 StacoMuonCollection bestmatc p T > GeV χ 2 fit /DOF < 4 R >. Electrons ElectronAODCollection isem & x7f7ff == (tigt) Tau-jets p T > GeV R >. only selected for overlap removal TauRecContainer E T > 5 GeV R >.4 Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 6 / 25

Post-selection ID Muons χ 2 fit /DOF < 4 χ 2 matc /DOF < 8 p T > 5 GeV Tau-jets Likeliood > 4 e/µ flags or prong carge(τ ) = In te case of multiple tau candidates in a single event, te candidates are sorted by Likeliood, and te candidate wit te largest Likeliood above 4 is cosen to do te mass combination wit a muon. Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 7 / 25

Dijet Background Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 8 / 25

p T of Muons pb / (2.5 GeV) 5 4 J, 7-5 GeV J2, 5-7 GeV J, 7-4 GeV 2 2 4 6 8 2 4 p (µ) [GeV] T Muons from dijets are steeply falling in p T. Tis is te main reason for requiring p T (µ) > 5 GeV. Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 9 / 25

Two Muon Isolation Variables p (µ) > 5 GeV T J, 7-5 GeV p (µ) > 5 GeV T J, 7-5 GeV pb 4 J2, 5-7 GeV J, 7-4 GeV pb / (.5 GeV) 4 J2, 5-7 GeV J, 7-4 GeV 2 2 2 4 6 8 2 4 N tracks (µ; R<.4, p > GeV) T N tracks (µ; R <.4, p T > GeV) = ET R<.4 (µ) < 2 GeV 2 4 6 8 2 4 6 8 2 R<.4 E T (µ) [GeV] After tese cuts, tere are not enoug events lefo require tau ID. And to scale to pb requires large scale factors. Need a more exclusive sample. Were are tese muons coming from? Answer: Ryan D. Reece (Penn) Z ττ µτ reece@cern.c / 25

Sources of Muons in Dijets Nearest generator trut particle Parent of true generator muons Muon s trut associate in J2, 5-7 GeV Entries = 58 Muon s parent in J2, 5-7 GeV Entries = 498 µ + (8.7 %) - B (.7 %) B (.7 %) + B (4.7 %) B (.5 %) - µ (2.7 %) + K (7.6 %) π + - K (6.7 %) - π oter (2. %) (6.4 %) (5.9 %) D (7.4 %) D (6.4 %) - D + D (6.2 %) B s (5.4 %) B s (4.8 %) + D s oter (5.6 %) (2.2 %) Λ b (2.4 %) (4. %) Need to look at b-jets. b b µ + jets Using a b b sample leaves oue c c (D-mesons) contribution. We also miss contamination due to muons from π/k decay in fligt. How can tis be modeled? Ryan D. Reece (Penn) Z ττ µτ reece@cern.c / 25

b b Background Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 2 / 25

b b Background Dwarfs Oters Before tau ID pb / (5 GeV) 4 5 LLH > 4, e/µ flags pb / (5 GeV) 7 6 5 25 2 5 4 2 5 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Te b b sample was filtered for a muon wit p T > 5 GeV, but only as 44 k events. Still, no events survive te entire cut flow. Ryan D. Reece (Penn) Z ττ µτ reece@cern.c / 25

Tau ID Scaling In order to artificially inflate te sample size, we did not require tau ID cuts for te b b sample, and instead scaled its istogram entries by te fake-rate parametrized by E T and number of prongs. We do te scaling, tau candidate by tau candidate. If an event as multiple tau candidates, ten in istograms it contributes an entry for eac candidate scaled by te fake-rate for tat candidate. Case of tau candidates: w = ε ( ε 2 ) ( ε ) + ε ε 2 ( ε ) + ε ε 2 ε = ε + O(ε 2 ) w 2 = ( ε ) ε 2 ( ε ) + ( ε ) ε 2 ε = ε 2 + O(ε 2 ) Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 4 / 25

