ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ

Σχετικά έγγραφα
ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ (version ) ΘΕΩΡΙΑ. ˆ x y. xο ˆ y το μέτρο του τόξου ΑΒ.

Εφαρμογή 1 η σχολικό

Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 41. Ύλη: Τρίγωνα

β. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση.

Τάξη A Μάθημα: Γεωμετρία

ΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες.

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΕ = ΑΓ από τα δεδομένα ΒΑΕ=Α+ΓΑΕ=Α+ΒΑ = ο φυλλάδιο ΛΥΣΕΙΣ (Version )

ΑΠΟΔΕΙΚΤΙΚΕΣ (Version )

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες


ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

3o ΚΕΦΑΛΑΙΟ : Τρίγωνα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

3.12 Τριγωνική ανισότητα (ΛΥΣΕΙΣ) version

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

Προτεινόμενες ασκήσεις για μελέτη

Αν η διάμεσος ενός τριγώνου ισούται με το μισό της πλευράς στην οποία αντιστοιχεί, τότε το τρίγωνο είναι ορθογώνιο με υποτείνουσα την πλευρά αυτή.

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ. Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο,

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

ΘΕΜΑ Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως Σ (σωστή) ή Λ (λανθασμένη)

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος.

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

14ο Λύκειο Περιστερίου Κριτήριο αξιολόγησης στα κριτήρια ισότητας τριγώνων Ομάδα:Α. Όνομα:..Επώνυμο:.ημ/νία:

Ορθογώνιο (version )

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΑΓ=ΑΔ(υπόθεση) ΒΔ = ΓΕ υποθεση

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 31. Ύλη: Τρίγωνα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = ˆ ˆ 180 Γ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Ασκήσεις σχολικού βιβλίου σελίδας 48. Ερωτήσεις κατανόησης

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. Α και Β Γενικού Λυκείου. ε 3. ε 2. Γ ε 1

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας.


ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. ΘΕΜΑ 3 ο

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version )

Κόλλιας Σταύρος 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ

2ηέκδοση 20Ιανουαρίου2015

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

Τρίγωνα. Απέναντι από την Α γωνία είναι η α πλευρά, απέναντι από τη Β γωνία είναι η β πλευρά, και απέναντι από τη Γ γωνία είναι η γ πλευρά.

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 6/ 11/ 2016

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

Ευκλείδεια Γεωμετρία

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο 1.1 Γ ΓΥΜΝΑΣΙΟΥ

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΙΟΥΝΙΟΣ 2016 (version ΤΕΛΙΚΟ)

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

Transcript:

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ 05-6 (version 6--05) Σημειώστε με μονές, διπλές ή και τριπλές γραμμούλες τα κατάλληλα ίσα κύρια στοιχεία ώστε τα τρίγωνα αυτά να είναι ίσα σύμφωνα με καθένα από τα 3 κριτήρια ισότητας τριγώνων. ΛΥΣΗ ΠΓΠ ΓΠΓ ΠΠΠ Σημειώστε με μονές, διπλές γραμμούλες τα ίσα στοιχεία ώστε τα τρίγωνα αυτά να είναι ίσα σύμφωνα με καθένα από τα κριτήρια ισότητας ορθογωνίων τριγώνων Σημειώσεις μελέτης ΔΙΑΓΩΝΙΣΜΑ 06 new.docx Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr

Τι λέγεται γεωμετρικός τόπος; Γεωμετρικός τόπος λέγεται το σύνολο όλων των σημείων του επιπέδου που έχουν μια (κοινή) χαρακτηριστική ιδιότητα i) Τι λέγεται επίκεντρη γωνία και τι αντίστοιχο τόξο της; i) Mια γωνία λέγεται επίκεντρη, όταν η κορυφή της είναι το κέντρο ενός κύκλου. To τόξο του κύκλου που: α) έχει άκρα τα σημεία τομής των πλευρών της γωνίας με τον κύκλο και β) περιέχεται στο εσωτερικό της γωνίας λέγεται αντίστοιχο τόξο της επίκεντρης γωνίας Επίσης λέμε ότι η επίκεντρη γωνία ΑΟΒ βαίνει στο τόξο ΑΓΒ. Σημείωση: Το σημείο Γ έχει τοποθετηθεί για να καθορίζεται σε ποιό από τα δύο τόξα που ορίζουν στον κύκλο τα σημεία Α και Β αναφερόμαστε. ii) Αν ΑΟΒ = ΟΕ τότε τι συμπεραίνετε για τα τόξα ΑΓΒ και ΖΕ ; ΑΓΒ = ΖΕ Σημειώσεις μελέτης ΔΙΑΓΩΝΙΣΜΑ 06 new.docx Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr

iii) Στο διπλανό σχήμα οι ΔΒ και ΕΑ είναι διάμετροι του κύκλου.τι συμπεραίνετε για τα τόξα ΑΓΒ και ΖΕ ; Εξηγείστε: Oι επίκεντρες γωνίες ΑΟΒ και ΟΕ είναι ίσες ως κατακορυφήν.επομένως και τα αντίστοιχα τόξα τους θα είναι ίσα δηλαδή ΑΓΒ = ΖΕ iii) Στο διπλανό σχήμα οι ΔΒ και ΕΒ είναι χορδές του κύκλου. Μπορούμε να συμπεράνουμε ότι ΑΒ = Ε ; Δικαιολογείστε. Απάντηση Οχι, γιατί ναί μεν οι γωνίες Κ =Κ ως κατακορυφήν, αλλά δεν είναι επίκεντρες ώστε να μπορώ να συμπεράνω την ισότητα των αντίστοιχων τόξων τους. Ποιά είναι η χαρακτηριστική ιδιότητα των σημείων της μεσοκαθέτου ενός ευθυγράμμου τμήματος; (κάντε πρόχειρο σχήμα) Τα σημεία της μεσοκαθέτου ενός ευθυγράμμου τμήματος έχουν την ιδιότητα να ισαπέχουν από τα άκρα του ευθυγράμμου τμήματος. Ποιά είναι η χαρακτηριστική ιδιότητα των σημείων της διχοτόμου μιας γωνίας; (κάντε πρόχειρο σχήμα) Απάντηση Τα σημεία της διχοτόμου μιας γωνίας ισαπέχουν από τις πλευρές τις γωνίας. Σημειώσεις μελέτης ΔΙΑΓΩΝΙΣΜΑ 06 new.docx Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 3

α) Πως ορίζεται το τόξο μοίρας (το οποίο χρησιμοποιούμε ως μονάδα μέτρησης τόξων); β) Πως ορίζεται το μέτρο μιας γωνίας; α) To τόξο μιας μοίρας ορίζεται ως το 360 του τόξου ενός κύκλου και συμβολίζεται με. β) Θεωρούμε μια γωνία x y Ο που την καθιστούμε επίκεντρη σε έναν κύκλο (, ρ ) τόξο στο οποίο βαίνει.ορίζουμε ως μέτρο της γωνίας Το μέτρο της Ο το συμβολίζουμε με ( x y) x y Ο ή απλά με xο y. xο y το μέτρο του τόξου ΑΒ. Ο και έστω ΑΒ το Στο διπλανό σχήμα βρείτε το μέτρο του τόξου ΑΒ και το μέτρο της γωνίας Ο. ΑΒ = 45 Ο = 80 Σημειώσεις μελέτης ΔΙΑΓΩΝΙΣΜΑ 06 new.docx Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 4

Βρείτε αν οι παρακάτω προτάσεις είναι σωστές ή λάθος και σημειώστε στο αντίστοιχο τετράγωνο. Δύο τρίγωνα που έχουν τις τρείς γωνίες τους ίσες μία προς μία είναι ίσα.αν τα τρίγωνα ΑΒΓ και ΔΕΖ έχουν ΑΒ=ΔΕ, ΒΓ=ΕΖ και Β=Ε τότε είναι ίσα 3.Κάθε ύψος ενός ισοσκελούς τριγώνου είναι διχοτόμος και διάμεσος 4.Ολα τα σημεία της διαμέσου ενός τριγώνου ισαπέχουν από τα άκρα της αντίστοιχης πλευράς 5. Δύο χορδές ενός κύκλου είναι ίσες αν και μόνο αν τα αποστήματά τους είναι ίσα 6. Δύο κατακορυφήν γωνίες είναι ίσες 7. To μέσο μιας χορδής, το μέσο του αντίστοιχου τόξου της και το κέντρο του κύκλου είναι σημεία συνευθειακά. ΣΩΣΤΟ ΣΩΣΤΟ ΣΩΣΤΟ ΣΩΣΤΟ ΣΩΣΤΟ ΛΑΘΟΣ ΛΑΘΟΣ Σημειώσεις μελέτης ΔΙΑΓΩΝΙΣΜΑ 06 new.docx Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 5

