5.0 DESIGN CALCULATIONS

Σχετικά έγγραφα
Design of Self supporting Steel Chimney for

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part :

Structural Design of Raft Foundation

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

MasterSeries MasterPort Lite Sample Output

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

Chapter 7 Transformations of Stress and Strain

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators

Fixed spherical bearing KF 32 N/mm 2 Dimensions and weights acc. to German approval

CONSULTING Engineering Calculation Sheet

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1.

Strain gauge and rosettes

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Approximation of distance between locations on earth given by latitude and longitude

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Consolidated Drained

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Cross sectional area, square inches or square millimeters

LUMINAIRE PHOTOMETRIC TEST REPORT

DISCLAIMER By using the LOGIX Design Manual, in part or in whole, the user accepts the following terms and conditions.

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors (Large Can Type)

MECHANICAL PROPERTIES OF MATERIALS

RECIPROCATING COMPRESSOR CALCULATION SHEET

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

Math 6 SL Probability Distributions Practice Test Mark Scheme

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

STATIC ANALYSIS / STRUCTURAL DESIGN GLASSCON SHADOGLASS LOUVERS SYSTEM

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

moment ENGINEERING + DESIGN Warwick Ave, Suite C5 Fairfax, VA Phone: Web: February 20, 2015

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4.

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Grey Cast Irons. Technical Data

LED Floodlight BLP FL72W01(4500K) V(B) Range: DEG V(B) Interval: 0.5DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

ΙΑΤΡΙΚΟΣ ΕΞΟΠΛΙΣΜΟΣ ΑΝΑΛΩΣΙΜΑ ΕΞΕΤΑΣΤΙΚΟΙ ΦΑΚΟΙ & ΦΩΤΙΣΜΟΣ

Rod End > Spherical Bearings Product Overview

Design Method of Ball Mill by Discrete Element Method

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

ΔΗΛΩΣΗ ΕΠΙΔΟΣΕΩΝ Αρ. HSL-3_B-1109-CPR-0002

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

EVERFINE GONIOPHOTOMETERS SYSTEM TEST REPORT Page 1 Of 9

Analyse af skrå bjælke som UPE200

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Homework 8 Model Solution Section

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram.

LED Flood Light BLP FL48W01. V(B) Range:-80-80DEG V(B) Interval: 5.0DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

LED Flood Light BLP FL16W01. V(B) Range:-80-80DEG V(B) Interval: 5.0DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

LED Flood Light BLP FL36W01. V(B) Range:-80-80DEG V(B) Interval: 5.0DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

Photometric Data of Lamp

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Pipe E235N (St 37.4 NBK) phosphated and oiled

NKT NTC Thermistor. Negative Temperature Coefficient Thermistor FEATURES

Epoxy resin - High performance. Anchor mechanical properties

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Project: Brimsmore, Ye... Job no: C08127 Designed By kristian Checked By Network W Network Design Table for OUTFALL B.SWS

DAFTAR PUSTAKA. SNI 1729:2015. Standard Spesifikasi untuk Bangunan Gedung Baja Struktural. SNI Standard untuk Struktur Beton.

Self-Lubricating Rod End > Spherical Bearings Product Overview

D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL

Spherical Bearings Product Overview

Polymer PTC Resettable Fuse: KRG Series

LED FLOODLIGHT BLP FL12W04 NW CRI>80. V(B) Range:-80-80DEG V(B) Interval: 5.0DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

Hydrologic Process in Wetland

Thin Film Chip Resistors

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

BALL VALVE NP - LEVE 754. Range of application: Temperature range: Perform standard: Order information: Paint: Soft seal Ball valve.

CONTENTS. Examples of Ultimate Limit states. 1. SECT.-001, ULTIMATE LIMIT STATE, Tension Structural design Structural Fire design

Multilayer Chip Inductor

Second Order RLC Filters

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

PRB. Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts

Longitudinal strength standard

EE512: Error Control Coding

Spherical Coordinates

Calculating the propagation delay of coaxial cable

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

is like multiplying by the conversion factor of. Dividing by 2π gives you the

ΕΙΣΑΓΩΓΗ. Ιωάννης ΜΠΑΛΑΦΑΣ 1. Λέξεις κλειδιά: προεντεταμένες γέφυρες, προφίλ, τένοντας, ομοιόμορφη διατομή

St. Louis County Masterplan

2013 REV 01 ELECTRONICS CAPACITORS. DC Applications Metallized Polypropylene Film Self Healing

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

Transcript:

5.0 DESIGN CALCULATIONS Load Data Reference Drawing No. 2-87-010-80926 Foundation loading for steel chimney 1-00-281-53214 Boiler foundation plan sketch : Figure 1 Quantity Unit Dia of Stack, d 6.00 m Dia. of Raft, D 13.00 m Area of Raft, A = 3.14 xdxd/4 132.67 m^2 Section Modulus, z = 3.14xDxDxD/32 215.58 m^3 Height of soil above Raft, h 4.00 m Thickness of the Raft, t 2.00 m Height of pedestal, h1 4.50 m Thickness of pedestal t1 1.00 m Load from chimney Mimimun Dead Load, W1 170.00 ton Maximun Dead Load and Live Load, W2 320.00 ton Wind Load Shear due to wind on main stack, H1 125.00 ton Moment due to wind on main stack, M1 5450.00 ton-m Hence Addition Moment due to shear at founding level, M2 = H1 x (h1+t) 812.50 ton-m Load from Boiler Foundation Dead Load and live(hrsg Foundation) Dead Load + Live Load + Vertical wind Load, W3 = 79.9+26.8+34 140.70 ton Hence moment, M3 = W3 x a 717.57 ton-m where 'a' = 5.1, distance from center line of the stack to central line of HRSG pedestal Wind shear and Thermal Shear = 6.5+16 22.50 Additional Moment, M4 = (6.5+16)xb 78.75 ton-m where 'b' = 3.5, distance from the founding level of HRSG to top of HRSG Pedestal Net Safe Bearing Pressure = S.B.C. 50.00 ton/m^2 Gross Bearing Pressure (DL+LL) = S.B.C. + (1.8x(h+t)) 60.80 ton/m^2 Gross Bearing Pressure (in DL+LL+WL) = S.B.C. + (1.8x(h+t)) 60.80 ton/m^2 No increase in stresses as chimney is a critical structure Weight of pedestal, W5 = 3.14xdxt1xh1 211.95 ton Weight of soil above the raft, W6 = ((3.14x(D^2)/4)-(Area of pedestal)) Xhx unit wt of soil 819.54 ton =(3.14x13^2/4-(3.14x6x1))x4x1.8 Weight of raft, W7 =3.14xD^2/4 x H X uint wt of concrete 663.33 ton W self = W5+W6+W7 1694.82 ton 5

Case 1 : Check for Bearing Pressure in Pure Dead Load Live load Total Axial Weight (gross) Wg = W2+W3+W self 2155.52 ton Total Moment = Mg1 = M2 717.57 ton-m Maximum Base Pressure, q1 = Wg/A + Mg1/z 19.58 ton/m^2< 50 ok Minimum Base Pressure, q2 = Wg/A-Mg1/z 12.92 ton/m^2 > 0 Ok Case 2 : Check for Bearing Pressure in Dead Load+Live Load+Wind Load Total Gross Weight Wg = W2+W3+Wself Total Moment = Mg2 = M1+M2+M3+M4 2155.52 ton 7058.82 ton-m Maximum Base Pressure, q3 = Wg/A + Mg2/z Minimum Base Pressure, q4 = Wg/A-Mg2/z 48.99 ton/m^2 <60.8 OK -16.50 ton/m^2 Modified Base Pressure e = Mg2 / Wg 3.27 m e/ D = 3.28 / 13 = 0.25 Crossponding to e/d, C2 = 3.55 (refer Mark Fintel, Fig 5-14) q5 = Wg / A 16.25 ton/m^2 Modified Base Pressure, q p = C2xq5 57.68 <60.8 ton/m^2 ok Check for overturning : Vertical load V = W1 + W self 1864.82 ton lever arm = D/2 6.50 Moment of Rsistance, MR = 0.9x(V)xD/2 10909.17 Overturning Moment, MO = Mg2 7058.82 Factor of safety F.O.S. 1.55 <1.5 Check for sliding ( µ = 0.5) sliding =(V)xµ/ Η1 7.46 <1.5 Analysis and Design of Raft: Case A : Full Raft with axial laod condition For Bending Moment Calculation in raft, Selfweight and weight above soil not considered Axial load without soil and weight of raft 460.70 ton 4607.00 Kn p = P / A 34.73 Kn/m^2 a= 6.5 β =(c/c of chimney rad,r)/(radius of raft,a) =3/6.5 0.46 Refer table 6.9, Tall chimneys by S.N. Manohar Y2 =-2.52-(8Xln β)-(2.96xβxβ) 3.13 Y3 = Y4 0.00 Y6 =5.48-2.96xβxβ 4.74 Y8-8.00 Y7 =-8XβXβ -1.70 6