Jet Fake-rate J2 + J, cuts: LLH > 4, e/ µ flags all -prong -prong 2-prong -prong - 4-prong 5-prong 6-prong -2 ID fake rate ID fake rate - -2, cuts: LLH > 4, e/µ flags all -prong -prong 2-prong -prong 4-prong 5-prong 6-prong - - -4-4 -5 2 4 6 8 2 4 reconstructed E T (τ ) [GeV] -5 2 4 5 6 7 8 9 reconstructed E T (τ ) [GeV] ε = n-prong candidates passing ID cuts n-prong candidates Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 5 / 25

Jet Fake-rate ID fake rate -prong J2+J -prong J2+J -prong bb -prong bb - -2 2 4 6 8 2 4 reconstructed E T (τ ) [GeV] Te b-jet fake-rate is witin statistical agreement wit te inclusive dijet fake-rate. Terefore, we use te more precisely measured dijet fake-rate. Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 6 / 25

Evaluating te Scaling pb / (5 GeV) 7 6 Passed tau ID cuts Scaled by fake rate 5 4 2 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 7 / 25

Cut Flow and Results Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 8 / 25

Tau ID pb / (2.) 4 2 pb 4 2 - -2 pb -5-4 - -2-2 LLH 4 2 - -2 pb / (5 GeV) 6 5 4 2 -.4 -.2.2.4.6.8.2.4 e flag -.4 -.2.2.4.6.8.2.4 µ flag 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 9 / 25

Muon Isolation pb 2 pb / (5 GeV) 7 6 5 4-2 -2 pb / (.5 GeV) 2 4 6 8 2 4 N tracks (µ) pb / (5 GeV) 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] 5 4-2 -2 2 4 6 8 2 4 6 8 2 2 4 6 8 2 4 6 8 2 R<.4 E T (µ) [GeV] m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 2 / 25

W vs Z Separation pb / (.5) pb / (5 GeV) 2.5 2 -.5-2.5 pb / (2.5 GeV) -2 -.5 - -.5.5.5 2 cos(φ -φ ) + cos(φ -φ ) µ MET τ MET pb / (5 GeV) 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] 2.5 2 -.5-2.5 2 4 6 8 2 4 m T(µ, MET) [GeV] 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 2 / 25

Tracks and Carge pb pb - -2 2 4 5 6 7 8 9 N tracks (τ ) Accept: -prong and -prong carge(τ ) = Opposite Sign - -4 - -2-2 4 carge(µ) carge(τ ) Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 22 / 25

Final Visible Mass Plot Events / (5 GeV) 25 2 - pb Z τ τ W τ ν - pb "data" 5 5 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 2 / 25

Cut Flow Z ττ W µν W τν Z µµ t t b b generated 4 2 25 892 N(µ) = 756 25 4 77.4 85 p T (µ) > 5 GeV 87. 7 6 9 67. 822 χ 2 fit (µ)/dof < 4 86.4 7 4 86 66. 84 χ 2 matc (µ)/dof < 8 8.7 687 76 64.6 795 N(τ ) > 5.9 6 47 89.8 64.4 58 N(e) = 5.6 6 47 89.7 55.9 579 5 prong 47. 45 2 8.4 5.4 499 Likeliood > 4, e/µ flags 8.4 5..6 4.7 6.58 57 N tracks (µ) =.5 7.8 8.74.6.. E P R<.4 T (µ) < 2 GeV 2.4 4.5 8.7.29 2.68. cos φ >.5.6 8.68 2.78.77.4 2. m T (µ, MET) < 5 GeV.2.5 2.56.6.689 2. N(τ ) 2.7.2 2.2..544.92 or prong..69.2.969.447.24 carge(τ ) =..68.2.967.44.9 OS 9.8.8.976.8.4.75 m vis (µ, τ ) = 5 8 GeV 9.(2).46(4).6().29().5().5() cross sections in pb. S/B = 5. denotes te beginning of tau ID scaling Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 24 / 25

Summary We estimate a dominant part of te QCD background from b b using tau ID fake-rate scaling to artificially inflate te sample size. We introduce a novel way of separating Z from W + jets by noting angular correlations and cutting on cos(φ µ φ MET ) + cos(φ τ φ MET ) in addition to te transverse mass. Z ττ µτ can be selected wit S/B 5, neglecting te background from ligt-flavor dijets and π/k decay in fligt. Te lepton filtered JX samples sould take into consideration te ligt-flavor dijets, but we still need to figure oue background from π/k decay in fligt. Tis analysis expects 9 signal events in pb. Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 25 / 25