3.3-3.4 Εφαρμογή η Θεωρούμε γωνία x Ο y και δύο κύκλους (Ο,ρ), (Ο, R) με ρ<r. Αν ο πρώτος κύκλος τέμνει τις πλευρές Οx, Oy στα Α, Β ο δεύτερος στα Γ, Δ και Μ είναι το σημείο τομής των ΑΔ, ΒΓ να αποδειχθεί ότι: i) Τα τρίγωνα ΟΑΔ και ΟΒΓ είναι ίσα ii) τα τρίγωνα ΜΑΓ και ΜΒΔ είναι ίσα iii) τα τρίγωνα ΟΑΜ και ΟΒΜ είναι ίσα iv) η ΟΜ είναι διχοτόμος της xoy. Παρατήρηση: Σε κάθε σύγκριση τριγώνων να γράφετε τις ισότητες όλων των αντίστοιχων στοιχείων που μας δίνει. i) Τα τρίγωνα ΟΑΔ και ΟΒΓ έχουν. ΟΑ=ΟΒ (ως ακτίνες του κύκλου (Ο,ρ)). ΟΔ=ΟΓ (ως ακτίνες του κύκλου (Ο, R)) 3. Ο κοινή Επομένως σύμφωνα με το κριτήριο ισότητας Π-Γ-Π είναι ίσα και επομένως θα έχουν και τα υπόλοιπα αντίστοιχα στοιχεία τους ίσα δηλαδή: 4. ΑΔ=ΒΓ 5. =Γ 6. Α = Β ii) Τα τρίγωνα ΜΑΓ και ΜΒΔ έχουν:. ΑΓ=ΟΓ-ΟΑ=ΟΔ-ΟΒ=ΔΒ =Γ από το i). ΛΥΣΗ: 3. i) 80 80 Α = Α = Β =Β Επομένως σύμφωνα με το κριτήριο ισότητας Π-Γ-Π είναι ίσα και επομένως θα έχουν και τα υπόλοιπα αντίστοιχα στοιχεία τους είσα δηλαδή: 4. ΑΜ=ΒΜ 5. ΜΓ=ΜΔ 6. ΑΜΓ = ΒΜ (που έτσι κι αλλιώς είναι ίσες ως κατακορυφήν) Σημειώσεις μελέτης ΔΙΑΓΩΝΙΣΜΑ 06 new.docx Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 6

iii) Τα τρίγωνα ΟΑΜ και ΟΒΜ είναι ίσα γιατί έχουν:. ΟΑ=ΟΒ (ως ακτίνες του κύκλου (Ο,ρ)). ΟΜ κοινή 3. ΑΜ=ΒΜ (από το ερώτημα ii) Επομένως σύμφωνα με το κριτήριο ισότητας Π-Π-Π είναι ίσα και επομένως θα έχουν και τα υπόλοιπα αντίστοιχα στοιχεία τους είσα δηλαδή: 4. Ο =Ο 5. Μ =Μ 6. ΟΑΜ = ΟΒΜ iv) Από την Ο =Ο προκύπτει ότι η ΟΜ είναι διχοτόμος της γωνίας xο y. Σημειώσεις μελέτης ΔΙΑΓΩΝΙΣΜΑ 06 new.docx Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 7

Σημείωση: Στην πιο κάτω άσκηση δεν είναι απαραίτητο να μάθετε και να γράψετε την σκέψη.την αφήνω όμως μήπως βοηθήσει να καταλάβουμε πως μπορούμε να λύσουμε αυτή ή παρόμοιες ασκήσεις Α. Να αποδείξετε ότι αν σε δύο τρίγωνα ΑΒΓ και ΑΒΓ είναι α = α, υα = υ α, και µ α = µ α, τότε τα τρίγωνα είναι ίσα. Δηλαδή αν δύο τρίγωνα έχουν μια πλευρά του ενός ίση με μια πλευρά του άλλου και τα ύψη και τις διαμέσους που αντιστοιχούν σε αυτές τις ίσες πλευρές αντιστοίχως ίσες τότε τα τρίγωνα είναι ίσα. Παρατήρηση: Σε κάθε σύγκριση τριγώνων να γράφετε τις ισότητες όλων των αντίστοιχων στοιχείων που μας δίνει. ΛΥΣΗ: Σκέψη: Και τα τρία κριτήρια ισότητας τριγώνων θέλουν ισότητα τριών κύριων στοιχείων των προς σύγκριση τριγώνων.από τα δεδομένα έχω μόνο ότι ΒΓ = Β Γ, οπότε θα προσπαθήσω να βρώ και ισότητα επιπλέον πλευρών και γωνιών από σύγκριση άλλων τριγώνων.ας θυμηθούμε εδώ το σχόλιο της σελ 38 του σχολικού ότι «η ισότητα τριγώνων είναι η βασική μέθοδος για την απόδειξη της ισότητας τμημάτων ή γωνιών» Δεδομένου ότι Α = Α και ΑΜ = Α Μ οδηγούμαστε σχεδόν αυτονόητα στην σύγκριση των ορθογωνίων τριγώνων ΔΑΜ και ΑΜ. Συγκρίνουμε τα ορθογώνια τρίγωνα ΔΑΜ και ΑΜ.Αυτά έχουν: i) Α = Α ii) ΑΜ = Α Μ Οπότε από το 3.6 Θεώρημα ΙΙ «Αν δύο ορθογώνια τρίγωνα έχουν την υποτείνουσα και μια κάθετη πλευρά αντίστοιχα ίσες μία προς μία τότε είναι ίσα» τα ορθογώνια τρίγωνα είναι ίσα.επομένως θα έχουν και τα υπόλοιπα αντίστοιχα στοιχεία τους ίσα δηλαδή: i) Μ = Μ ii) Μ =Μ iii) Α =Α Σημειώσεις μελέτης ΔΙΑΓΩΝΙΣΜΑ 06 new.docx Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 8