Moment calcluation due to axial laod. 1 0.15-171.81-168.12-17.36 0.00 f<b 2 0.31-192.32-177.56-34.73 0.00 f<b 3 0.46-215.79-193.29-52.09 0.00 f<b 4 0.62-74.09-151.46 113.95 0.00 f>b 5 0.77-9.93-117.23 59.90 0.00 f>b 6.5 1.00 5.72-83.76 0.00 0.00 f>b Case B : Full Raft with Moment laod condition Y2 =3/β^2-5.46-0.81β^2 8.45 Y3 = Y4 0.00 Y6 =-5.46-0.81xβxβ -5.63 Y8 12.00 Y7 =3XβXβ 0.64 Refer : Tall chimney by S.N.Manohar TABLE 6.10 Moment calcluation due to Moment laod. When θ is 0 cos 0 = 1 Sin 0 = 0.00 r f Mr Mt Mtor Qr Qt Qtor=1.6 xmtor/b m - Kn-m Kn-m Kn-m Kn Kn Kn 1 0.15-595.57-273.50 0.00-768.30 0.00 0.00 f<b 2 0.31-1223.56-558.02 0.00-824.98 0.00 0.00 f<b 3 0.46-1916.42-864.57 0.00-919.43 0.00 0.00 f<b 4 0.62-724.16-673.16 0.00 899.76 0.00 0.00 f>b 5 0.77-173.43-444.88 0.00 476.84 0.00 0.00 f>b 6.5 1.00-0.10-243.48 0.00-32.59 0.00 0.00 f>b q = M / Z 327.43 Kn/m^2 Total (max at f=β ) Radial Moment Mr Total (max at f=β ) Tengantial Moment Mt -2132.20 Kn-m -1057.87 Kn-m When θ is 45 cos 45 = 0.707 sin 45 = 0.71 Qtor=1.6 r f Mr Mt Mtor Qr Qt xmtor/b m - Kn-m Kn-m Kn-m Kn Kn Kn 1 0.15-421.07-193.36-113.22-543.19 525.38 181.15 f<b 2 0.31-865.06-394.52-230.23-583.26 512.03 368.36 f<b 3 0.46-1354.91-611.25-354.80-650.04 489.77 567.68 f<b 4 0.62-511.98-475.92-347.07 636.13 72.30 555.31 f>b 5 0.77-122.62-314.53-257.51 337.13-146.57 412.02 f>b 6.5 1.00-0.07-172.14-149.68-23.04-353.14 239.49 f>b 7

When θ is 90 cos 90 = 0 sin 90 = 1.00 r f Mr Mt Mtor Qr Qt Qtor=1.6 xmtor/b m - Kn-m Kn-m Kn-m Kn Kn Kn 1 0.15 0.00 0.00-160.14 0.00 743.12 256.23 f<b 2 0.31 0.00 0.00-325.64 0.00 724.23 521.02 f<b 3 0.46 0.00 0.00-501.84 0.00 692.74 802.94 f<b 4 0.62 0.00 0.00-490.90 0.00 102.27 785.44 f>b 5 0.77 0.00 0.00-364.23 0.00-207.31 582.77 f>b 6.5 1.00 0.00 0.00-211.71 0.00-499.49 338.74 f>b Summery at different angle When θ is 0 1 0.15 767.37 441.62 785.67 0.00 2 0.31 1415.88 735.57 859.70 0.00 3 0.46 2132.20 1057.87 971.52 0.00 4 0.62 798.25 824.62 1013.70 0.00 5 0.77 183.36 562.11 536.74 0.00 6.5 1.00 5.82 327.24 32.59 0.00 When θ is 45 1 0.15 706.09 474.70 741.71 706.54 2 0.31 1287.60 802.30 986.35 880.39 3 0.46 1925.49 1008.00 1269.80 1057.45 4 0.62 933.14 974.45 1305.38 627.61 5 0.77 390.06 689.27 809.05 558.59 6.5 1.00 155.47 405.58 262.52 592.63 When θ is 90 1 0.15 331.95 328.26 273.59 999.35 2 0.31 517.95 503.19 555.75 1245.25 3 0.46 717.62 695.13 855.03 1495.68 4 0.62 564.99 642.36 899.39 887.71 5 0.77 374.16 481.46 642.68 790.08 6.5 1.00 217.43 295.47 338.74 838.23 Sample calculation Grade of concrete = M25 Grade Of steel = Fe415 Design Moment and Reinforcment Calculation Dia of bar to be used = 25 r Mr Mu/bd^2 pt min pt ast spacing Provided m Kn-m SP-16 (TABLE 1) mm^2 required 1 767.374 0.318853 0.09 0.12 2280 215.19 200 2 1415.881 0.588316 0.17 0.12 3230 151.90 200 3 2132.205 0.885958 0.25 0.12 4750 103.29 100 4 798.2542 0.331685 0.09 0.12 2280 215.19 200 5 183.3625 0.076189 0.09 0.12 2280 215.19 200 6.5 5.817362 0.002417 0.09 0.12 2280 215.19 200 8