W + jets Background Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 26 / 25

Transverse Mass pb / (2.5 GeV) 2.5 2.5.5 2 4 6 8 2 4 m T (µ, MET) [GeV] Transverse mass is small wen φ is small. m T (µ, MET) = 2 p T (µ) MET ( cos φ) Tere is a better separating variable... Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 27 / 25

Angular Correlations ) MET cos(φ τ -φ.8.6.4 - pb.2 -.2 -.4 -.6 -.8 - - -.8 -.6 -.4 -.2.2.4.6.8 cos(φ µ -φ ) MET Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 28 / 25

Angular Correlations One could just cut along te diagonal, but since te cut is a straigt line, we can rotate tis space clockwise and project down. ) MET cos(φ τ -φ.8.6.4.2 -.2 -.4 -.6 -.8 - pb - - -.8 -.6 -.4 -.2.2.4.6.8 cos(φ µ -φ ) MET ( x ( x y y ) = ( cos(φµ φ MET ) cos(φ τ φ MET ) ) ( cos θ sin θ = sin θ cos θ θ = π/4 ) ) ( x y ) x = [cos(φ µ φ MET ) + cos(φ τ φ MET )] / 2 Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 29 / 25

Angular Correlations A variable tat is remarkably caracteristic for te signal! pb / (.5) 4.5 4.5 2.5 2.5.5-2 -.5 - -.5.5.5 2 cos(φ µ -φ ) + cos(φ τ -φ MET ) MET cut: cos(φ µ φ MET ) + cos(φ τ φ MET ) >.5 Ryan D. Reece (Penn) Z ττ µτ reece@cern.c / 25

Angular Correlations Before ) MET cos(φ τ -φ.8.6.4.2 -.2 -.4 -.6 -.8 - pb - - -.8 -.6 -.4 -.2.2.4.6.8 cos(φ µ -φ ) MET After ) MET cos(φ τ -φ.8.6.4.2 -.2 -.4 -.6 -.8 - pb - - -.8 -.6 -.4 -.2.2.4.6.8 cos(φ µ -φ ) MET Ryan D. Reece (Penn) Z ττ µτ reece@cern.c / 25

Angular Correlations Before pb / (2.5 GeV) 2.5 After pb / (2.5 GeV) 2.5 2 2.5.5.5.5 2 4 6 8 2 4 m T (µ, MET) [GeV] 2 4 6 8 2 4 m T (µ, MET) [GeV] Tis cut on te sum of cos φ accepts signal muc better tan a cut on transverse mass. Accepts kinematic pase space were neutrino from τ is ard and MET does not align wit te muon. Not dependent on MET scale or p T (µ). Only dependent on φ measurements of objects and MET. Smaller systematic error. Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 2 / 25

Back Up Slides Ryan D. Reece (Penn) Z ττ µτ reece@cern.c / 25

Raw Cut Flow Z ττ W µν W τν Z µµ t t b b generated 9944 24774 47274 489679 487286 496 N(µ) = 22 877 945 969 855 4888 p T (µ) > 5 GeV 547 7555 625 7959 5888 4499 χ 2 fit (µ)/dof < 4 5267 68947 688 7278 575 45 χ 2 matc (µ)/dof < 8 482 648927 629 6767 596 985 N(τ ) > 968 8924 622 42 52692 286 N(e) = 898 886 64 4 2658 28524 5 prong 862 4674 44 5828 9654 2457 Likeliood > 4 548 287 578 279 8249 2457 e flag 257 949 56 299 566 2457 µ flag 255 946 56 294 56 2457 N tracks (µ) = 294 95 4 6 752 442 E P R<.4 T (µ) < 2 GeV 299 8228 77 466 65 58 cos φ >.5 247 272 28 79 49 m T (µ, MET) < 5 GeV 987 842 8 58 6 N(τ ) 2 884 764 7 54 29 97 or prong 769 44 56 42 6 5 carge(τ ) = 767 4 56 4 5 48 OS 77 28 45 7 95 29 m vis (µ, τ ) = 5 8 GeV 66 27 5 22 unscaled number of events Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 4 / 25