Σκέψη: Δυστυχώς καμμιά από τις ισότητες που μου έδωσε η σύγκριση των ορθογωνίων τριγώνων δεν με βοηθάει άμεσα στην σύγκριση των ΑΒΓ και ΑΒΓ.Ομως μπορώ να τις χρησιμοποιήσω σε μια ακόμα σύγκριση τριγώνων που ελπίζουμε θα είναι πιο αποδοτική. Eχουμε: ΒΓ Β Γ ΒΓ=ΒΓ = ΒΜ=ΒΜ Επομένως: Β = ΒΜ Μ = Β Μ Μ = Β Πλέον τα ορθογώνια τρίγωνα ΔΑΒ και ΑΒ έχουν: i) Α = Α ii) 90 ο = = iii) Β = Β οπότε από κριτήριο Π-Γ-Π είναι ίσα.επομένως θα έχουν και τα υπόλοιπα αντίστοιχα στοιχεία τους ίσα δηλαδή: i) ΒΑ = Β Α ii) Β=Β iii) Α =Α Τα τρίγωνα ΑΒΓ και ΑΒΓ έχουν: i) ΒΑ = Β Α ii) Β=Β iii) ΒΓ = Β Γ Επομένως τα τρίγωνα αυτά Π-Γ-Π είναι ίσα. Σημείωση: Θα μπορούσαμε αντί να συγκρίνουμε τα ορθογώνια τρίγωνα ΔΑΒ και ΑΒ, να συγκρίνουμε τα τρίγωνα ΑΒΜ και ΑΒΜ ή ακόμα και τα ΑΓΜ και ΑΓΜ. Σημειώσεις μελέτης ΔΙΑΓΩΝΙΣΜΑ 06 new.docx Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 9

Α5. Δίνεται κύκλος (Ο,R), οι ίσες χορδές του ΑΒ και ΓΔ και τα αποστήματά τους ΟΚ και ΟΛ αντίστοιχα.αν οι προεκτάσεις των ΒΑ και ΔΓ τέμνονται στο Μ, να αποδείξετε ότι: i) Τα τρίγωνα ΜΟΚ και ΜΟΛ είναι ίσα. ii) ΜΑ=ΜΓ iii) ΜΒ=ΜΔ. Λύση: i) Αφού οι χορδές είναι ίσες, (από Θεώρημα ΙΙΙ) και τα αποστήματα θα είναι ίσα δηλαδή ΟΚ=ΟΛ. Τα ορθογώνια τρίγωνα ΚΟΜ και ΛΟΜ έχουν Κ=Λ= 90 ΟΚ = ΟΛ ΟΜ κοιν ή Θεώρημα ΙΙ είναι ίσα, οπότε ΜΚ=ΜΛ () ii) Από 3.0- Πόρισμα ii τα Κ και Λ είναι μέσα των ίσων χορδών ΑΒ και ΓΔ, οπότε ΚΑ=ΓΛ () ως μισά ίσων τμημάτων.από () και () συμπεραίνω ότι. ΜΑ=ΜΓ ως διαφορές ίσων τμημάτων. iii) Αφού στο ii) δείξαμε ότι ΜΑ=ΜΓ και από τα δεδομένα ισχύει ΑΒ=ΓΔ, θα είναι και ΜΒ=ΜΔ ως άθροισμα ίσων τμημάτων. Σημειώσεις μελέτης ΔΙΑΓΩΝΙΣΜΑ 06 new.docx Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr peira.gr 0