Stochastic thermodynamics

Σχετικά έγγραφα
Stochastic Thermodynamics

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

2 Composition. Invertible Mappings

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Fractional Colorings and Zykov Products of graphs

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Information*Loss*and* Entanglement*in* Quantum*Theory* Jürg%Fröhlich% ETH%Zurich%&%IHES%

Lifting Entry (continued)

Probability and Random Processes (Part II)

2. Chemical Thermodynamics and Energetics - I

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

[1] P Q. Fig. 3.1

Matrices and Determinants

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Numerical Analysis FMN011

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Second Order RLC Filters

Section 8.3 Trigonometric Equations

Aluminum Electrolytic Capacitors

Thermodynamics of the motility-induced phase separation

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Aluminum Electrolytic Capacitors (Large Can Type)

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Ηλεκτρονικοί Υπολογιστές IV

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Example Sheet 3 Solutions

Homework 8 Model Solution Section

Strain gauge and rosettes

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Higher Derivative Gravity Theories

SPECIAL FUNCTIONS and POLYNOMIALS

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Solution Series 9. i=1 x i and i=1 x i.

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Space-Time Symmetries

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture 2. Soundness and completeness of propositional logic

Elements of Information Theory

Ηλεκτρονικοί Υπολογιστές IV

4.6 Autoregressive Moving Average Model ARMA(1,1)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

The Simply Typed Lambda Calculus

Markov chains model reduction

Homework 3 Solutions

Stationary Stochastic Processes Table of Formulas, 2017

D Alembert s Solution to the Wave Equation

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Lecture 21: Scattering and FGR

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία

Chapter 3: Ordinal Numbers

Dr. D. Dinev, Department of Structural Mechanics, UACEG

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

( y) Partial Differential Equations

NonEquilibrium Thermodynamics of Flowing Systems: 2

the total number of electrons passing through the lamp.

Problem Set 3: Solutions

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

10.7 Performance of Second-Order System (Unit Step Response)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

A summation formula ramified with hypergeometric function and involving recurrence relation

Assalamu `alaikum wr. wb.

Statistical Inference I Locally most powerful tests

ΕΘΝΙΚΗ ΥΟΛΗ ΔΗΜΟΙΑ ΔΙΟΙΚΗΗ ΙH ΕΚΠΑΙΔΕΤΣΙΚΗ ΕΙΡΑ ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Σχολή Μηχανικής και Τεχνολογίας. Πτυχιακή διατριβή

Monetary Policy Design in the Basic New Keynesian Model

Metal Oxide Leaded Film Resistor

Free Energy and Phase equilibria

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Second Order Partial Differential Equations

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Additional Results for the Pareto/NBD Model

Thermistor (NTC /PTC)

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

RECIPROCATING COMPRESSOR CALCULATION SHEET

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Free Energy Calculation

Other Test Constructions: Likelihood Ratio & Bayes Tests

THICK FILM LEAD FREE CHIP RESISTORS

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

CE 530 Molecular Simulation

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

Variational Wavefunction for the Helium Atom

Transcript:

Boulder lectures, July 2009 Stochastic thermodynamics Udo Seifert II. Institut für Theoretische Physik, Universität Stuttgart thanks to: F. Berger, J. Mehl, T. Schmiedl and Th. Speck (theory) V. Blickle and C. Bechinger (expt s on colloidal particles) C. Tietz, S. Schuler and J. Wrachtrup (expt s on single atoms) Review: U.S., Eur. Phys. J. B, 64 : 423-431, 2008. 1

LECTURE I Classical vs. stochastic thermodynamics First law General fluctuation theorem and Jarzynski relation Optimization 2

Perspective 1820 1850 classical thermodynamics dw = du + dq ds 0 1900 eq stat phys p i = exp[ (E i F)/k B T] 1930 1960 non-eq: linear response Onsager Green-Kubo, FDT 1993 non-eq: beyond linear response Fluctuation theorem stochastic thermodynamics Jarzynski relation 3

Thermodynamics of macroscopic systems [19 th cent] 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 λ 0 W T 000 111 000 111 000 111 000 111 000 111 λ t First law energy balance: W = E + Q = E + T S M Second law: S tot S + S M > 0 W > E T S F W diss W F > 0 4

Macroscopic vs mesoscopic vs molecular machines [Bustamante et al, Physics Today, July 2005] 5

Stochastic thermodynamics for small systems W A 1 n A 1 λ 0 T, p λ t A 2 A 3 w 0 nm m wmn 0 A 2 A 3 First law: how to define work, internal energy and exchanged heat? fluctuations imply distributions: p(w; λ(τ))... entropy: distribution as well? 6

Nano-world Experiment: Stretching RNA [Liphardt et al, Science 296 1832, 2002.] distributions of W diss : 7