OS vs SS W µν + jets and W τν µνν + jets are te dominant EW backgrounds, te jets faking tau ID. Opposite Sign pb / (5 GeV) OS 2.5 Same Sign pb / (5 GeV) SS 2.5 2 2.5.5.5.5 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] W backgrounds are OS biased. Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 5 / 25

Datasets Dataset Events Cross Section [pb] R dt L [pb ] pb scale factor Z ττ 99 k. 77 5.66 W µν 2472 k.4 29 4.9 W τν 47 k. 46..27 Z µµ 49 k. 446 2.24 t t 487 k 25 2.7 422 6 b b 44 k 88.5.497 2. J 86 k 864 6 447 6 2.24 J2 64 k 56. 6 6.5 54 J 96 k.29 6.2 8. Te W τν dataset was filtered ae generator for an electron or a muon. Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 6 / 25

Dataset File Names mc8.652.pytiaztautau.recon.aod.e47 s462 r54 mc8.62.pytiawmunu Lepton.recon.AOD.e52 s462 r54 mc8.622.pytiawtaunu Lepton.recon.AOD.e52 s462 r54 mc8.65.pytiazmumu Lepton.recon.AOD.e47 s462 r54 mc8.52.t McAtNlo Jimmy.recon.AOD.e57 s462 r54 mc8.845.pytiab bbmu5x.recon.aod.e47 s462 r54 mc8.5.j pytia jetjet.recon.aod.e44 s479 r54 mc8.5.j2 pytia jetjet.recon.aod.e44 s479 r54 mc8.52.j pytia jetjet.recon.aod.e44 s479 r54 Issues all reconstructed wit Atena 4.2.2. r54: 4.2.2., OFLCOND--- HEC off:.5 < η <.5 and π/2 < φ < 2 Muon etcone variables mis-filled in AOD. etcone4 etcone. Tis means tat my muon calo isolation cut is actually on R <. and not R <.4. Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 7 / 25

Tau-jet Efficiency reconstruction efficiency.9.8.7.6.5.4. all -prong -prong reconstruction + ID efficiency.9.8.7.6.5.4. LLH > 4, e/ µ flags all -prong -prong.2.2. 2 4 6 8 true E T (τ ) [GeV]. 2 4 6 8 true E T (τ ) [GeV] ε = n-prong candidates (passing ID cuts), matced to a true n-prong τ true n-prong τ s tools to gerue τ : EVTrutTauDecayCompositeCreator, EVUDTrutTauVisible Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 8 / 25

Jet Fake-rate reconstruction fake rate - -2 - J2 + J all -prong -prong 2-prong -prong 4-prong 5-prong 6-prong J2 + J, cuts: LLH > 4, e/ µ flags all -prong -prong 2-prong -prong - 4-prong 5-prong 6-prong -2 reconstruction + ID fake rate - -4-4 -5 2 4 6 8 2 4 true E T (jet) [GeV] -5 2 4 6 8 2 4 true E T (jet) [GeV] ε = n-prong candidates (passing ID cuts), matced to a true jet all true jets true jets = Cone4TrutJets Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 9 / 25

Jet Fake-rate J2 + J, cuts: LLH > 4, e/ µ flags all -prong -prong 2-prong -prong - 4-prong 5-prong 6-prong -2 ID fake rate ID fake rate - -2, cuts: LLH > 4, e/µ flags all -prong -prong 2-prong -prong 4-prong 5-prong 6-prong - - -4-4 -5 2 4 6 8 2 4 reconstructed E T (τ ) [GeV] -5 2 4 5 6 7 8 9 reconstructed E T (τ ) [GeV] ε = n-prong candidates passing ID cuts n-prong candidates Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 4 / 25

