Markov Processes and Applications

Σχετικά έγγραφα
Markov Processes and Applications

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Discrete-Time Markov Chains

Estimators when the Correlation Coefficient. is Negative

Examples of Cost and Production Functions

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

1. For each of the following power series, find the interval of convergence and the radius of convergence:

α & β spatial orbitals in

Multi-dimensional Central Limit Theorem

Optimal stopping under nonlinear expectation

2 Composition. Invertible Mappings

Multi-dimensional Central Limit Theorem

C.S. 430 Assignment 6, Sample Solutions


Exam Statistics 6 th September 2017 Solution

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

The challenges of non-stable predicates

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Every set of first-order formulas is equivalent to an independent set

Finite Field Problems: Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

ST5224: Advanced Statistical Theory II

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Homework 3 Solutions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Fractional Colorings and Zykov Products of graphs

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Universal Levenshtein Automata. Building and Properties

Ψηφιακή Επεξεργασία Εικόνας

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Statistical Inference I Locally most powerful tests

Μηχανική Μάθηση Hypothesis Testing

Matrices and Determinants

The Simply Typed Lambda Calculus

EE512: Error Control Coding

Areas and Lengths in Polar Coordinates

Uniform Convergence of Fourier Series Michael Taylor

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Math221: HW# 1 solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Section 8.3 Trigonometric Equations

Reminders: linear functions

Concrete Mathematics Exercises from 30 September 2016

Example Sheet 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Homework for 1/27 Due 2/5

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Areas and Lengths in Polar Coordinates

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

A Note on Intuitionistic Fuzzy. Equivalence Relation

Generating Set of the Complete Semigroups of Binary Relations

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Second Order RLC Filters

derivation of the Laplacian from rectangular to spherical coordinates

Inverse trigonometric functions & General Solution of Trigonometric Equations

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Lecture 15 - Root System Axiomatics

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

1. Matrix Algebra and Linear Economic Models

Solutions to Exercise Sheet 5

Homework 4.1 Solutions Math 5110/6830

Srednicki Chapter 55

F19MC2 Solutions 9 Complex Analysis

Degenerate Perturbation Theory

1 Complete Set of Grassmann States

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Lecture 2. Soundness and completeness of propositional logic

Numerical Analysis FMN011

Commutative Monoids in Intuitionistic Fuzzy Sets

Article Multivariate Extended Gamma Distribution

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Notes on the Open Economy

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Bounding Nonsplitting Enumeration Degrees

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

Solve the difference equation

TMA4115 Matematikk 3

Transcript:

Markov rocesses ad Applcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Applcatos Queug theory erformace aalyss ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ)

Dscrete-Tme Markov Chas Books - Itroducto to Stochastc rocesses (Erha Clar), Chap. 5, 6 - Itroducto to robablty Models (Sheldo Ross), Chap. 4 - erformace Aalyss of Commucatos Networks ad Systems (et Va Meghem), Chap. 9, - Elemetary robablty for Applcatos (Rck Durrett), Chap. 5 (http://www.math.corell.edu/~durrett/ep4a/bch5.pdf) - Itroducto to robablty, D. Bertsekas & J. Tstskls, Chap. 6 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 2

INTRODUCTION : th order pdf of some stoc. proc. { X 2 2 3 2 } s gve by f( x, x,..., x ) f( x x, x,..., x ) f( x x, x,..., x )... f( x x ) f( x ) very dffcult to have t geeral If { X If { X } s t t t t t t t t t t t t t a dep. process: t t t f( x, x,..., x ) f( x ) f( x )... f( x ) t t t t t t t 2 } s a process wth dep. cremets: f( x, x,..., x ) f( x ) f( x x )... f( x x ) t t t t t t t t 2 2 Note : Frst order pdf's are suffcet for above specal cases If { X t } s a process whose evoluto beyod t s (probablstcally) completely determed by x ad s dep. of x, t < t, gve x, the: f( x, x,..., x ) f( x x )... f( x t t t t t t 2 2 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 3 t t t x ) f( x ) Ths s a Markov process ( th order pdf smplfed) t t

for all Defto of a Markov rocess (M) A stoch. proc.{ X a Markov rocess (M) ff : f ( xt or f ( x x t t x x t t t ad all t ; t I} that takes values from a set E s called,..., x,..., x < t t t ) ) 2 ( x t f ( x t <... < t x x t t ) ( E ) ( E ad all >. coutable) ucoutable) Notce :The "ext"state x t s dep.of provded that the "preset"s kow. the "past"{ x t,..., x t 2 } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 4