Mechanically driven systems x 0 x 4 x 1 x 6 x 3 x 5 x 2 f(λ) 0000 1111 01 01 000000 111111 000 111 0000000 1111111 0000 1111 000000000000000 111111111111111 01 000000000000000 111111111111111 01 000000000000000 111111111111111 01 000000000000000 111111111111111 0000000000000000 1111111111111111 0000000000 1111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000000000000 111111111111111111111111 V (x,λ) λ(τ) Pulling a biomolecule Colloidal partical in a laser trap 8

Flow driven systems Stretching a polymer (dumbbell) Tank-treading vesicle in shear flow 9

(Bio)chemically driven systems F1-ATPase 10

Stochastic thermodynamics applies to such systems where non-equilibrium is caused by mechanical or chemical forces ambient solution provides a thermal bath of well-defined T fluctuations are relevant due to small numbers of involved molecules Main idea: Energy conservation (1 st law) and entropy production (2 nd law) along a single stochastic trajectory Precursors: notion stoch th dyn by Nicolis, van den Broeck mid 80s ( ensemble level) stochastic energetics (1 st law) by Sekimoto late 90s work theorem(s): Jarzynski, Crooks late 90s fluct theorem: Evans, Cohen, Galavotti, Kurchan, Lebowitz & Spohn 90s quantities like stochastic entropy by Crooks, Qian, Gaspard in early 00s... 11

Paradigm for mechanical driving: x 0 x 4 x 1 x 6 x 3 x 5 x 2 λ(τ) V (x, λ) λ(τ) x f(λ) 0000 1111 01 01 000000 111111 000 111 0000000 1111111 0000 1111 000000000000000 111111111111111 01 000000000000000 111111111111111 01 000000000000000 111111111111111 01 000000000000000 111111111111111 0000000000000000 1111111111111111 0000000000 1111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000000000000000000 111111111111111111111111111111 00000000000000000000000 11111111111111111111111 V (x,λ) Langevin dynamics ẋ = µ[ V (x, λ) + f(λ)] }{{} F(x,λ) external protocol λ(τ) +ζ ζζ = 2µ k B T δ(...) }{{} ( 1) First law [(Sekimoto, 1997)]: dw = du + dq applied work: dw = λ V (x, λ)dλ + f(λ)dx internal energy: du = dv dissipated heat: dq = dw du = F(x, λ)dx = Tds m 12

Experimental illustration: Colloidal particle in V (x, λ(τ)) [V. Blickle, T. Speck, L. Helden, U.S., C. Bechinger, PRL 96, 070603, 2006] work distribution non-gaussian distribution Langevin valid beyond lin response [T. Speck and U.S., PRE 70, 066112, 2004] 13

Role of external flow and frame invariance [T. Speck, J. Mehl and U.S., PRL 100 178302, 2008] Lab frame V (x, τ) = k(vτ x) 2 /2 ẋ = µk(vτ x) + ζ ẇ = τ V = kv(vτ x(τ)) 0 comoving frame: y x(τ) vτ V (y) = ky 2 /2 ẏ = µky v + ζ ẇ = τ V = 0?? det balance satisfied: equilibrium?? 14

Correct definitions of th dynamic quantities no flow flow u(r) 0 dw = t V + fdr dw D t V + f[dr udt] (D t t + u ) dq = ( V + f)dr dq ( V + f)(dr udt) 15

Path integral representation Boltzmann factor for a whole trajectory p[ζ(τ)] exp [ p[x(τ) x 0 ] exp [ x x 0 x 0 0 x(τ) τ x(τ) t 0 dτ ζ2 (τ)/4d] t 0 dτ (ẋ µf)2 /4D] time reversal x(τ) x(t τ) and λ(τ) λ(t τ) Ratio of forward to reversed path t x t x t λ λ t λ 0 0 λ(τ) τ λ(τ) t p[x(τ) x 0 ] p[ x(τ) x 0 ] = exp [ t 0 dτ (ẋ µf) 2 /4D] exp [ t 0 dτ ( x µ F) 2 /4D] = exp β t 0 dτ ẋf = exp βq[x(τ)] = exp s m 16

General fluctuation theorem [U.S., PRL 95, 040602, 2005; generalizing Jarzynski, Crooks, Maes] 1 = x(τ), x 0 p[ x(τ) x 0 ] p 1 ( x 0 ) = p[x(τ) x 0 ] p 0 (x ) p[ x(τ) x 0] p 1 ( x 0 ) 0 p[x(τ) x x(τ),x 0 ] p 0 (x 0 ) 0 = exp[ βq[x(τ)] }{{} s m +ln p 1 (x t )/p 0 (x 0 )] for arbitrary initial condition p 0 (x) for arbitrary (normalized) function p 1 (x t ) 17