Reinforcment Due to Radial Moment (max at f= 0.5) Mr 2132.20 Kn-m Factored Moment 3198.31 Kn-m Depth of Raft D 2000.00 mm Effective Depth d 1900.00 mm Mu/bd2 0.89 For the Mu/bd2 and fck pt 0.23 Using SP-16 (table-1) Pt Min 0.12 Ast = ptxbxd 4370.00 mm^2 Dia of bar to be used 25.00 Spacing required 112.27 mm Provide 25 mm dia bars @ 100 mm C/C Reinforcment Due to Radial Moment (at f = 0.67) Mr 798.25 Kn-m Factored Moment 1197.38 Kn-m Depth of Raft D 2000.00 mm Effective Depth d 1900.00 mm Mu/bd2 0.33 For the Mu/bd2 and fck pt 0.09 Using SP-16 Pt Min 0.12 Ast = ptxbxd 2280.00 mm^2 Dia of bar to be used 25.00 Spacing required 215.19 mm Provide 25 mm dia bars @ 200 mm C/C Design Moment and Reinforcment Calculation Dia of bar to be used = 25 r Mt Mu/bd^2 pt min pt ast spacing Provided m Kn-m SP-16 (TABLE 1) mm^2 required 1 441.6152 0.183497 0.1 0.12 2280 215.19 200 2 735.575 0.305641 0.1 0.12 2280 215.19 200 3 1057.868 0.439557 0.12 0.12 2280 215.19 200 4 824.6215 0.34264 0.1 0.12 2280 215.19 200 5 562.1095 0.233564 0.1 0.12 2280 215.19 200 6.5 327.2372 0.135971 0.1 0.12 2280 215.19 200 Reinforcment Due to (Max) Tangential Moment Mt 1057.87 Kn-m Factored Moment 1586.80 Kn-m Depth of Raft D 2000.00 mm Effective Depth d 1900.00 mm Mu/bd2 0.44 For the Mu/bd2 and fck pt 0.09 Using SP-16 Pt Min 0.12 Ast = ptxbxd 2280.00 mm^2 Dia of bar to be used 25.00 Spacing required 215.19 mm Provide 25 mm dia bars @ 200 mm C/C 9

Check for One Way Shear :: Shear Force (max at d at any angle ), 1000.00 KN per m length Factored shear force, Vu 1500 KN per m length Calculated Shear Stress 0.789 N/mm2 Min % Of Steel provide 0.258 Shear strength of conc. 0.42 N/mm2 Enhancement of shear strength,2xdxtc/av 0.840 As per clause 40.5.1 Of IS-456 Hence Safe Check for Two-Way Shear :: Max. vertical load on Raft = W2 + W3 Shear Sress Permissible stress 460.70 KN 0.363711 N/mm2.t c 0.25 X fck N/mm 2 1.25 N/mm 2 ok Design of Pedestal Mg2 70588.2 Kn-m Wg 21555.15 kn e = M / W 3.2747719 m r 7 m e / r 0.467825 β 0 µ 0 value of φ 150 ο from chart 7.1 value of C Assume % of reinforcment 3 % Fc= (CW)/( r t (1-p)) 0.84 N/mm^2 <0.38xfck 9.5 ok Fs = (SxmxW)/(r t (1-p) S = C ((cos F) + cos m))/((cos b) - cos f)) 0.0244 Maximum steel stress, Fs Provide 20 mm dia bars @ 150 mm C/C 0.64 N/mm^2 <0.57fy 236.55 ok 10