Defto of a Markov Cha (MC) (Dscrete - tme & dscrete - value M) If I s coutable ad E s coutable the a M s called a MC ad s descrbed by the trasto probabltes : p(, ) { X + X }, E (dep. of for a tme - homogeeous MC). Assume E {,,2,...}(state -space of the MC) Trasto matrx : (,) (,) M (,) M (,) (,) (,) s o - egatve, For a gve M M......... (, ) (stoch. matrx) a (, ) (, ) M (, ) M,......... (stochastc matrx) MC may be costructed ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 5

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 6 4444 4 3 444 4 2 44 4 3 4 4 2 ), ( ), ( 2 2 3 2 2 3 2 2 ), ( ), ( ), ( } { through teratos) (geeral 3 : For roof. the trasto matrx of th power the etry of ), the ( s ), ( ;,, ), ( } {,,...,,, ), ( )..., ( ) ( },...,,, { the, }, { ) ( s.t. MF o s a If E l l E l k k k l l l l X X k k k E X X k E N X X X X E X E + + N N k - step trastos : Cha rule : π π π

Chapma Kolmogorov Equatos : From prevous, m+ m (, ) (, k) ( k, ), E k E I order for { X } to be after m+ steps ad startg from, t wll have to be some k after m steps ad move the to the remag steps. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 7

Example : # of successes Beroull process { N ; }, N # of successes trals N Y,, Y dep. Beroull, { Y } p Notce: N N + Y evoluto of { N } beyod + + does ot deped o { N } (gve N ) ad thus { N } s a M.C. N { N, N,..., N} Y { N N, N,..., N} + + q p... p f N +... f ad q p q p N q p... otherwse M Notce: { N } s a specal M.C. whose cremet s dep. both from preset ad past (process wth dep. cremets) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 8

Example : Sum of..d. RV's wth MF { p ; k,,2,...} X Y + Y2 +... + Y k X X + Y + + X { X,..., X} Y { X X,..., X} p + + X Thus { X } s a M.C. wth (, ) { X X } p + p p p2 p3... p p p2... p p... p... M M M M O ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 9

Example : Idepedet trals X { X { X (If, X + }s a π () π () M π () M,...d. wth π ( k) X M.C. π () π () M π () M,..., }, { X + Notce that rows are detcal ad X has all rows detcal the L L L O k X,,2,..., } π ( ) m X m,... are..d.) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ)

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) (double - stochastc matrx) (here) colums matrx) (stoch. rows M.C. }s a {, (modulo 5) },,,, wth { {,,2,3,4} }are..d. :{ 4 3 2 4 3 2 2 4 3 3 2 4 4 3 2 4 3 2 + + + p p p p p p p p p p p p p p p p p p p p p p p p p X Y X X p p p p p Y Y Example

Example : Remag lfetme A equpmet s replaced by a detcal as soo as t fals p r{a ew equp. lasts for k tme uts} k,2,... k X X Z + + remag lfetme of equp. at tme X( ω) f X( ω) ( ω) Z+ ( ω) f X( ω) ( ω) s the lfetme of equp. stalled at tme It s depedet of X, X,..., X X s a M.C. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 2

: (, ) { X X } { X X } + f X { + X } f : (, ) { X X } { Z X } + + Z { + } p + + p p2 p3 p4 L L L L M M M M O ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 3

Theorem : (codtoal dep. of future from past gve preset) Let Y be a bouded fucto of X, X,.... The E{Y X, X,..., X } E{Y X } + roposto : E{ f(x,x,...)x } E{ f(x,x,...)x } + Corollary : f a bouded fucto o E E... Let g() E{ f(x,x,...)x }. The N E{ f(x,x,...)x, X,..., X } g(x ) + ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 4

Stoppg Tmes : revous results derved for fxed tme What f tme s a RV stead? N If are codtoally dep.gve preset property s sad to hold at T. If T f for a RV T s a stoppg tme, the above hold true ( T the evet { T, the past { X m ; m T}ad the future{ X }ca be determed by lookg at X T, m ; m the the strog Markov s a stoppg tme X, X T},..., X ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 5

For ay stoppg tme T : E{ f( X, X,...) X, T} E{ f( X, X,...) X } T T+ T T+ T For g ( ) E{ f( X, X,...) X } E{ f( X, X,...) X ; T} g( X ) T T+ T f am e.g., f f ( a, a,...) E, m N f am E{ f( X, X m,...) X } { X X } (, ) m E{ f( X, X,...) X, T} { X X ; T} T T+ T+ m Strog Markov property at T: m X { X; T} ( X, ) T+ m T ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 6