Jarzynski relation (PRL, 1997) λ 0 W T, p λ t 2 nd law: W λ(τ) F F(λ t )) F(λ 0 ) exp[ W] = exp[ F] (k B T = 1) Short proof: 1 = exp[ q[x(τ)] }{{} s m +ln p 1 (x t )/p 0 (x 0 )] p 0 (x 0 ) exp[ (V (x 0, λ 0 ) F(λ 0 )] p 1 (x t ) exp[ (V (x t, λ t ) F(λ t )] within stochastic dynamics an identity! 18

Jarzynski (cont d) (k B T = 1) W λ 0 T, p λ t e W λ(τ)! = e F start with initial thermal distribution valid for any protocol λ(τ) valid beyond linear response allows to extract free energy differences from non-eq data implies a variant of the second law e x e x W F 19

Dissipated work W d W G exp[ W d ] + dw d p(w d )exp[ W d ] = 1 p(w d ) W d = W G red events violate the second law (??) Special case: Gaussian distribution p(w d ) exp[ (W d W d ) 2 /2σ 2 ] with W d = σ 2 /2 scenario 1: slow driving of any process [T. Speck and U.S., Phys. Rev E 70, 066112, 2004] 20

Scenario 2: linear equations of motion and arbitrary driving Ex: Stretching of Rouse polymer [T.S. and U.S., EPJ B 43, 521, 2005] 01 01 01 01 01 01 01 01 01 0 λ(τ) cantilever x L λ different protocols 0 t τ linear: λ(τ) = τl/t W d = (Nγ/3)L 2 /t periodic: λ(τ) = Lsin πτ/2t W d = [π 2 /8](Nγ/3)L 2 /t 21

Optimal finite-time processes in stochastic thermodynamics [T. Schmiedl and U.S., PRL 98, 108301, 2007] W λ i T λ f optimal protocol λ (τ) minimizes W for given λ i, λ f and finite t 22

Ex 1: Moving a laser trap V (x, λ) = (x λ(τ)) 2 /2 V (x, 0) V (x,t) λ f λ lin (τ) λ λ (τ) λ 0 λ f 0 t λ (τ) requires jumps at beginning and end λ = λ f /(t + 2) gain 1 W (t)/w lin (t) 0.88 23

Ex 2: Stiffening trap V (x, λ) = λ(τ)x 2 /2 (a) 5 4 λ f /λ i = 2, λ i t = 0.1 λ f /λ i = 2, λ i t = 1 λ f /λ i = 2, λ i t = 10 λ f /λ i = 5, λ i t = 0.1 λ f /λ i = 5, λ i t = 1 λ f /λ i = 5, λ i t = 10 λ f λ i λ /λi 3 2 1 0-0.2 0 0.2 0.4 0.6 0.8 1 1.2 τ/t jumps are generic should help to improve convergence of exp( W) generalization: underdamped dynamics delta-peaks [A. Gomez-Marin, T.Schmiedl, U.S., J. Chem. Phys., 129 : 024114, 2008] 24

Heat engines at maximal power Carnot (1824) Curzon-Ahlborn (1975) T h T h Q h = α(t h T m h ) Q h T m h W W T m c Qc = β(t m c Tc) Qc η c 1 T c /T h but zero power Tc efficiency at maximum power η ca 1 T c /T h recent claims for universality(?) what about fluctuations? Tc 25

Brownian heat engine at maximal power [T. Schmiedl and U.S., EPL 81, 20003, (2008)] V 1 V p a p b 1 V 4 p a T h T c 3 V 2 p b η 0.8 0.6 0.4 0.2 α = 1/2 α = α CA α = 1 0 0 1 2 3 4 5 (T h T c )/T c η C η = η c 2 αη c with α = 1/2 for temp-independent mobility Curzon-Ahlborn neither universal nor a bound 26

Optimizing potentials for temperature ratchets [F. Berger, T. Schmiedl, U.S., PRE 79, 031118, 2009] T c T h T h T c T c T h 2.5 2 V(x) T(x) 2 f V(x) V(x) 1.5 1 1 T(x) 0.5 0 0 0 L/2 L -0.5 0 0.2 0.4 0.6 0.8 1 x 1.4 1.2 0.5sin(2πx)+1 d=1 d=0.1 d=0.005 7 6 5 j(d) 2.5 2 1.5 T(x)=0.5sin(2πx)+1 d=1 d=0.1 d=0.005 T(x) 1 V(x) 4 3 0.01 0.1 1 1 0.8 2 0.6 1 0 0 0.2 0.4 0.6 0.8 1 x 0 0.2 0.4 0.6 0.8 1 x 27