Z ττ Track Spectrum.5 Entries 8775 Mean.88 RMS.7.4..2. 2 4 5 6 7 8 9 N tracks (τ ) LLH>4, e/µ µ flags true number of prongs 5 4 2 7 69 55 6 25 657 285 77 5 true number of prongs 5 4 9 25 25 275 226 472 8 9 2 2 67 7524 6225 2 228 56 7 982 4 5 2 4 5 reconstructed numtrack 2 4 5 reconstructed numtrack Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 4 / 25

Anoter Angular Statistic ρ φ(φ b, φ MET ) φ(µ, τ )/2 pb / (.5) 2.5 2.5.5 2 4 5 6 7 ρ Just anoter way of measuring tae MET is between te decay products, toug not as discriminatory as cos φ. Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 42 / 25

EventView Overlap Removal Note tat it is te deltarcut of te current inserter tat matters, noe deltarcut used for te overlapping particles previously inserted in te EventView. ttps://twiki.cern.c/twiki/bin/view/atlasprotected/removeoverlap Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 4 / 25

Tau Brancing Fractions τ 7.8% 9.% e ν e ν τ µ ν µ ν τ 7.4% π π ν τ 25.5% π ν τ.9% π 2π ν τ 9.% K Nπ NK ν τ.5% π π ν τ.% π π π + ν τ π π π + π ν τ 4.6% } leptonic 5% prong 5% } prong 5% Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 44 / 25

Entire Cut Flow Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 45 / 25

pb 5 4 pb / (2.5 GeV) 4 2 2 - - pb / (.25) -2 4 2 2 4 6 8 2 4 N(µ) pb / (.25) -2 4 2 2 4 6 8 2 4 p (µ) [GeV] T - - -2-2 5 5 2 25 5 4 45 χ 2 (µ)/dof fit 5 5 2 25 5 4 45 χ 2 (µ)/dof matc Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 46 / 25

pb 4 2 pb / (5 GeV) 6 5 4 2 - -2 pb 5 4 2 2 4 6 8 2 4 N(τ ) 2 4 6 8 2 4 N(e) pb / (5 GeV) 6 5 4 2 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 47 / 25

pb 4 pb / (5 GeV) 5 4 2 2 - pb / (2.) -2 4 2 2 4 5 6 7 8 9 N tracks (τ ) pb / (5 GeV) 5 4 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] 2 - -2-5 -4 - -2-2 LLH 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 48 / 25

pb 4 pb / (5 GeV) 5 4 2 2 pb 4 2 - -2 -.4 -.2.2.4.6.8.2.4 e flag -.4 -.2.2.4.6.8.2.4 µ flag pb / (5 GeV) 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] 6 5 4 2 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 49 / 25

pb 2 pb / (5 GeV) 7 6 5 4-2 -2 pb / (.5 GeV) 2 4 6 8 2 4 N tracks (µ) pb / (5 GeV) 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] 5 4-2 -2 2 4 6 8 2 4 6 8 2 R<.4 E T (µ) [GeV] 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 5 / 25

pb / (.5) pb / (5 GeV) 2.5 2 -.5-2.5 pb / (2.5 GeV) -2 -.5 - -.5.5.5 2 cos(φ -φ ) + cos(φ -φ ) µ MET τ MET pb / (5 GeV) 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] 2.5 2 -.5-2.5 2 4 6 8 2 4 m T(µ, MET) [GeV] 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 5 / 25

pb pb / (5 GeV) 2.5 2.5 -.5 pb -2 - -2 2 4 6 8 2 4 N(τ ) 2 4 5 6 7 8 9 N tracks (τ ) pb / (5 GeV) 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] 2.4 2.2 2.8.6.4.2.8.6.4.2 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 52 / 25

pb pb -2.5-2 -.5 - -.5.5.5 2 2.5 carge(τ ) - -4 - -2-2 4 carge(µ) carge(τ ) pb / (5 GeV) pb / (5 GeV) 2.4 2.2 2.8.6.4.2.8.6.4.2 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] 2.2 2.8.6.4.2.8.6.4.2 2 4 6 8 2 4 6 8 2 m vis (µ, τ ) [GeV] Ryan D. Reece (Penn) Z ττ µτ reece@cern.c 5 / 25