Vsts to a state X { X ; N } MC, State space E, Trasto matrx. Notato: { A} { A X } ad EY [ ] EY [ X ] Let E, ω Ω ad Defe: N ( ω) total umber of tmes state appears X( ω), X ( ω),. N ( ω ) <, X evetually leaves state ever to retur. N ( ω ), X vsts aga ad aga. Let T( ω), T 2( ω), the successve dces for whch X( ω ). If / the T( ω) T2( ω) T ( ω) L If appears a fte umber of tmes m, the T ( ω) T ( ω) T 2( ω) T ( ω) L m+ m m+ m N, { T ( ω) } s equvalet to appears { X( ω), L, X ( ω)} at least m tmes. T m s a stoppg tme. m ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 7

Example T( ω) 4, T ( ω) 6, T ( ω) 7, T ( ω) 9, 2 3 4 E ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 8

roposto: E, k, m { Tm } T { m+ Tm kt T,, m} { T k} { Tm < } Computato of { T k }. Let Fk(, ) T { k } k Fk (, ) { T } { X } (, ) k 2 Fk (, ) { X, L, X k, X k } { X b} { X, L, X, X X b } b E { } 2 k k { { } } {, L, 2, } X b b E b X X k X k Thus, (, ) k F (, ) k bf (, ) k ( b, ) k 2 b E { } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 9

Example: Let 3 a the trasto matrx Fd f () F (, ), 23,, k k /2 /6 /3 /3 3/5 /5 k. I ths case f s the 3rd colum of matrx. Hece, f() F(, ), f(2) F(2, ) / 3, f(3) F(3, ) / 5 k 2. I ths case F (, ) k b E { } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 2 k k k b E { } b E { } (, b) F ( b, ) f F (2, ) (2, b) F ( b, ) Q f where k F (3, ) k (3, b) F ( b, ) k k Q /2 /6 /3 3/5 After some algebra f /3 f2 /8 f3 /8 f 4 /648 /5 /5 /3 /8 L ad geeral k k 5 Fk(, 3), Fk(2, 3), Fk(3, 3) k 2 3 6 3 k 2 5 6 3

k k 5 Fk(, 3), Fk(2, 3), Fk(3, 3) k 2 3 6 3 k 2 5 6 3 Now we ca state: Startg at state, X ever vsts 3 wth probablty: T { + } Startg at state 2, X frst vsts 3 at k wth probablty: () k Startg at state 2, X ever vsts 3 wth probablty: { } { } ( ) k 3 2 + 2 <+ k 3 6 5 T T Startg at state 3, X ever vsts 3 aga wth probablty: 52 { T + } { T <+ } 3 3 75 3 6 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 2

Now, for every, we defe F(, ) T { <+ } F(, ) k k F(, ) expresses the probablty: startg at the MC wll ever vst state. F(, ) (, ) + bfb (, ) (, ), E b E { } If by N we deote the total umber of vsts to state, the m { } F(, ) F(, ) N m ( ) ad for, { N m} F (, ) m ( ) m F ( F ) ( ) F( ) m 2,,,,, >From the prevous we obta the Corollary: F(, ) < { N <+ } F(, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 22

Now, for every, we defe F(, ) T { <+ } F(, ) k k F(, ) expresses the probablty: startg at the MC wll ever vst state. F(, ) (, ) + bfb (, ) (, ), E b E { } If by N we deote the total umber of vsts to state, the m { } F(, ) F(, ) N m ( ) ad for, { N m} F (, ) m m F(, ) F(, ) ( F(, ) ) m, 2, >From the prevous we obta the Corollary: F(, ) < { N <+ } F(, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 23

Now, for every, we defe F(, ) T { <+ } F(, ) k k F(, ) expresses the probablty: startg at the MC wll ever vst state. F(, ) (, ) + bfb (, ) (, ), E b E { } If by N we deote the total umber of vsts to state, the m { } F(, ) F(, ) N m ( ) ad for, { N m} F (, ) m m F(, ) F(, ) ( F(, ) ) m, 2, >From the prevous we obta the Corollary: F(, ) < { N <+ } F(, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 24

Let R (, ) E [ N ] ( R s called the potetal matrx of X ) The, R(, ) F (, ) R (, ) F(, ) R( ),, ( ) R(, ) F (, ) R(, ) + ( F (, )) Computato of R (, ) frst ad the F(, ) Defe:, k, X( ω) ( k) ( X( ω)), k, X( ω) The, N ( ω ) R (, ) ( ( ω )) X E ( X ) E ( X ) { X } (, ) I matrx otato: from whch we obta 2 2 R I + + + L R R + + L R I RI ( ) ( I R ) I ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 25

Classfcato of states X: MC, wth state space E, trasto matrx T : The tme of frst vst to state N : The total umber of vsts to state Defto State s called recurret f { T < } State s called traset f { T } > A recurret state s called ull f E[ T ] A recurret state s called o-ull f E[ T ]< A recurret state s called perodc wth perod δ, f δ 2 teger for whch { T δ forsome } s the greatest ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 26

If s recurret the startg at the probablty of returg to s. F(, ) R(, ) E [ N ] + { N + } If s traset the there exsts a postve probablty F(, ) returg to. of ever F(, ) < R(, ) E [ N ] < { N < } I ths case R (, ) F (, R ) (, ) < R(, ) < ad sce R (, ) (, ) we coclude that lm (, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 27

Theorem: If traset or recurret ull the E, lm (, ) If recurret o-ull the π( ) lm (, ) > ad E, lm (, ) F (, ) π( ) If perodc wth perod δ, the a retutr to s possble oly at steps umbered δ, 2δ, 3δ,... (, ) { X } > olyf {, δ, 2 δ, } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 28

Recurret o-ull Recurret ull Traset { T < } { T } > E [ ]< T E[ T ] F(, ) R(, ) E [ N ] + { N + } π ( ) lm (, ) > ad E, lm (, ) F(, ) π ( ) F(, ) < R(, ) E [ N ] < { N < } E, lm (, ) A recurret state s called perodc wth perodδ, f δ 2 s the greatest teger for whch { T δ for some } If perodc wth perod δ, the a retur to s possble oly at steps umbered δ, 2δ, 3δ,... (, ) { X } > oly f {, δ, 2 δ, } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 29

We say that state ca be reached from state, f : (, ) >, ff F (, ) > Defto: A set of states s closed f o state outsde t ca be reached from ay state t. A state formg a closed set by tself s called a absorbg state A closed set s called rreducble f o proper subset of t s closed. A MC s called rreducble f ts oly closed set s the set of all states Commets: If s absorbg the (, ). If MC s rreducble the all states ca be reached from each other. If C { c, c2, L} E s a closed set ad Q (, ) c (, c ), c, c C, the Q s a Markov matrx. If ad k the k. To fd the closed set C that cotas we work as follows: Startg wth we clude C all states that ca be reached from : (, ) >. We ext clude C all states k that ca be reached from : (, k ) >. We repeat the prevous step ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 3

Example: MC wth state space E { abcde,,,, } ad trasto matrx 2 2 3 4 4 2 3 3 4 2 4 3 3 3 Commets: Closed sets: { ace,, } ad { abcde,,,, } There are two closed sets. Thus, the MC s ot rreducble. c e ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 3

Example: MC wth state space E { a, b, c, d, e } ad trasto matrx Commets: 2 2 Closed sets: { ace,, } ad { abcde,,,, } 3 4 4 2 3 3 2 2 4 2 4 2 Q 3 3 3 3 3 3 3 3 There are two closed sets. Thus, the MC s ot rreducble. If we delete the 2 d ad 4 th rows we obta the Markov matrx: If we r elabel the states a, 2 c, 3 e, 4 b ad 5 d we get 2 2 2 3 3 3 3 3 3 4 4 4 2 4 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 32

Lemma If recurret ad k k. Thus, Fk (, ). roof: If k the k s reached wthout returg to wth probablty a. Oce k s reached, the probablty that s ever vsted aga s F( k, ). Hece, F(, ) a( F( k, )) But s recurret, so that F(, ) F( k, ) As a result: If k but k /, the must be traset. Theorem: From recurret states oly recurret states ca be reached. Theorem: I a Marcov cha the recurret states ca be dvded a uque maer, to rreducble closed sets C, C 2,, ad after a approprate arragemet: L 2 L L 3 L L L O M Q Q2 Q3 L Q ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 33

Theorem: Let X a rreducble MC. The, oe of the followg holds: All states are traset. All states are recurret ull All states are recurret o-ull Ether all aperodc or f oe s perodc wth perod δ, all are perodc wth the same perod. roof: Sce X s rreducble the k ad k, whch meas that rs, : r s (, k ) > ad ( k, ) >. ck the smallest rs, ad let β r s (, k ) ( k, ). If k recurret recurret. If k traset traset. (If t was recurret the k would be recurret) m If k recurret ull the ( k, k ) as m. But + r+ s ( k, k) β (, ) (, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 34

Corollary: If C rreducble closed set of ftely may states, the / recurret ull states. roof: If oe s recurret ull the all states are recurret ull. Thus, lm (, ),, C. But, C,, (, ) lm (, ) C Because, we have fte umber of states lm (, ) lm (, ) C Corollary: If C s a rreducble closed set wth ftely may states the there are o traset states C C ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 35

Algorthm - Fte umber of states Idetfy rreducble closed sets. All states belogg to a rreducble closed set are recurret postve The rest of the states are traset erodcty s checked to each rreducble set ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 36

Example: The rreducble closed sets are {, 3}, {2, 7, 9} ad {6}. The states {4, 5, 8, } are traset. If we relabel the states we obta 2 2 2 3 3 3 4 4 3 3 3 4 4 4 4 3 3 3 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 37

Example: Let see N the umber of successes the frst Beroull trals. As we have p + (, ) { N+ N } q otherwse Thus, q p L q p L q L M M M O we have + but + /. Ths meas that s ot recurret. Sce the MC s rreducble all states are traset. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 38

Example: Remag lfetme X( ω) X( ω) Remember: X + ( ω) Z+ ( ω) X( ω) from whch we obta: (, ) { X+ X } { X X } (, ) { X X } { Z X } + + { Z + } p + + p p2 p3 L L L L M M M O ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 39

p p2 p3 L L L L M M M O >From state we reach state oe step. From we ca reach, 2,...,,. Thus, all states ca be reached from each other, whch meas that the MC s rreducble. Sce, (, ) > the MC s aperodc. Retur to state occurs f the lfetme s fte: p F(, ) p Sce state s recurret, all states are recurret. If the expected lfetme: p + the state s ull ad all states are recurret ull. If the expected lfetme: p < the state s o-ull ad all states are recurret o-ull. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 4

Algorthm - Ifte umber of states Theorem: Let X a rreducble MC, ad cosder the system of lear equatos: ν ( ) ν ( ) (, ), E The all states are recurret o-ull ff there exsts a soluto ν wth ν ( ) E E Theorem: Let X a rreducble MC wth trasto matrx, ad let Q be the matrx obtaed from by deletg the k -row ad k -colum for some k E. The all states are recurret f ad oly f the oly soluto of h ( ) Q (, h ) ( ), h ( ), E E s h () for all E. E E {} k. Use frst theorem to determe whether all states are recurret o-ull or ot. I the latter case, use the secod theorem to determe whether the states are traset or ot. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 4

Example: Radom walks. L q p L q p L M M M M O All states ca be reached from each other, ad thus the cha s rreducble. A retur to state ca occur oly at steps umbered 2,4,6,... Therefore, state s perodc wth perod δ 2. Sce X s rreducble all states are perodc wth perod 2. Ether all states are recurret ull, or all are recurret o-ull, or all the states are traset. Check for a soluto of ν ν. ν q ν ν ν + q ν 2 ν 2 pν + q ν 3 ν 3 pν 2 + q ν 4 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 42

Hece, Ay soluto s of the form p q, the / < If < pq ad ν ν ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 43 ν ν ν p 2 ν 2 q q q ν 3 ( ) 2 p 2 p ν p 3ν q q q q p ν ν, 2,, q q p 2q ν + ν ν q q q p If we choose ν q p the ν 2q ad p, 2 q ν ( ) p p, 2q q q I ths case all states are recurret o ull q

If p > q ether all states are recurret ull or all states are traset. Cosder the matrx p L q p L Q q p L M M M M O The equato h Qh gves ( h h() ) h q q q + + L + + h p p p + If p q the h h for all ad the oly way to have h for all s by choosg h whch mples h that s all states are recurret ull. If p > q, the choosg h ( q/ p ), we get q h p whch also satsfes h. I ths case all states are traset. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 44

Calculato of R ad F R (, ) E[ N] Expected umber of vsts to state. F(, ) The probablty of ever reachg state startg at. Recurret state: F(, ) R(, ) R (, ) F(, ) R(, ) R (, ) F (, ) + F (, ) > Traset / Recurret state: F (, ) R (, ), Traset Let D { the traset states }, Q (, ) (, ), S (, ) R (, ),, D. The m K m K L Q Lm Q m Hece, m K m m 2 + + + m L m m m Q R S Q I Q Q ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 45 L

Computato of S S 2 I + Q+ Q + L 2 SQ QS Q+ Q + L S I ( I Q) S I, SI ( Q) I roposto: If there are ftely may traset states S ( I Q) Whe the set D of traset states s fte, t s possble to have more tha oe soluto to the system. Theorem: S s the mmal soluto of ( I Q) Y I, Y Theorem: S s the uque soluto of ( I Q) Y I f ad oly f the oly bouded soluto of h Qh s h, or equvaletly h Qh, h h ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 46

Example: Let X a MC wth state space E {2345678},,,,,,, 4. 3. 3... 6. 4 5. 5.... 8. 2.... 4.. 6. 4 4 2........ 3. 6... {23},, are recurret postve aperodc. {4, 5} are recurret postve aperodc. {6, 78}, are traset 4. 6.. 6. 6.. Q.. 2. S ( I Q).. 2. 6... 6... ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 47

recurret, ca be reached from traset, recurret recurret, caot be reached from, traset recurret traset recurret traset R 25 75 5 66 66 66 5 75 5 66 66 66 75 45 75 66 66 66 S ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 48

Computato of F(, ), recurret belogg to the same rreducble closed set F (, ), recurret belogg to dfferet rreducble closed sets F (, ), traset The R (, ) < ad R (, ) F(, ), F(, ) R(, ) R(, ) traset, recurret???? Lemma: If C s rreducble closed set of recurret states, the for ay traset state : F(, ) F(, k) for all, k C. roof: For k, C F( k, ) Fk (, ). Thus, oce the cha reaches ay oe of the states of C, t also vsts all the other states. Hece, F(, ) F(, k) s the probablty of eterg the set C from. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 49

Let 2 3 O Q Q2 Q3 Q Lump all states of C together to make oe absorbg state: ˆ, b () (, k), D O k C b b2 b3 bm Q L The probablty of ever reachg the absorbg state from the traset state by the cha wth the trasto matrx ˆ s the same as that of ever reachg ˆ I, B b L bm, B(, ) ( k) ı D,, B Q k C C from. I 2 ˆ, ( + + + L + ) B Q B I Q Q Q B B ( ), s the probablty that startg from, the cha eters the recurret class C ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 5

Defe: k k G lm B Q B SB G (, ) s the probablty of ever reachg the set C from the traset state : ( F(, ) ) roposto: Let Q the matrx obtaed from by deletg all the rows ad colums correspodg to the recurret states, ad let B be defed as prevously, for each traset ad recurret class C. Compute S Compute G SB G (, ) Fk (, ), k C. If there s oly oe recurret class ad ftely may traset states, the thgs are dfferet. I ths case, t ca be proved that: G F(, ), C ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 5

Example: Let X a MC wth state space E {2345678},,,,,,, 4. 3. 3... 6. 4 5. 5.... 8. 2..... 4. 6. 4. 4.... 2... 3. 6... ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 52

, recurret belogg to the same rreducble closed set, recurret belogg to dfferet rreducble closed sets recurret traset recurret traset F. 472.. 2 2 2 2... 6. 6. 2. traset, recurret, traset F(, ), R(, ) R (, ) F(, ) R(, ) oe (reachable) recurret class ad ftely may traset states ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 53

Example: 5. 5. 8. 2.. 4. 6. ˆ.... 5. 3.... 2. 2. 2. 4... 2. 2.. 3....... 2. 4. Thus, 7.. 5. 25. S ( I Q) ad F. 2 6. 5. 75. 2. 2. 8. 8. 8. 5. 25.. 5..2 8. 3 7 G S B 5. 75. 2. 2. 4..6 3 4. 4. 6. 6. 6. 3 7 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 54

Recurret states ad Lmtg probabltes Cosder oly a rreducble set of states. Theorem: Suppose X s rreducble ad aperodc. The all states are recurret oull f ad oly f π( ) π( ) (, ), E, π( ) E E has a soluto π. If there exsts a soluto π, the t s strctly postve, there are o other solutos, ad we have π ( ) lm (, ),, E Corollary: If X a rreducble aperodc MC wth ftely may states (o-ull states, o traset states), the π π, π has a uque soluto. The soluto π s strctly postve, ad π ( ) lm (, ),,. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 55

A probablty dstrbuto π whch satsfes dstrbuto for X. π π, s called a varat If π s the tal dstrbuto of X, that s, { X } π ( ), E the { X } π() (, ) π( ), for ay E roof: π π π L π 2 Algorthm: for fdg lm (, ) Cosder the rreducble closed set cotag Solve for π ( ). Thus, we fd lm (, ) For every (ot ecessarly E) lm (, ) F (, ) lm (, ) Compute F(, ) frst. The, fd lm ( ), ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 56

Example: E{, 2, 3}, 3. 5. 2. 6.. 4.. 4.. π () π(). 3 + π(2). 6 π π π(2) π(). 5 + + π(3). 4 π π(3) π(). 2 + π(2). 4 + π(3). 6 System s Soluto: 6 7 23 23 23 6 7 6 7 π lm ( ), 23 23 23 23 23 23 6 7 23 23 23 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 57

Example: E{, 2, 3, 4, 5, 6, 7}, 2. 8. 7. 3. 3. 5. 2. 6.. 4.. 4. 6.... 2. 2. 3....... 2. 4. 3. 5. 2. 2. 8. 7 8 6 7 π 2 6 4 π2 7 3, 5 5..... 23 23 23. 4.. 6 F(6), L F(65), 2. 2. 8. 8. 8. F(7), F(75), 4. 4. 6. 6. 6. L ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 58

Thus, 7 8 5 5 7 8 5 5 6 7 23 23 23 6 7 lm 23 23 23 6 7 23 23 23 4. 6. 48. 56. 8.. 5 5 23 23 23 28. 32. 36. 42. 6.. 5 5 23 23 23 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 59

Example: q p L ( X rreducble aperodc (sce state s q p Radom walks: L aperodc)) q p L M M M M O p π q π πq+ πq 2 p p π 2 p 2q π 2 p q π π π + π / 2 p p q q π 2 π2 πp+ π3q L q q 2 2 3 p p p M M π 3 / q 2 3 q q q M M If p If p q: o soluto of π π, π p p < q : lm (, ) ( q)( q) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 6

Example: Remag lfetme p p2 p3 L L L M M M O Thus, π πp+ π ν π π πp2 + + π 2 ν p π π p + + π ν p p M M M M 2 3 3 2 2 ν p p2 p3 p2 p3 p3 p + 2p 2 + 3p 3 + L m ( + + + L) + ( + + L) + ( + L) + L m E[ Z ] s the expected lfetme. If m the all states are recurret ull ad lm (, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 6

Iterpretato of Lmtg robabltes roposto: Let be a aperodc recurret o-ull state, ad let m( ) be the expected tme betwee two returs to. The, π ( ) lm (, ) m( ) The lmtg probablty π ( ) of beg state s equal to the rate at whch s vsted. roposto: Let be a aperodc recurret o-ull ad let π ( ) defed as prevously. The, for almost all ω Ω lm ( X m( ω)) π( ) +. If f s a bouded fucto o E, the m f ( X ) f( ) ( X ) m m m E m Corollary: X rreducble recurret MC, wth lmtg probablty π. The, for ay bouded fucto f o E : lm f ( Xm) π f, π f π( ) f( ) + m E ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 62

Smlar results hold for expectatos Corollary: Suppose X s a rreducble recurret MC wth lmtg dstrbuto π. The for ay bouded fucto f o E lm E[ f ( X m)] π f + m depedet of. If f( ) s the reward receved wheever X s, the both the expected average reward the log ru ad the actual average reward the log ru coverge to the costat π f. The rato of the total reward receved durg the steps,,, by usg fucto f to the correspodg amout by usg fucto g s lm m m f( X ) m g( X ) m π f π g The same holds eve the case that X s oly recurret (ca be ull or perodc or both) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 63

Theorem: Let X be a rreducble recurret cha wth trasto matrx. The, the system ν ν has a strctly postve soluto; ay other soluto s a costat multple of that oe. Theorem: Suppose X s rreducble recurret, ad let ν be a soluto of ν ν. The for ay two fuctos f ad g o E for whch the two sums ν f ν() f(), ν g ν() g() E coverge absolutely ad at least oe s ot zero we have lm m m depedetly of, E. Moreover we also have for almost all ω Ω lm m m E[ f( X )] m E[ g( X )] m f( X ( ω)) m g( X ( ω)) m E ν f ν g ν f ν g ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 64

Ay o-egatve soluto of ν ν s called a varat measure of X. Commets: Ay rreducble recurret cha X has a varat measure, ad ths s uque up to a multplcato by a costat. Furthermore, f X s also o-ull, the ν ν ( ) s fte, ad ν s a costat multple of the lmtg dstrbuto π satsfyg π π, π The exstece of a varat measure ν for X does ot mply that X recurret. For f, g ad k lm ( ) ( ) ( X ) ν ( ) E m k X m ν k E m m ν ( k ) s the rato of the expected umber of vsts to k durg the frst steps to ν ( ) the expected umber of returs to durg the same perod as ν ( k ) s the expected umber of vsts to k betwee two vsts to state ν ( ) s ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 65

erodc States It s suffcet to cosder oly a rreducble MC wth perodc recurret states. Lemma: Let X be a rreducble MC wth recurret perodc states wth perod δ. The, the states ca be dvded to δ dsot sets B, B 2,, B δ such that (, ) uless B, B, or B, B, or L B, B. 2 2 3 δ ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 66

Example: X MC wth E {234567},,,,,, 2 4 4 2 3 3 2 3 3 2 2 3 4 4 2 2 3 4 4 All states are perodc wth perod 3. The sets are B {, 2}, B 2 {345},, ad B 3 {6, 7}. >From B oe step the MC reaches B 2, two steps B 3 ad three steps B. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 67

Note: 23 25 7 2 48 48 92 92 7 29 43 8 8 72 72 2 4 3 9 3 3 36 36 36 3 5 9 3 49, 8 8 48 32 96 7 9 3 7 3 6 6 32 64 64 5 57 3 2 8 24 288 288 3 9 8 8 6 6 92 92 2 3 3, 2 Cha correspodg to has three closed sets B, B 2, B 3 ad each oe of these s rreducble, recurret ad aperodc. The prevous lmtg theory apples to compute lm m, m lm m, m 2 lm m separately. m 3 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 68 3

Theorem: Let the trasto matrx of a rreducble MC wth recurret perodc states of perod δ, ad let B, B 2, B δ be as prevously. The, the MC wth trasto matrx δ, the classes B, B 2, B δ are rreducble closed sets of aperodc states. Commets: If a 2 δ, a(, ) (, ),, Ba O δ B, the { X B }, b a+ m(mod δ ) m b (, ) does ot have a lmt as except whe all the states are ull ( whch case (, ),,, ) δ + m The lmts (, ) exst as, but are depedet o the tal state. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 69

Theorem: Let ad B a as prevously ad suppose that the cha s o-ull. The, for ay m {,, δ, } δ + m π ( ) Ba, Bb, b a+ m(mod δ ) lm (, ) otherwse The probabltes π ( ), E form the uque soluto of π ( ) π() (, ), π() δ E E ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 7

5. 5. 4. 6. Example: Let X be a MC wth state space E {2345},,,,,.. 8.. 2.... The cha s rreducble, recurret o-ull perodc wth perod δ 2. 2 4. 5.. 32. 6. 8.... 4. 6. 4. 6. ( 32 6 8) π ( 4 6) π...,.. 2 32. 6. 8. 32. 6. 8. 2 lm 32. 6. 8. 4. 6. 4. 6. 4. 6. 4. 6... 32. 6. 8. 32. 6. 8. 2 lm + 4 6 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 7

Example: Radom Walks ( p < q ) q p q p O O Cyclc Classes B {24,,, }, B 2 {, 3, 5, } Ivarat soluto ν ν p p ν, ν2, ν 2 4, 2 q q 2 4 p p ν, ν3, ν 3 5, 5 q q q Normalze: ν L Multply each term by. ( ν 2 2 p p 2 + + + + 2 + q q q q p p q q p q 3 p p p,,, ( )(, q 2, 4, q q ) 2 4 p p p,,, ( )(, q q 3, 5, q q ) ( π ) π2 π4 ) ( π π π ) 3 5 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 72

Hece, 3 p p L 2 4 q q 2 p L 3 q q 2 p 3 lm p p q L 2 4 q q 2 p L 3 q q M M M M M O 2 p L 3 q q 3 p p L 2 4 q q 2+ p 2 lm p q L 3 q q 3 p p L 2 4 q q M M M M M O ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 73

Traset States If a MC has oly ftely may traset states, the t wll evetually leave the set of traset states ever to retur. If there are ftely may traset states, t s possble for the cha to rema the set of traset states forever. Example: p p p p p p p p p 2 3 L L 2 L p L M M M M O All states are traset If tal state s, the the cha stays forever the set {, +, + 2, }. As, X ( ω) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 74

Let A E, Q the matrx obtaed from by deletg all the rows ad colums correspodg to states whch are ot A. The, for, A Q (, ) L Q (, ) Q (, ) L Q (, ) { X A, L, X A, X } A A 2 Q (, ) { X A, L, X A X A}, A The evet { X A X,, + A} s a subset of { X A X,, A}, therefore Q (, ) Q + (, ) A A Let f () lm Q (, ), A A f () s the probablty that startg at A, the cha stays the set A forever. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 75

roposto: The fucto f s the maxmal soluto of the system h Qh, h Ether f or sup f ( A ) A applcato of the prevous proposto was gve a theorem o the classfcato of states: Theorem: Let X a rreducble MC wth trasto matrx, ad let Q be the matrx obtaed from by deletg the k -row ad k -colum for some k E. The all states are recurret f ad oly f the oly soluto of h () Q (, h ) ( ), h (), E E s h () for all E. E E {} k. roof: Fx a pertcular state ad ame t. Sce X s rreducble t s possble to go from to some A E {}. If the probablty f () of remag A forever s f() for all A, the wth probablty, the cha wll leave A ad eter aga. Hece, f the oly soluto of the system s h, the state s recurret, ad that tur mples that all states are recurret. Coversely, f all states are recurret, the the probablty of remag the set A forever must be zero, sce wll be reached wth probablty oe from ay state A ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 76

Example: (Radom Walk) Q p q p q p O If p > q all states are traset. q f (), 23,,, p Ths s the maxmal soluto sce sup f( ). Iterpretato: Startg at a state k (e.g. k 7 ) the probablty of stayg forever wth the set q,,, s equal to ( ) 7 {23 }. p If k > k, the probablty of remag {23,,, } s greater. From the shape of : the restrcto of to the set { kk, +, } s the same as the matrx Q. Hece, for all k {23,,, } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 77 q k+ { X k, X2 k, } p +

For ay subset A of E, let f () the probablty of remag forever A gve the A tal state A. The, If A s a rreducble recurret class, f A. If A s a proper subset of a rreducble recurret class, f A. If A s a fte set of traset states, f A. If A s a fte set of traset states, the ether f A or f A. I the latter case the cha travels through a sequece of sets ( A A2 A3L) to fte. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 78